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Abstract 

The NAM-to-speech conversion proposed by Toda and 

colleagues which converts Non-Audible Murmur (NAM) to 

audible speech by statistical mapping trained using aligned 

corpora is a very promising technique, but its performance is 

still insufficient, mainly due to the difficulty in estimating F0 

of the transformed voice from unvoiced speech. In this paper, 

we propose a method to improve F0 estimation and voicing 

decision in a NAM-to-speech conversion system based on 

Gaussian Mixture Models (GMM) applied to whispered 

speech. Instead of combining voicing decision and F0 

estimation in a single GMM, a simple feed-forward neural 

network is used to detect voiced segments in the whisper 

while a GMM estimates a continuous melodic contour based 

on training voiced segments. The error rate for the 

voiced/unvoiced decision of the network is 6.8% compared to 

9.2% with the original system. Our proposal benefits also to 

F0 estimation error. 

Keywords: voice conversion, F0 estimation, neural network, 

non-audible murmur, whispered speech. 

1. Introduction 

Speech conveys a wide range of information. Among them, 

the linguistic content of the message being uttered is of prime 

importance. However, paralinguistic information such as the 

speaker’s mood, identity or position with respect to what 

he/she says also plays a crucial part in oral communication 

[10]. Unfortunately, when a speaker murmurs or whispers, this 

information is degraded. 

To solve this problem, Nakajima et al. [5] found that 

acoustic vibrations in the vocal tract can be captured through 

the soft tissues of the head with a special acoustic sensor 

called a NAM microphone attached to the surface of the skin, 

below the ear. Using this stethoscopic microphone to capture 

non-audible murmur, Toda et al. [1] proposed a NAM-to-

Speech conversion system based on the GMM model in order 

to convert “non-audible speech” to ordinary speech. It was 

shown that this system effectively works but its performance is 

still insufficient, especially in the naturalness of the converted 

speech. This is due to the difficulties in F0 estimation from 

unvoiced speech. These authors claimed that it is inevitable to 

improve the performance of NAM-to-Speech systems. 

Nakagiri et al. [4] proposed another system which converts 

NAM to whisper. F0 values do not need to be estimated for 

converted whispered speech because whisper is another type 

of unvoiced speech, just like NAM, but more intelligible. 

Another direction of research consists in using a phonetic 

pivot by combining speech recognition and synthesis 

techniques as in the Ouisper project [12]. By introducing 

higher linguistic levels, such systems can potentially predict a 

phonological structure that can be used in speech resynthesis. 

But no results have been reported yet and such an approach 

seems unsuitable for applications with open domain. 

In this paper, we propose to improve signal-based GMM 

mapping by a better estimation of the voiced source of the 

converted speech. Whisper-to-speech was used because of 

difficulties in getting accurate phonetic segmentation in NAM.  

In the training stage, whispered speech and ordinary 

speech utterance pairs were carefully aligned using phonetic 

transcription information. The main difference between our 

system and the original system proposed in [1] is that only 

voiced segments were provided as input to train the GMM 

model which maps spectral vectors of whisper to F0 values of 

converted speech. In the conversion stage, we use a feed-

forward neural network to detect the voiced segments in 

whispered utterance and then compute F0 for these segments 

only instead of computing these values for all segments. 

Another innovative aspect of this paper is the language: 

we have applied voice conversion techniques to French, which 

has much more complex syllabic structures and a larger 

phonemic inventory than Japanese. Degraded performance is 

thus expected with respect to original published results. 

The paper is organized as follows. Section 2 describes 

some characteristics of whispered speech. Section 3 describes 

the frameworks of our NAM-to-Speech conversion system. 

Section 4 describes our experimental evaluations and finally, 

conclusions are drawn in Section 5. 

2. Whispered speech 

In recent years, advances in wireless communication 

technology have led to the widespread use of mobile phones 

for private communication as well as information access using 

speech. Speaking loudly to a mobile phone in public places 

may be a nuisance to others, however, whispered speech can 

only be heard by a limited set of listeners surrounding the 

speaker and can therefore effectively be used for quiet and 

private communication over mobile phones [7]. 

2.1. Acoustic features 

In normal speech, voiced sounds involve a modulation of the 

air flow from the lungs by vibrations of the vocal folds. 

However, there is no vibration of the vocal folds in the 

production of whispered speech. Exhalation of air is used as 

the sound source, and the shape of the pharynx is adjusted 

such that the vocal folds do not vibrate. Due to this difference 

in production mechanism, the acoustic characteristics of 

whisper differ from those of normal speech. A study on the 

acoustic properties of vowel sounds [7] has shown an upward 

shift of the formant frequencies for vowels in whispered 

speech compared to normal speech. The shift is larger for 

vowels with low formant frequencies. The authors also found 

that the cepstral distances between normal and whispered 

speech for vowels and voiced consonants are higher than those 

of unvoiced consonants. This means that the vocal tract 

characteristics of vowels and voiced consonants change more 

significantly in whisper relative to ordinary speech than those 

of unvoiced consonants. 

The perception of vowel pitch in normal speech is related 

mainly to the fundamental frequency (F0) which corresponds 

to periodic pulsing. In whispered speech, however, although 



there is no periodic pulsing, some pitch-like perception may 

occur. Higashikawa et al. [8] have shown that listeners can 

perceive pitch during whispering and formant frequency could 

be one of the cues used in perception. More precisely, the 

authors in [9] indicated that “whisper pitch” is more 

influenced by simultaneous changes in F1 and F2 than by 

changes in only one of the formants. 

2.2. NAM microphone 

Nakajima et al. [5] proposed a new communication interface 

which can capture acoustic vibrations in the vocal tract from a 

sensor placed on the skin, below the ear. This position is 

shown in Fig. 1. This position allows a high quality recording 

of various types of body transmitted speech such as normal 

speech and whisper. Body tissue and lip radiation act as a low-

pass filter and the high frequency components are attenuated. 

However, the non-audible murmur spectral components still 

provide sufficient information to distinguish and recognize 

sound accurately [6]. Currently, the NAM microphone can 

record sound with frequency components up to 4 kHz while 

being little sensitive to external noise.  

 

Figure 1: Position of NAM microphone. 

3. NAM-to-Speech conversion system 

Several approaches have been proposed to convert non audible 

speech to modal voice. The most trivial system consists in 

chaining NAM recognition with speech synthesis. Direct 

signal-to-signal mapping using aligned corpora is also very 

promising: Toda et al. [1] applied statistical feature mapping 

[10][11] to NAM-to-speech conversion.  

Although the segmental intelligibility of synthetic signals 

computed by statistical feature mapping is quite acceptable, 

listeners have difficulty in chunking the speech continuum into 

meaningful words. A large part of this problem is due to 

impoverished synthetic intonation. In this study, we focus on 

improving the estimation of pitch and voicing of the converted 

speech. Fig. 2 shows the conversion used in our system. 

 

Figure 2: Conversion process of NAM-to-Speech system. 

Spectral Estimation. 

Before training the models for spectral estimation and F0 

estimation, the pairs of whisper and speech uttered by a 

speaker must be aligned because of different speaking rates. 

Transcription information was used for this task to get a better 

alignment compared to blind dynamic time warping (DTW). 

3.1. Spectral Estimation 

We use the same schema for spectral estimation as the one 

proposed by Toda [1]. As described in [1], feature vector Xt of 

whisper consisting of spectral feature vectors of several 

frames around a current frame t was aligned with a target 

speech feature Yt = [yt, ∆(yt)] consisting of static and dynamic 

features. These vectors were then used to train a GMM for 

representing the joint probability density p(Xt, Yt | Θ), where Θ 

denotes a set of GMM parameters. Another model for 

representing the probability density of global variance (GV) of 

the target static features p(v(y) | Θv) was trained where  Θv 

denotes a set of parameters of a Gaussian distribution, v(y) 

denotes global variance over the time sequence y of target 

static feature. This global variance information is used to 

alleviate the over-smoothing, which is inevitable in the 

conventional ML-based parameter estimation [2]. 

In the conversion, the target static feature y was estimated 

from source feature X = [X1, X2 ,…, XT] so that a likelihood L 

= p(Y|X, Θ)wp(v(y) |Θv) was maximize where w is a weight 

and the vector Y is represented as W y, where W denotes a 

conversion matrix from the static feature sequence to the static 

and dynamic feature sequence. 

3.2 Excitation Estimation 

The mixed excitation is defined as the frequency-dependent 

weighted sum of white noise and a pulse train with phase 

manipulation. The weight is determined based on an aperiodic 

component in each frequency band [14]. 

Aperiodic estimation was done in the same way as the 

spectral estimation except that global variance (GV) was not 

used because GV does not cause any large difference to the 

converted speech in the aperiodic conversion [3]. 

ML-based conversion method was used the F0 estimation. 

Static and dynamic features Yt of F0 are used while keeping 

the same feature vector of whisper Xt as that used for the 

spectral conversion. However, instead of using all the 

segments in each pair of utterance, only voiced segments Xt, Yt  

were extracted to train a GMM on the joint probability in a 

similar way as the spectral estimation in order to avoid loosing 

some Gaussian components for representing the zero values of 

F0 set for unvoiced segments. A feed-forward neural network 

is used to predict these segments from X. For synthesis, 

continuous F0 values are predicted that are paced by the 

voicing parameter computed by the network. 

4. Evaluation 

In order to show our improvement in F0 estimation and 

voicing attribution, two evaluations were done, comparing our 

system with the original system proposed in [1]. 

The training corpus consists in 200 utterance pairs of 

whisper and speech uttered by a French male speaker and 

captured by a NAM microphone and head-set microphone. 

Respective speech durations are 4.9 minutes for whisper (9.7 

minutes with silences) and 4.8 minutes for speech (7.2 

minutes with silences). The 0th through 24th mel-cepstral 

coefficients were used as a spectral feature at each frame.  

The spectral segment feature of whisper was constructed by 

concatenating feature vectors at current ± 8 frames, and then 

the vector dimension was reduced to 50 using a PCA 

technique. Log-scaled F0 extracted by STRAIGHT [13] was 

used as the target feature. 



4.1. Voicing estimation 

In the original system [1], first, the authors took all the frames 

in each utterance and estimated F0 value at each frame by 

using the trained GMM model. Then, they used a threshold to 

assign the voiced/unvoiced label for this frame. The F0 values 

in every unvoiced frames were then set to zero. We applied 

this original technique to our data. 

Then to compare with our technique, we created a feed-

forward neural network with 50 input nodes, 17 hidden nodes 

and 1 output node. The segmental features at each frame of 

the whispered utterances were used as input vector for this 

network. The voiced/unvoiced label for each segment in the 

training whispered data was obtained from the voiced/ 

unvoiced label of the corresponding speech utterance by 

aligning the two utterances. All the whispered utterances used 

for training the GMM were also used to train this network. 

Table 1: Voicing error using neural network or GMM. 

Type of error Feed-fwd NN (%) GMM (%) 

Voiced error 2.4 3.3 

Unvoiced error 4.4 5.9 

Total ~ 6.8 ~ 9.2 

 

Table 1 shows the evaluation of this network. Compared 

with the error in the original system, the result shows that we 

have a slight improvement of the voiced/unvoiced detection. 

4.2. Parameter evaluation 

We also compared the two systems with different number of 

mixtures for estimating F0 on both the training and the test 

data. The number of mixtures of mel-cepstral mapping 

function was set to 32. Full covariance matrices were used for 

both GMMs. The test corpus consisted of 70 utterance pairs 

not included in the training data.  The error was calculated as 

the normalized difference between synthetic F0 and natural F0 

in the voiced segments that were well detected by the two 

systems. The error is given by the following formula: Err = 

(synthetic_F0 – natural_F0)/ natural_F0. Fig. 3 shows that the 

proposed framework outperforms the original system. In 

addition, when the number of Gaussian mixtures increase, the 

errors of both systems on the training data decrease, but these 

errors on test data are little sensitive to the number of 

mixtures. This is further illustrated in Table 2 which provide 

correlation coefficients for the two systems.  

 

Figure 3: Natural and synthetic F0 curve. 

Fig. 4 shows an example of whispered-, converted- (our 

system) and natural-speech. As can be seen the formant 

patterns of converted speech are flatter than those of natural 

speech. Global variance was used to attenuate this difference. 

Table 2: Correlation coefficient between natural F0 and 

converted F0 by the two systems. 

Our system Original system # of 

Gaussian 

mixtures 
train test train test 

8 0.565 0.495 0.494 0.451 

16 0.667 0.493 0.513 0.456 

32 0.746 0.498 0.603 0.460 

64 0.834 0.499 0.682 0.444 

/ Whisper captured by NAM microphone / 

 
/ Converted speech / 

 
/ Natural speech / 

 

Figure 4: Whispered speech captured by NAM sensor, 

converted speech and ordinary speech for the same 

utterance: “Armstrong tombe et s'envole”. 

Figure 5 shows an example of a natural (target) F0 curve 

and the synthetic F0 curves generated by the two systems. It 

shows that our new system is closer to the natural F0 curve 

than the original system. 

 

Figure 5: Natural and synthetic F0 curve for the same 

utterance : “Armstrong tombe et s'envole”. 



4.3. Perceptual evaluation 

Sixteen French listeners who had never listened to NAM 

participated in our perceptual tests on intelligibility and 

naturalness of the converted speech from the two systems. We 

used 20 utterances which were not included in the training. 

    
                      (a)                                              (b) 

Figure 6: Intelligibility score (a) and Naturalness score (b). 

4.3.1. Evaluation on intelligibility 

For this evaluation, we used synthetic speech with the 

estimated mel-cepstrum, estimated aperiodic component and 

estimated F0 by both systems.  

Each listener heard an utterance pronounced in modal 

speech and the converted utterances obtained from the 

whispered speech with both systems. For each utterance, they 

were asked which one was closer to the original one, in terms 

of intelligibility (ABX test). Fig. 6a provides the mean 

intelligibility scores for all the listeners for the converted 

sentences using the original system and our new system. The 

intelligibility score is higher for the sentences obtained with 

our new system (F = 23.41, p <.001). 

In the evaluation in [1], it was shown that F0 estimation 

(compared with using a constant F0) improves intelligibility. 

This might be caused by a better detection of the voiced/ 

unvoiced property in the F0 estimation. In our case, a feed-

forward neural network was used instead of using GMM. 

4.3.2. Evaluation on naturalness 

We used here the version of the test utterances produced with 

the modal voice. These utterances are considered as ideal 

desired targets of the mapping. We thus further processed the 

synthetic utterances by warping their time scale to the targets 

using the warping procedure used for training. 

We then conducted an ABX test. Because of the warping, 

all utterances have almost the same temporal organization. 

For each sentence, subjects choose A or B as the nearest to 

the natural X in terms of naturalness. Fig. 6b shows the mean 

naturalness that all the listeners rate as the nearest. Again the 

proposed system was strongly preferred to the original one (F 

= 74.89, p <.001). 

5. Conclusions 

This paper described the improvement in F0 estimation and 

voicing decision we propose for NAM-to-speech conversion 

system applied to whispered speech. GMM models were used 

to estimate the spectra, aperiodic component and F0 of the 

converted speech from spectral segments obtained from 

NAM-captured whispered speech, based on a maximum 

likelihood criterion. To estimate the F0 features in the 

whispered utterances, only voiced segments were used. They 

were detected using a simple feed-forward neural network. 

Although the performance of the system is improved 

compared to that of the original system, the estimated pitch is 

still flat due to the GMMs. In the future, we will investigate 

how to obtain audible speech from whisper by using a HMM 

which is appropriate for modelling a time sequence of speech 

parameters. Also, we plan to use complementary information 

such as video in the aim of obtaining other useful parameters. 
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