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FEFFERMAN-STEIN INEQUALITIES FOR THE Z d 2 DUNKL MAXIMAL OPERATOR

In this article, we establish the Fefferman-Stein inequalities for the Dunkl maximal operator associated with a finite reflection group generated by the sign changes. Similar results are also given for a large class of operators related to Dunkl's analysis.

Introduction

In the early seventies, C. Fefferman and E. M. Stein have proved in [START_REF] Fefferman | Some maximal inequalities[END_REF] the following extension of the Hardy-Littlewood maximal theorem.

Theorem 1.1. Let (f n ) n 1 be a sequence of measurable functions defined on R d and let M be the well-known maximal operator given by

M f (x) = sup 1 m(Q) Q |f (y)| dy, x ∈ R d ,
where the sup is taken over all cubes Q centered at x and m(X) is the Lebesgue measure of X.

(1) If 1 < r < +∞, 1 < p < +∞ and if

∞ n=1 |f n (•)| r 1 r ∈ L p (R d ; dm), then we have ∞ n=1 |M f n (•)| r 1 r p C ∞ n=1 |f n (•)| r 1 r p ,
where C = C(r, p) is independent of (f n ) n 1 .

(2) If 1 < r < +∞ and if

∞ n=1 |f n (•)| r 1 r ∈ L 1 (R d ; dm), then for every λ > 0 we have m x ∈ R d : ∞ n=1 |M f n (x)| r 1 r > λ C λ ∞ n=1 |f n (•)| r 1 r 1 ,
where C = C(r) is independent of (f n ) n 1 and λ.
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One would like to extend this result to the case of the Dunkl maximal operator M κ which is defined according to S. Thangavelu and Y. Xu (see [START_REF] Thangavelu | Convolution operator and maximal function for the Dunkl transform[END_REF]) by

M κ f (x) = sup r>0 1 µ κ (B r ) (f * κ χ Br )(x) , x ∈ R d ,
where we denote by χ X the characteristic function of the set X, by B r the Euclidean ball centered at the origin and whose radius is r, by µ κ a weighted Lebesgue measure invariant under the action of a finite reflection group and by * κ the Dunkl convolution operator (see Section 2 for more details).

However, the lack of information on this convolution, which is defined through a generalized translation operator (also called Dunkl translation), prevents from stating a general result. Just as in the study of the weighted Riesz transform associated with the Dunkl transform (see [START_REF] Thangavelu | Riesz transform and Riesz potentials for Dunkl transform[END_REF]), we can only establish a complete result for the finite reflection group G ≃ Z d 2 with the associated measure µ κ given for every x = (x 1 , . . . , x d ) ∈ R d by (1.1) dµ κ (x) = h 2 κ (x) dx, with h κ the Z d 2 -invariant function defined by

h κ (x) = d j=1 |x j | κj = d j=1 h κj (x j ),
where κ 1 , . . . , κ d are nonnegative real numbers (let us note that h κ is homogeneous of degree γ κ = d j=1 κ j ). To become more precise, the aim of this paper is to prove the following Fefferman-Stein inequalities, where we denote by L p (µ κ ) the space L p (R d ; dµ κ ) and we use the shorter notation • κ,p instead of • L p (µκ) . For p ∈ [1, +∞], the space L p (µ κ ) is of course the space of measurable functions on R d such that

f κ,p = R d |f (y)| p dµ κ (y) 1 p < +∞ if 1 p < +∞, f κ,∞ = ess sup y∈R d |f (y)| < +∞ otherwise.
Theorem 1.2. Let G ≃ Z d 2 and let µ κ be the measure given by (1.1). Let (f n ) n 1 be a sequence of measurable functions defined on R d .

(1) If 1 < r < +∞, 1 < p < +∞ and if ∞ n=1 |f n (•)| r 1 r ∈ L p (µ κ ), then we have ∞ n=1 |M κ f n (•)| r 1 r κ,p C ∞ n=1 |f n (•)| r 1 r κ,p , where C = C(κ 1 , . . . , κ d , r, p) is independent of (f n ) n 1 . (2) If 1 < r < +∞ and if ∞ n=1 |f n (•)| r 1 r ∈ L 1 (µ κ ), then for every λ > 0 we have µ κ x ∈ R d : ∞ n=1 |M κ f n (x)| r 1 r > λ C λ ∞ n=1 |f n (•)| r 1 r κ,1
,

where C = C(κ 1 , . . . , κ d , r) is independent of (f n ) n 1 and λ.
The proof of Theorem 1.1 is mainly based on a maximal theorem, a Calderón-Zygmund decomposition and a weighted inequality. Nevertheless, the Dunkl maximal operator cannot be treated by this method even if a maximal theorem has been established for this one in [START_REF] Thangavelu | Convolution operator and maximal function for the Dunkl transform[END_REF]. This is closely related to the fact that a theory of singular integrals associated with the Dunkl transform seems to be out of reach at the moment.

In order to bypass this problem, we will construct a weighted maximal operator M R κ of Hardy-Littlewood type which satisfies the classical Fefferman-Stein inequalities and which controls M κ in the sense that for every

x ∈ R d reg (1.2) M κ f (x) CM R κ f (x)
, where C is a positive constant independent of x and f and where we set

R d reg = R d \ d j=1 x = (x 1 , . . . , x d ) ∈ R d : x j = 0 .
The paper is organised as follows. In the next section, we collect some definitions and results related to Dunkl's analysis. In particular, we list the properties of the Dunkl transform (and the associated tools) which will be relevant for the sequel. Section 3 is devoted to the proof of Theorem 1.2. In view of this, we will prove the inequality (1.2) thanks to a more convenient Dunkl maximal operator M Q κ and we will explain why the classical Fefferman-Stein inequalities hold for the operator M R κ . Therefore, there will be nothing more to do to conclude that Theorem 1.2 is true. An application of our Fefferman-Stein inequalities is given in Section 4.

Throughout this paper, C denotes a positive constant, which depends only on fixed parameters, and whose value may vary from line to line.

Preliminaries

This section is devoted to the preliminaries and background. These concern in particular the intertwining operator, the Dunkl transform, the Dunkl translation and the Dunkl convolution. We restrict the statement from Dunkl's analysis to the special case considered in this article. For a large survey about this theory, the reader may especially consult [START_REF] De Jeu | The Dunkl transform[END_REF][START_REF] Dunkl | Hankel transforms associated to finite reflection groups[END_REF][START_REF] Rösler | Dunkl operators: theory and applications[END_REF][START_REF] Rösler | A positive radial product formula for the Dunkl kernel[END_REF][START_REF] Thangavelu | Convolution operator and maximal function for the Dunkl transform[END_REF][START_REF] Trimèche | Paley-Wiener theorems for the Dunkl transform and Dunkl translation operators[END_REF].

Let e 1 , . . . , e d be the standard basis of R d . We denote by σ j (for each j from 1 to d) the reflection with respect to the hyperplane perpendicular to e j , that is to say for every 

x = (x 1 , . . . , x d ) ∈ R d σ j (x) = x -2 x,ej ej 2 e j = (x 1 , . . . , x j-1 , -x j , x j+1 , . . . , x d ). Of course •,• is the usual inner product on R d × R d and
D k f (x) = ∂ k f (x) + d j=1 κ j f (x) -f σ j (x) x, e j e k , e j = ∂ k f (x) + κ k f (x) -f σ k (x) x k ,
where ∂ k denotes the usual partial derivative. A fundamental property of these differential-difference operators is their commutativity, that is to say

D k D l = D l D k .
Closely related to them is the so-called intertwining operator V κ (the subscript means that the operator depends on the parameters κ j , except in the rank-one case where the subscript is then a single parameter) which is the unique linear isomorphism of n 0 P n such that

V κ (P n ) = P n , V κ (1) = 1, D k V κ = V κ ∂ k for k = 1, . . . , d,
with P n the subspace of homogeneous polynomials of degree n in d variables. Even if the positivity of the intertwining operator has been established in [START_REF] Rösler | Positivity of Dunkl's intertwining operator[END_REF] by M. Rösler, an explicit formula of V κ is not known in general. However, in our setting, the operator V κ is given according to [START_REF] Xu | Orthogonal polynomials for a family of product weight functions on the spheres[END_REF] by the following integral representation 12 ) (where Γ is the well-known Gamma function). In order to define the Dunkl transform, we also need to introduce the Dunkl kernel E κ which is given for x ∈ C d by

V κ f (x) = [-1,1] d f (x 1 t 1 , . . . , x d t d ) d j=1 M κj (1 + t j )(1 -t 2 j ) κj -1 dt, with M κj = Γ(κj + 1 2 ) Γ(κj )Γ(
E κ (•, x)(y) = V κ e •,x (y), y ∈ R d .
It has a unique holomorphic extension to C d × C d and it satisfies the following basic properties:

E κ (x, y) = E κ (y, x) for x, y ∈ C d , E κ (x, 0) = 1 for x ∈ C d and |E κ (ix, y)| 1 for x, y ∈ R d .
Considering the definition of E κ together with the explicit formula for V κ gives us

E κ (x, y) = d j=1 E κj (x j , y j ).
In the rank-one case, E κ is explicitly known. More precisely, it is given for both x and y in C by E κ (x, y) = j κ-1 2 (ixy) + xy 2κ + 1 j κ+ 1 2 (ixy), where j κ is the normalized Bessel function of the first kind and of order κ (see [START_REF] Watson | A Treatise on the Theory of Bessel Functions[END_REF]). Moreover, we have a crucial one-dimensional product formula for this kernel. Before formulating it, let us introduce some notations.

Notations.

(1) For x, y, z ∈ R, we put

σ x,y,z = 1 2xy (x 2 + y 2 -z 2 ) if x, y = 0, 0 if x = 0 or y = 0,
as well as

̺(x, y, z) = 1 2 (1 -σ x,y,z + σ z,x,y + σ z,y,x ).
(2) For x, y, z > 0, we put

K κ (x, y, z) = 2 2κ-2 M κ ∆(x, y, z) 2κ-2 (xyz) 2κ-1 χ [|x-y|,x+y] (z),
where ∆(x, y, z) denotes the area of the triangle (perhaps degenerated) with sides x, y, z.

With these notations in mind, we can now state the product formula for the Dunkl kernel (this formula has been proved in [START_REF] Rösler | Bessel-type signed hypergroups on R. In Probability measures on groups and related structures[END_REF] in the more general setting of signed hypergroups).

Proposition 2.1. Let x, y ∈ R.

(1) For every λ ∈ R we have

E κ (ix, λ)E κ (iy, λ) = R E κ (iλ, z) dν κ x,y (z),
where the measure ν κ x,y is given by

dν κ x,y (z) =      K κ (x, y, z) dµ κ (z) if x, y = 0, dδ x (z) if y = 0, dδ y (z) if x = 0, with K κ (x, y, z) = K κ |x|, |y|, |z| ̺(x, y, z). (2) The measure ν κ x,y satisfies (a) supp ν κ x,y = -|x| -|y|, -|x| -|y| |x| -|y| , |x| + |y| for x, y = 0. (b) ν κ x,y (R) = 1 and ν κ x,y 4, for x, y ∈ R.
We are now in a position to introduce the Dunkl transform which is taken with respect to the measure µ κ defined by (1.1). For f ∈ L 1 (µ κ ), the Dunkl transform of f , denoted by F κ (f ), is given by

F κ (f )(x) = c κ R d f (y)E κ (x, -iy) dµ κ (y), x ∈ R d ,
where c κ is the following constant

c -1 κ = R d e -x 2 2 dµ κ (x) = d j=1 c -1 κj . If κ 1 = • • • = κ d = 0, then V κ =
id and the Dunkl transform coincides with the Euclidean Fourier transform. In the rank-one case, it is more or less a Hankel transform (see [START_REF] Watson | A Treatise on the Theory of Bessel Functions[END_REF]). The following proposition (see [START_REF] De Jeu | The Dunkl transform[END_REF]) gives us a Plancherel theorem and an inversion formula.

Proposition 2.2.

(1) The Dunkl transform extends uniquely to an isometric isomorphism of

L 2 (µ κ ). (2) If both f and F κ (f ) are in L 1 (µ κ ) then f (x) = c κ R d F κ (f )(y)E κ (ix, y) dµ κ (y).
The Dunkl transform shares many other properties with the Fourier transform. Therefore, it is natural to associate a generalized translation operator and a generalized convolution operator with this transform.

There are many ways to define the Dunkl translation. We use the definition which most underlines the analogy with the Fourier transform. It is the definition given in [START_REF] Thangavelu | Convolution operator and maximal function for the Dunkl transform[END_REF] with a different convention.

Let x ∈ R d . The Dunkl translation operator τ κ x is given for f ∈ L 2 (µ κ ) by F κ τ κ x (f ) (y) = E κ (ix, y)F κ (f )(y), y ∈ R d .
It plays the role of f → f (• + x) in Fourier analysis. It is important to note that it is not a positive operator. The following explicit formula for τ κ x is due to Rösler (see [START_REF] Rösler | Bessel-type signed hypergroups on R. In Probability measures on groups and related structures[END_REF]). In the case G ≃ Z 2 , we have for a continuous function f on R and for x, y ∈ R

(2.1) τ κ x (f )(y) = 1 2 1 -1 f x 2 + y 2 + 2xyt 1 + x + y x 2 + y 2 + 2xyt Φ κ (t) dt + 1 2 1 -1 f -x 2 + y 2 + 2xyt 1 - x + y x 2 + y 2 + 2xyt Φ κ (t) dt, where Φ κ (t) = M κ (1 + t)(1 -t 2 ) κ-1 . It follows from (2.1) a formula for τ κ x in the case G ≃ Z d
2 and this formula implies the boundedness of τ κ x (it is still a challenging problem for a general reflection group).

Proposition 2.3. Let x ∈ R d . The operator τ κ x extends to L p (µ κ ) for p ∈ [1, +∞] and for f ∈ L p (µ κ ) we have τ κ x (f ) κ,p C f κ,p ,
where C is independent of x and f .

The last result we mention about the generalized translation is the following onedimensional inequality which has been recently proved by C. Abdelkefi and M. Sifi in [START_REF] Abdelkefi | Dunkl translation and uncentered maximal operator on the real line[END_REF] (see also [START_REF] Walter | The Hardy-Littlewood maximal function for Chébli-Trimèche hypergroups[END_REF]). Proposition 2.4. There exists a positive constant C such that for x, y ∈ R and for every r > 0 we have

τ κ x (χ [-r,r] )(y) C µ κ ] -r, r[ µ κ I(x, r) ,
where we denote by I(x, r) the following set

I(x, r) = max{0; |x| -r}, |x| + r .
We conclude this section with the definition and the basic properties of the Dunkl convolution operator. According to [START_REF] Thangavelu | Convolution operator and maximal function for the Dunkl transform[END_REF], this operator is defined for both f and g in L 2 (µ κ ) by

(f * κ g)(x) = c κ R d f (y)τ κ x (g)(-y) dµ κ (y), x ∈ R d .
Thanks to Proposition 2.3, the usual Young's inequality holds (for the proof, see for instance [START_REF] Zygmund | Trigonometric series[END_REF]).

Proposition 2.5. Assume that p -1 + q

-1 = 1 + r -1 with p, q, r ∈ [1, +∞]. Then, the map (f, g) → f * κ g defined on L 2 (µ κ ) × L 2 (µ κ ) extends to a continuous map from L p (µ κ ) × L q (µ κ ) to L r (µ κ ) and we have f * κ g κ,r C f κ,p g κ,q ,
where C is independent of f and g.

We finally note that the Dunkl convolution satisfies the properties

f * κ g = g * κ f and F κ (f * κ g) = F κ (f ) • F κ (g).
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Fefferman-Stein inequalities

This section is concerned with the proof of our Fefferman-Stein inequalities, that is to say Theorem 1.2. In fact, as we have already claimed, the proof is straightforward once we have constructed an operator M R κ which controls M κ and which satisfies the classical Fefferman-Stein inequalities. What we have in mind for the construction of M R κ is that we want to use the sharp inequality of Proposition 2.4 because it is a key argument to bypass the lack of information on the Dunkl translation operator. Nevertheless, this proposition is one-dimensional. This is the reason for which we shall introduce a Dunkl maximal operator M Q κ defined with cubes. Indeed, the basic observation χ

Q r (x) = d j=1 χ [-r,r] (x j ) (together with the fact that E κ (x, y) = d
j=1 E κj (x j , y j )) will allow us to prove the formula

τ κ x (χ Q r )(y) = d j=1 τ κj xj (χ [-r,r] )(y j ),
from which we will deduce not only the definition of the operator M R κ but also the inequality

M Q κ f M R κ f
. Therefore, in order to prove the inequality (1.2), it will be enough to prove that M Q κ controls M κ . Since τ κ x is not a positive operator, it is not at all obvious that they are connected. Thus, we shall study how they are related to each other.

First of all, we introduce the auxiliary operator M Q κ . Definition. Let M Q κ be the Dunkl maximal operator defined with cubes centered at the origin and whose sides are parallel to the axes by

M Q κ f (x) = sup r>0 1 µ κ Q r R d f (y)τ κ x (χ Qr )(-y) dµ κ (y) , x ∈ R d ,
where for every r > 0 we set

Q r = x ∈ R d : |x j | < r, j = 1, . . . , d .
Our first aim is to prove that this maximal operator controls M κ . In view of this, we need the following lemma. Before stating it, we have to introduce a notation.

Notation. For x, y ∈ R \ {0}, we denote by ν κ,+

x,y the measure given for every z ∈ R by

dν κ,+ x,y (z) = 1 2 K κ |x|, |y|, |z| (1 -σ x,y,z ) dµ κ (z).
Let us point out that this measure is positive. Indeed, it is a simple consequence of the following observation

|z| ∈ |x| -|y| , |x| + |y| =⇒ |σ x,y,z | 1.
With this notation in mind, we can now formulate the lemma.

Lemma 3.1. Let x = (x 1 , . . . , x d ) ∈ R d reg . Then τ κ x (χ Q r
) is a positive function on R d reg and for y = (y 1 , . . . , y d ) ∈ R d reg we have

τ κ x (χ Q r )(y) = R d χ Q r (z) dυ x,y (z),
where the measure υ κ x,y is given by

dυ κ x,y (z) = dν κ1,+ x1,y1 (z 1 ) • • • dν κ d ,+ x d ,y d (z d ).
Before we come to the proof of this lemma, let us introduce the so-called Dunkl heat kernel q t κ which is associated with the Dunkl Laplacian ∆ κ = d j=1 D 2 j . This kernel is given for every t > 0 by

q t κ (•) = 1 (2t) γκ+ d 2 e -• 2 4t .
It satisfies F κ (q t κ )(•) = e -t • 2 and the following equality

(3.1) τ κ x (q t κ )(y) = 1 (2t) γκ+ d 2 e -x 2 + y 2 4t E κ x √ 2t , - y √ 2t , x, y ∈ R d .
Moreover, we know that τ κ x (q t κ )(y) > 0 for x and y in R d and that

(3.2) R d τ κ x (q t κ )(y) dµ κ (y) = 1 c κ .
For all these results (and for more details), the reader may consult [START_REF] Rösler | Generalized Hermite polynomials and the heat equation for Dunkl operators[END_REF] or [START_REF] Rösler | Dunkl operators: theory and applications[END_REF].

We now turn to the proof of Lemma 3.1.

Proof. One begins with the proof of the following one-dimensional equality

(3.3) τ κ x (χ [-r,r] )(y) = R χ [-r,r] (z) dν κ,+ x,y (z), x, y ∈ R \ {0}.
Let q t κ be the Dunkl heat kernel defined above. We readily observe that χ [-r,r] * κ q t κ ∈ L 1 (µ κ ), which implies, on account of Proposition 2.3, that τ κ

x (χ [-r,r] * κ q t κ ) ∈ L 1 (µ κ ). Moreover, we have by Hölder's inequality and Plancherel's theorem

F κ (χ [-r,r] ) • F κ (q t κ ) κ,1 χ [-r,r] κ,2 q t κ κ,2 ,
from which we deduce that

F κ (χ [-r,r] * κ q t κ ) = F κ (χ [-r,r] ) • F κ (q t κ ) ∈ L 1 (µ κ
). Since we have by definition

F κ τ κ x (χ [-r,r] * κ q t κ ) (•) = E κ (ix, •)F κ (χ [-r,r] * κ q t κ )(•), then F κ τ κ x (χ [-r,r] * κ q t κ ) ∈ L 1 (µ κ
) and we can apply the inversion formula to obtain

τ κ x (χ [-r,r] * κ q t κ )(y) = c κ R E κ (ix, z)E κ (iy, z)F κ (χ [-r,r] )(z)e -tz 2 dµ κ (z).
If we now use the product formula of Proposition 2.1 we get

τ κ x (χ [-r,r] * κ q t κ )(y) = c κ R R E κ (iz, z ′ ) dν κ x,y (z ′ ) F κ (χ [-r,r] )(z)e -tz 2 dµ κ (z) = c κ R R E κ (iz, z ′ )F κ (χ [-r,r] )(z)e -tz 2 dµ κ (z) dν κ x,y (z ′ ),
from which we deduce thanks to the inversion formula

(3.4) τ κ x (χ [-r,r] * κ q t κ )(y) = R (χ [-r,r] * κ q t κ )(z ′ ) dν κ x,y (z ′ ).
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But we claim that χ [-r,r] * κ q t κ is an even function. Indeed

(χ [-r,r] * κ q t κ )(-ξ) = c κ R χ [-r,r] (ξ ′ )τ κ -ξ (q t κ )(-ξ ′ ) dµ κ (ξ ′ ) = c κ R χ [-r,r] (ξ ′ )τ κ ξ (q t κ )(ξ ′ ) dµ κ (ξ ′ ) = (χ [-r,r] * κ q t κ )(ξ),
where we have used the definition of * κ in the first step, the formula (3.1) in the second step (in order to prove that τ κ -ξ (q t κ )(-ξ ′ ) = τ κ ξ (q t κ )(ξ ′ )) and a change of variables and the definition of the Dunkl convolution in the last step. Since both z → σ z,x,y and z → σ z,y,x are odd functions, the equality (3.4) is therefore equivalent to the following one

(3.5) τ κ x (χ [-r,r] * κ q t κ )(y) = R (χ [-r,r] * κ q t κ )(z ′ ) dν κ,+ x,y (z ′ ).
In order to prove (3.3) we will take limit in (3.5) as t goes to 0. Observe that, by Plancherel's theorem

χ [-r,r] * κ q t κ -χ [-r,r] 2 κ,2 = F κ (χ [-r,r] ) • F κ (q t κ ) -F κ (χ [-r,r] ) 2 κ,2 = R F κ (χ [-r,r] )(ξ) 2 1 -e -tξ 2 2 dµ κ (ξ). Thus, χ [-r,r] * κ q t κ → χ [-r,r] in L 2 (µ κ ) as t → 0. Since τ κ x is a bounded operator on L 2 (µ κ ) we also have τ κ x (χ [-r,r] * κ q t κ ) → τ κ x (χ [-r,r]
) in L 2 (µ κ ) as t → 0. By passing to a subsequence if necessary we can therefore assume that the convergence is also almost everywhere. Taking limit as t goes to 0 in (3.5) gives us

τ κ x (χ [-r,r] )(y) = lim t→0 R (χ [-r,r] * κ q t κ )(z ′ ) dν κ,+
x,y (z ′ ).

Then (3.3) is proved if we show the following equality

(3.6) lim t→0 R (χ [-r,r] * κ q t κ )(z ′ ) dν κ,+ x,y (z ′ ) = R χ [-r,r] (z ′ ) dν κ,+ x,y (z ′ ).
In view of this, we shall use the Lebesgue dominated convergence theorem. Since the almost everywhere convergence of χ [-r,r] * κ q t κ to χ [-r,r] has been already proved above, it suffices to majorize |χ [-r,r] * κ q t κ | by a function independent of t and which is integrable with respect to ν κ,+

x,y . By the definition of the Dunkl convolution

(χ [-r,r] * κ q t κ )(z ′ ) = c κ R χ [-r,r] (ξ)τ κ z ′ (q t κ )(-ξ) dµ κ (ξ),
from which we deduce that

(χ [-r,r] * κ q t κ )(z ′ ) c κ R τ κ z ′ (q t κ )(-ξ) dµ κ (ξ) = c κ R τ κ z ′ (q t κ )(ξ) dµ κ (ξ),
where we have used the positivity of τ κ z ′ (q t κ ) and a change of variables in the last step. On account of (3.2) we then obtain

(χ [-r,r] * κ q t κ )(z ′ ) 1.
Since the function equal to 1 is integrable with respect to ν κ,+ x,y , the Lebesgue dominated convergence theorem allows us to complete the proof of (3.6) and then (3.3) is proved.

Let us point out that we deduce from (3.3) the positivity of τ κ

x (χ [-r,r] ). We next prove the following equality

(3.7) τ κ x (χ Q r )(y) = d j=1 τ κj xj (χ [-r,r] )(y j ), x, y ∈ R d reg .
We can apply the inversion formula (by a reprise of the argument given above) to obtain

(3.8) τ κ x (χ Q r * κ q t κ )(y) = c κ R d E κ (ix, z)E κ (iy, z)F κ (χ Q r )(z)e -t z 2 dµ κ (z).
Let us notice that we have the following product formula

(3.9) F κ (χ Q r )(z) = d j=1 F κj (χ [-r,r] )(z j ), z ∈ R d .
Indeed, by the definition of the Dunkl transform we have

F κ (χ Q r )(z) = c κ R d E κ (z, -iz ′ )χ Q r (z ′ ) dµ κ (z ′ ).
Since we can separate the variables we get

F κ (χ Q r )(z) = d j=1 R c κj E κj (z j , -iz ′ j )χ [-r,r] (z ′ j )h 2 κj (z ′ j ) dz ′ j ,
from which (3.9) follows. We combine (3.9) with (3.8) to obtain

τ κ x (χ Q r * κ q t κ )(y) = d j=1 R c κj E κj (ix j , z j )E κj (iy j , z j )F κj (χ [-r,r] )(z j )e -tz 2 j h 2 κj (z j ) dz j ,
that is to say

τ κ x (χ Q r * κ q t κ )(y) = d j=1 τ κj xj (χ [-r,r] * κj q t κj )(y j ),
from which we deduce (3.7) by taking limit. The proof of the lemma is now obvious. Indeed, using the equality (3.3) in (3.7) gives us

τ κ x (χ Q r )(y) = d j=1 R χ [-r,r] (z j ) dν κj ,+ xj ,yj (z j ),
which is precisely what we wanted to prove.

We are now in a position to prove that M Q κ controls M κ . More precisely, we have the following proposition. Proposition 3.1. There exists a positive constant C such that for every

x ∈ R d reg we have 0 M κ f (x) CM Q κ |f |(x).
Proof. Thanks to the definition of M κ there is nothing to do for the first inequality. We now turn to the second one. Let x ∈ R d reg and r > 0. Let us remark that we readily have

(3.10) R d f (y)τ κ x (χ Br )(-y) dµ κ (y) = R d reg f (y)τ κ x (χ Br )(-y) dµ κ (y).
The key argument for the proof is that we can show, even if τ κ x is not a positive operator, the following inequality

(3.11) 0 τ κ x (χ Br )(y) τ κ x (χ Q r )(y), x, y ∈ R d reg .
Thanks to the explicit formula of τ κ x (χ Q r

) given in the previous lemma, it is enough to show that (3.12)

τ κ x (χ B r )(y) = R d χ B r (z) dυ κ x,y (z), x, y ∈ R d reg ,
in order to prove (3.11). Therefore, we now turn to the proof of (3.12). By a reprise of the argument given in the proof of Lemma 3.1, we can apply the inversion formula to write for both x and y in R

d reg τ κ x (χ B r * κ q t κ )(y) = c κ R d E κ (ix, z)E κ (iy, z)F κ (χ B r )(z)e -t z 2 dµ κ (z).
Since E κ (x, y) = d j=1 E κj (x j , y j ), we have thanks to Proposition 2.1

τ κ x (χ B r * κ q t κ )(y) = c κ R d R d E κ (iz, z ′ ) dν κ1 x1,y1 (z ′ 1 ) • • • dν κ d x d ,y d (z ′ d ) F κ (χ Br )(z)e -t z 2 dµ κ (z),
from which it follows

τ κ x (χ Br * κ q t κ )(y) = c κ R d R d E κ (iz, z ′ )F κ (χ Br )(z)e -t z 2 dµ κ (z) dν κ1 x1,y1 (z ′ 1 ) • • • dν κ d x d ,y d (z ′ d ).
We apply the inversion formula to get

τ κ x (χ B r * κ q t κ )(y) = R d (χ B r * κ q t κ )(z ′ ) dν κ1 x1,y1 (z ′ 1 ) • • • dν κ d x d ,y d (z ′ d ),
and we obtain thanks to the Fubini theorem (3.13)

τ κ x (χ Br * κ q t κ )(y) = R d-1 R (χ Br * κ q t κ )(z ′ ) dν κ1 x1,y1 (z ′ 1 ) dν κ2 x2,y2 (z ′ 2 ) • • • dν κ d x d ,y d (z ′ d ).
Since χ B r is radial, χ B r * κ q t κ is also radial. Therefore, it is even with respect to each of its variables, that is to say (χ

Br * κ q t κ )(ε 1 z 1 , . . . , ε d z d ) = (χ Br * κ q t κ )(z 1 , . . . , z d ) with ε j = ±1. Then (3.13) is equivalent to τ κ x (χ Br * κ q t κ )(y) = R d-1 R (χ Br * κ q t κ )(z ′ ) dν κ1,+ x1,y1 (z ′ 1 ) dν κ2 x2,y2 (z ′ 2 ) • • • dν κ d x d ,y d (z ′ d ).
By successive uses of the Fubini theorem we are readily led to

(3.14) τ κ x (χ Br * κ q t κ )(y) = R d (χ Br * κ q t κ )(z ′ ) dν κ1,+ x1,y1 (z ′ 1 ) • • • dν κ d ,+ x d ,y d (z ′ d ).
Taking limit as t tends to 0 in (3.14) gives us (3.12) which in turn implies (3.11).

Consequently, if we apply (3.11) in (3.10) we are led to the following inequality

R d f (y)τ κ x (χ Br )(-y) dµ κ (y) R d reg |f (y)|τ κ x (χ Q r )(-y) dµ κ (y).
Since it is obvious that

R d reg |f (y)|τ κ x (χ Q r )(-y) dµ κ (y) = R d |f (y)|τ κ x (χ Qr )(-y) dµ κ (y),
we can therefore write

R d f (y)τ κ x (χ Br )(-y) dµ κ (y) R d |f (y)|τ κ x (χ Qr )(-y) dµ κ (y),
from which it follows at once that (3.15)

1 µ κ (B r ) R d f (y)τ κ x (χ Br )(-y) dµ κ (y) 1 µ κ (B r ) R d |f (y)|τ κ x (χ Qr )(-y) dµ κ (y). Let us notice that µ κ (Q r ) = Cµ κ (B r ) with C = 2 d (2γ κ + d) d j=1 2κ j + 1 S d-1 h 2 κ (y) dy -1
.

Indeed, we have on one hand

µ κ (Q r ) = d j=1 µ κj ] -r, r[ = 2 d d j=1 1 2κ j + 1 r 2γκ+d ,
and on the other hand, changing to polar coordinates gives

µ κ (B r ) = r 0 u 2γκ+d-1 du S d-1 h 2 κ (y) dy = 1 2γ κ + d S d-1 h 2 κ (y) dy r 2γ+d ,
where we have used the fact that h 2 κ is homogeneous of degree 2γ κ . We can therefore reformulate (3.15) as follows

1 µ κ (B r ) R d f (y)τ κ x (χ Br )(-y) dµ κ (y) C µ κ (Q r ) R d |f (y)|τ κ x (χ Qr )(-y) dµ κ (y), from which we deduce that 1 µ κ (B r ) R d f (y)τ κ x (χ Br )(-y) dµ κ (y) CM Q κ |f |(x),
and then the result.

Thanks to this proposition, it is enough to construct an operator M R κ which controls M Q κ in order to prove the inequality (1.2). Before we come to the definition of M R κ we give some notations. 

R(z, r) = I(z 1 , r) × • • • × I(z d , r).
Recall that we have defined for x ∈ R and r > 0 the set I(x, r) by

I(x, r) = max{0; |x| -r}, |x| + r .
Since we want to use the sharp inequality of Poposition 2.4 together with the fact that τ κ

x (χ

Q r )(y) = d j=1 τ κj xj (χ [-r,r]
)(y j ), we are naturally led to introduce the following operator.

Definition. Let M R κ be the weighted maximal operator defined by

M R κ f (x) = sup r>0 1 µ κ R(x, r) ỹ∈R(x,r) |f (y)| dµ κ (y), x ∈ R d .
This operator satisfies the classical properties of maximal operators. Let us clarify our statement. Since µ κ is a doubling weight, we have the following covering lemma (a onedimensional result for I(x, r) can be found in [START_REF] Abdelkefi | Dunkl translation and uncentered maximal operator on the real line[END_REF] or [START_REF] Walter | The Hardy-Littlewood maximal function for Chébli-Trimèche hypergroups[END_REF]).

Lemma 3.2. Let E be a measurable (with respect to µ κ ) subset of R + × • • • × R + . Suppose E ⊂ ∪ j∈J R j with R j = R(z j ,
r j ) bounded for every j ∈ J (where z j ∈ R d and r j > 0). Then, from this family, we can choose a sequence (which may be finite) of disjoint sets R 1 , . . . , R n , . . ., such that

µ κ (E) C n µ κ (R n ),
where C is a positive constant which depends only on κ 1 , . . . , κ d .

Thanks to this lemma, a weak-type (1, 1) result for M R κ can be easily proved. Indeed, if we set

E + = x ∈ R * + × • • • × R * + : M R κ f (x) > λ ,
we can choose (thanks to the definition of M R κ and the covering lemma) a suitable sequence of disjoint sets R n such that µ κ (E + )

C n µ κ (R n ), where C depends only on κ 1 , . . . , κ d . We can then follow the standard techniques (see for instance [START_REF] Elias | Singular integrals and differentiability properties of functions[END_REF]) in order to prove that µ κ (E + ) C λ f κ,1 . Finally, the basic but crucial observation

(3.16) M R κ f (x) = M R κ f (ε 1 x 1 , . . . , ε d x d
), with ε j = ±1, allows us to deduce the weak-type inequality, that is

µ κ x ∈ R d : M R κ f (x) > λ C λ f κ,1 .
Since M R κ is obviously bounded on L ∞ , the weak-type (1, 1) inequality implies the strong-type (p, p) inequality by the Marcinkiewicz interpolation theorem (see [START_REF] Elias | Singular integrals and differentiability properties of functions[END_REF]). Thus, we have proved the following maximal theorem for M R κ . Theorem 3.1. Let f be a function defined on R d .

(1) If f ∈ L 1 (µ κ ), then for every λ > 0 we have

µ κ x ∈ R d : M R κ f (x) > λ C λ f κ,1 ,
where C is a positive constant independent of f and λ.

(2) If f ∈ L p (µ κ ), 1 < p +∞, then M R κ f ∈ L p (µ κ ) and we have M R κ f κ,p C f κ,p
, where C is a positive constant independent of f . Moreover, we claim that the following weighted inequality is true. Lemma 3.3. Let W be a positive and locally integrable (with respect to µ κ ) function defined on R d . For 1 < q < +∞, there exists a positive constant C which depends only on κ 1 , . . . , κ d and q and such that

R d M R κ f (y) q W (y) dµ κ (y) C R d |f (y)| q M R κ W (y) dµ κ (y).
Indeed, by the Marcinkiewicz interpolation theorem, this lemma is an immediate consequence of the trivial fact that M R κ is bounded on L ∞ together with the following inequality

(3.17) μκ x ∈ R d : M R κ f (x) > λ C λ R d |f (y)|M R κ W (y) dµ κ (y),
where μκ (X) = X W (y) dµ κ (y) and where C is a positive constant which depends only on κ 1 , . . . , κ d . The just-written inequality is easy to prove. Indeed, we can show the key inequality

μκ (K) C λ R d |f (y)|M R κ W (y) dµ κ (y)
for any compact set K in E + just as in the proof for the classical maximal operator (see [START_REF] Elias | Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals[END_REF]). Therefore

μκ (E + ) C λ R d |f (y)|M R κ W (y) dµ κ (y)
and we then deduce (3.17) on account of (3.16).

To conclude, we claim that we can combine the maximal theorem and the weighted inequality for M R κ with a Calderón-Zygmund decomposition of f (see for instance [START_REF] Elias | Singular integrals and differentiability properties of functions[END_REF]) to obtain the Fefferman-Stein inequalities for M R κ following almost verbatim the proof in [START_REF] Fefferman | Some maximal inequalities[END_REF]. Theorem 3.2. Let (f n ) n 1 be a sequence of measurable functions defined on R d .

(1) If 1 < r < +∞, 1 < p < +∞ and if

∞ n=1 |f n (•)| r 1 r ∈ L p (µ κ ), then we have ∞ n=1 |M R κ f n (•)| r 1 r κ,p C ∞ n=1 |f n (•)| r 1 r κ,p , where C = C(κ 1 , . . . , κ d , r, p) is independent of (f n ) n 1 .
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(2) If 1 < r < +∞ and if ∞ n=1 |f n (•)| r 1 r ∈ L 1 (µ κ ), then for every λ > 0 we have µ κ x ∈ R d : ∞ n=1 |M R κ f n (x)| r 1 r > λ C λ ∞ n=1 |f n (•)| r 1 r κ,1
, where C = C(κ 1 , . . . , κ d , r) is independent of (f n ) n 1 and λ.

Therefore, in order to prove Theorem 1.2, it remains to show that the operator M R κ controls M Q κ . More precisely, we have the following proposition. Proposition 3.2. There exists a positive constant C such that for every

x ∈ R d reg we have M Q κ f (x) CM R κ f (x). Proof. Let x ∈ R d
reg and r > 0. By the definition of the Dunkl convolution we have

(f * κ χ Qr )(x) = c κ R d f (y)τ κ x (χ Qr )(-y) dµ κ (y) ,
from which we deduce at once that

(f * κ χ Qr )(x) = c κ R d reg f (y)τ κ x (χ Q r )(-y) dµ κ (y) .
Using the positivity of τ

κ x (χ Q r ) gives us (f * κ χ Qr )(x) c κ R d reg |f (y)|τ κ x (χ Q r
)(-y) dµ κ (y).

On account of (3.7) we then obtain

(f * κ χ Qr )(x) c κ R d reg |f (y)| d j=1 τ κj xj (χ [-r,r] )(-y j ) dµ κ (y).
Since we can readily deduce from (3.3) the following property

|y j | / ∈ I(x j , r) =⇒ τ κj xj (χ [-r,r] )(y j ) = 0, we can write (f * κ χ Qr )(x) c κ Ax |f (y)| d j=1 τ κj xj (χ [-r,r] )(-y j ) dµ κ (y),
where A x is the following set r) . If we now apply the inequality of Proposition 2.4 we get

A x = R d reg ∩ y ∈ R d : ỹ ∈ R(x,
(f * κ χ Qr )(x) C Ax |f (y)| d j=1 µ κj ] -r, r[ µ κj I(x j , r) dµ κ (y).
The following obvious equalities

d j=1 µ κj ] -r, r[ = µ κ (Q r ), d j=1 µ κj I(x j , r) = µ κ R(x, r) , imply that (f * κ χ Qr )(x) Cµ κ (Q r ) µ κ R(x, r) Ax |f (y)| dµ κ (y), from which we deduce that 1 µ κ (Q r ) (f * κ χ Qr )(x) C µ κ R(x, r) ỹ∈R(x,r) |f (y)| dµ κ (y). It follows that 1 µ κ (Q r ) (f * κ χ Qr )(x) CM R κ f (x),
and then the result.

This result, combined with Proposition 3.1, leads immediately to the following corollary.

Corollary 3.1. There exists a positive constant C such that for every x ∈ R d reg we have 0 M κ f (x) CM R κ f (x). Then, Theorem 1.2 is true thanks to this corollary and the Fefferman-Stein inequalities for M R κ (Theorem 3.2). Remark. Let us point out that Corollary 3.1, together with the maximal result for M R κ (Theorem 3.1), implies a maximal theorem for M κ (proved in [START_REF] Thangavelu | Convolution operator and maximal function for the Dunkl transform[END_REF]) without using the Hopf-Dunford-Schwartz ergodic theorem (which is a general method given in [START_REF] Elias | Topics in harmonic analysis related to the Littlewood-Paley theory[END_REF]).

Application

Since the Fefferman-Stein inequalities are an important tool in Harmonic analysis, we would like to define a large class of operators such that each operator of this class satisfies these inequalities, and such that, in particular, the maximal operator associated with the Dunkl heat semigroup and the maximal operator associated with the Dunkl-Poisson semigroup belong to this class (see [START_REF] Elias | Topics in harmonic analysis related to the Littlewood-Paley theory[END_REF] for details about the classical heat semigroup and the classical Poisson semigroup).

To become more precise, let us now introduce this class of operators.

Definition. Let φ ∈ L 1 (µ κ ) be a radial function, that is φ(x) = φ x for every x ∈ R d , such that φ is differentiable and satisfies the following properties then for every t > 0 we have

φ t (x) = a κ t (t 2 + x 2 ) γκ+ d+1 2 = P t κ (x),
which is the Dunkl-Poisson kernel (for more details about this kernel, the reader is referred to [START_REF] Rösler | Markov processes related with Dunkl operators[END_REF] and [START_REF] Thangavelu | Convolution operator and maximal function for the Dunkl transform[END_REF]). Thus, in this case, M φ κ is the maximal function associated with the Dunkl-Poisson semigroup.

We now state the Fefferman-Stein inequalities for M φ κ (for φ, φ and φ t as above). Theorem 4.1. Let (f n ) n 1 be a sequence of measurable functions defined on R d .

(1) If 1 < r < +∞, 1 < p < +∞ and if , where C = C(φ, κ 1 , . . . , κ d , r, p) is independent of (f n ) n 1 .

(2) If 1 < r < +∞ and if

∞ n=1 |f n (•)| r 1 r ∈ L 1 (µ κ )
, then for every λ > 0 we have

µ κ x ∈ R d : ∞ n=1 |M φ κ f n (x)| r 1 r > λ C λ ∞ n=1 |f n (•)| r 1 r κ,1
, where C = C(φ, κ 1 , . . . , κ d , r) is independent of (f n ) n 1 and λ.

Proof. The proof is nearly obvious. Indeed, according to the proof of Theorem 7.5 in [START_REF] Thangavelu | Convolution operator and maximal function for the Dunkl transform[END_REF] 
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 213 Dunkl For z = (z 1 , . . . , z d ) ∈ R d we put z = |z 1 |, . . . , |z d | and we denote by R(z, r) (for every r > 0) the following set

2 , 1 (2t) γκ+ d 2 e -x 2 4t=( 1 + x 2 ) γκ+ d+1 2 ,

 212212 dr < +∞.Then we denote by M φ κ the following operatorM φ κ f (x) = sup t>0 (f * κ φ t )(x) , x ∈ R d ,where φ t is for every t > 0 the dilation of φ given byφ t (x) = 1 t 2γκ+d φ x t , x ∈ R d .Let us present two important examples of functions which satisfy the conditions of the previous definition. The first one is concerned with the Dunkl heat kernel q t κ . Indeed if we letφ(x) = e -x 2 x ∈ R d ,then for every t > 0 we haveφ √ 2t (x) = q t κ (x).In this case, M φ κ is therefore the maximal function of the Dunkl heat semigroup. Our second example deals with the Dunkl-Poisson kernel. If we define the function φ for every x ∈ R d byφ(x) = a κ with a κ = c κ 2 γκ+ d 2 Γ γ κ + d+1 2 √ π ,

∞ 1 r

 1 n=1 |f n (•)| r ∈ L p (µ κ ), then we have

  • is the associated norm. Let G be the finite reflection group generated by {σ j : j = 1, . . . , d}, so G is isomorphic to Z d 2 . Let κ 1 , κ 2 , . . . , κ d be nonnegative real numbers. Associated with these objects are the Dunkl operators D k (for k = 1, . . . , d) which have been introduced in [4] by C. F. Dunkl. They are given for x ∈ R d by

  , we have for such a function φ and for x ∈ R d depends only on κ 1 , . . . , κ d . Therefore, for every t > 0 we get(f * κ φ t )(x) CM κ f (x) * κ φ t )(x) CM κ f (x),where C depends only on κ 1 , . . . , κ d and φ. If we now apply Theorem 1.2 we obtain the desired result.

	we can write							
	(f * κ φ t )(x)		CM κ f (x)	0	∞	r 2γκ+d t 2γκ+d+1	d dr	φ r t	dr.
	A change of variables gives us						
	(f * κ φ t )(x)		CM κ f (x)	0	∞	r 2γκ+d d dr	φ(r) dr,
	from which we deduce that							
	sup t>0	(f					
	(f * κ φ)(x)		CM κ f (x)		0	∞	r 2γκ+d d dr	φ(r) dr,
	where C ∞ 0	r 2γκ+d d dr	φ t (r) dr,
	with C independent of t. Since we have				
	d dr	φ t (r) =	1 t 2γκ+d+1	d dr	φ r t	,