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Abstract. In this article, we establish the Fefferman-Stein inequalities for the
Dunkl maximal operator associated with a finite reflection group generated by
the sign changes. Similar results are also given for a large class of operators
related to Dunkl’s analysis.

1. Introduction

In the early seventies, C. Fefferman and E. M. Stein have proved in [6] the
following extension of the Hardy-Littlewood maximal theorem.

Theorem 1.1. Let (fn)n>1 be a sequence of measurable functions defined on Rd

and let M be the well-known maximal operator given by

Mf(x) = sup
1

m(Q)

∫

Q

|f(y)| dy, x ∈ R
d,

where the sup is taken over all cubes Q centered at x and m(X) is the Lebesgue
measure of X.

(1) If 1 < r < +∞, 1 < p < +∞ and if
(∑∞

n=1 |fn(·)|r
) 1

r ∈ Lp(Rd; dm), then
we have

∥∥∥∥
( ∞∑

n=1

|Mfn(·)|r
) 1

r

∥∥∥∥
p

6 C

∥∥∥∥
( ∞∑

n=1

|fn(·)|r
) 1

r

∥∥∥∥
p

,

where C = C(r, p) is independent of (fn)n>1.

(2) If 1 < r < +∞ and if
(∑∞

n=1 |fn(·)|r
) 1

r ∈ L1(Rd; dm), then for every λ > 0
we have

m

({
x ∈ R

d :
( ∞∑

n=1

|Mfn(x)|r
) 1

r

> λ

})
6

C

λ

∥∥∥∥
( ∞∑

n=1

|fn(·)|r
) 1

r

∥∥∥∥
1

,

where C = C(r) is independent of (fn)n>1 and λ.
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One would like to extend this result to the case of the Dunkl maximal opera-
tor Mκ which is defined according to S. Thangavelu and Y. Xu (see [16]) by

Mκf(x) = sup
r>0

1

µκ(Br)

∣∣(f ∗κ χ
Br

)(x)
∣∣, x ∈ R

d,

where we denote by χ
X
the characteristic function of the setX , by Br the Euclidean

ball centered at the origin and whose radius is r, by µκ a weighted Lebesgue mea-
sure invariant under the action of a finite reflection group and by ∗κ the Dunkl
convolution operator (see Section 2 for more details).

However, the lack of information on this convolution, which is defined through
a generalized translation operator (also called Dunkl translation), prevents from
stating a general result. Just as in the study of the weighted Riesz transform asso-
ciated with the Dunkl transform (see [17]), we can only establish a complete result
for the finite reflection group G ≃ Zd

2 with the associated measure µκ given for
every x = (x1, . . . , xd) ∈ Rd by

(1.1) dµκ(x) = h2
κ(x) dx,

with hκ the Zd
2-invariant function defined by

hκ(x) =

d∏

j=1

|xj |κj =

d∏

j=1

hκj
(xj),

where κ1, . . . , κd are nonnegative real numbers (let us note that hκ is homogeneous

of degree γκ =
∑d

j=1 κj).
To become more precise, the aim of this paper is to prove the following Fefferman-

Stein inequalities, where we denote by Lp(µκ) the space Lp(Rd; dµκ) and we use
the shorter notation ‖·‖κ,p instead of ‖·‖Lp(µκ). For p ∈ [1,+∞], the space Lp(µκ)

is of course the space of measurable functions on Rd such that

‖f‖κ,p =

(∫

Rd

|f(y)|p dµκ(y)

) 1
p

< +∞ if 1 6 p < +∞,

‖f‖κ,∞ = ess sup
y∈Rd

|f(y)| < +∞ otherwise.

Theorem 1.2. Let G ≃ Zd
2 and let µκ be the measure given by (1.1). Let (fn)n>1

be a sequence of measurable functions defined on Rd.

(1) If 1 < r < +∞, 1 < p < +∞ and if
(∑∞

n=1 |fn(·)|r
) 1

r ∈ Lp(µκ), then we
have

∥∥∥∥
( ∞∑

n=1

|Mκfn(·)|r
) 1

r

∥∥∥∥
κ,p

6 C

∥∥∥∥
( ∞∑

n=1

|fn(·)|r
) 1

r

∥∥∥∥
κ,p

,

where C = C(κ1, . . . , κd, r, p) is independent of (fn)n>1.

(2) If 1 < r < +∞ and if
(∑∞

n=1 |fn(·)|r
) 1

r ∈ L1(µκ), then for every λ > 0 we
have

µκ

({
x ∈ R

d :
( ∞∑

n=1

|Mκfn(x)|r
) 1

r

> λ

})
6

C

λ

∥∥∥∥
( ∞∑

n=1

|fn(·)|r
) 1

r

∥∥∥∥
κ,1

,

where C = C(κ1, . . . , κd, r) is independent of (fn)n>1 and λ.
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The proof of Theorem 1.1 is mainly based on a maximal theorem, a Calderón-
Zygmund decomposition and a weighted inequality. Nevertheless, the Dunkl maxi-
mal operator cannot be treated by this method even if a maximal theorem has been
established for this one in [16]. This is closely related to the fact that a theory of
singular integrals associated with the Dunkl transform seems to be out of reach at
the moment.

In order to bypass this problem, we will construct a weighted maximal oper-
ator MR

κ of Hardy-Littlewood type which satisfies the classical Fefferman-Stein
inequalities and which controls Mκ in the sense that for every x ∈ Rd

reg

(1.2) Mκf(x) 6 CMR
κ f(x),

where C is a positive constant independent of x and f and where we set

R
d
reg = R

d \
d⋃

j=1

{
x = (x1, . . . , xd) ∈ R

d : xj = 0
}
.

The paper is organised as follows.
In the next section, we collect some definitions and results related to Dunkl’s analy-
sis. In particular, we list the properties of the Dunkl transform (and the associated
tools) which will be relevant for the sequel.
Section 3 is devoted to the proof of Theorem 1.2. In view of this, we will prove
the inequality (1.2) thanks to a more convenient Dunkl maximal operator MQ

κ and
we will explain why the classical Fefferman-Stein inequalities hold for the opera-
tor MR

κ . Therefore, there will be nothing more to do to conclude that Theorem 1.2
is true.
An application of our Fefferman-Stein inequalities is given in Section 4.

Throughout this paper, C denotes a positive constant, which depends only on
fixed parameters, and whose value may vary from line to line.

2. Preliminaries

This section is devoted to the preliminaries and background. These concern in
particular the intertwining operator, the Dunkl transform, the Dunkl translation
and the Dunkl convolution. We restrict the statement from Dunkl’s analysis to the
special case considered in this article. For a large survey about this theory, the
reader may especially consult [3, 5, 10, 11, 16, 18].

Let e1, . . . , ed be the standard basis of Rd. We denote by σj (for each j from 1
to d) the reflection with respect to the hyperplane perpendicular to ej , that is to
say for every x = (x1, . . . , xd) ∈ Rd

σj(x) = x− 2
〈x,ej〉
‖ej‖2 ej = (x1, . . . , xj−1,−xj, xj+1, . . . , xd).

Of course 〈·,·〉 is the usual inner product on R
d × R

d and ‖·‖ is the associated
norm. Let G be the finite reflection group generated by {σj : j = 1, . . . , d}, so G is
isomorphic to Zd

2 . Let κ1, κ2, . . . , κd be nonnegative real numbers.
Associated with these objects are the Dunkl operators Dk (for k = 1, . . . , d)

which have been introduced in [4] by C. F. Dunkl. They are given for x ∈ Rd by

Dkf(x) = ∂kf(x) +
d∑

j=1

κj

f(x)− f
(
σj(x)

)

〈x, ej〉
〈ek, ej〉 = ∂kf(x) + κk

f(x)− f
(
σk(x)

)

xk

,
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where ∂k denotes the usual partial derivative. A fundamental property of these
differential-difference operators is their commutativity, that is to say DkDl = DlDk.

Closely related to them is the so-called intertwining operator Vκ (the subscript
means that the operator depends on the parameters κj , except in the rank-one
case where the subscript is then a single parameter) which is the unique linear
isomorphism of

⊕
n>0Pn such that

Vκ(Pn) = Pn, Vκ(1) = 1, DkVκ = Vκ∂k for k = 1, . . . , d,

with Pn the subspace of homogeneous polynomials of degree n in d variables. Even if
the positivity of the intertwining operator has been established in [9] by M. Rösler,
an explicit formula of Vκ is not known in general. However, in our setting, the
operator Vκ is given according to [20] by the following integral representation

Vκf(x) =

∫

[−1,1]d
f(x1t1, . . . , xdtd)

d∏

j=1

Mκj
(1 + tj)(1− t2j )

κj−1 dt,

with Mκj
=

Γ(κj+
1
2 )

Γ(κj)Γ(
1
2 )

(where Γ is the well-known Gamma function).

In order to define the Dunkl transform, we also need to introduce the Dunkl
kernel Eκ which is given for x ∈ Cd by

Eκ(·, x)(y) = Vκ

(
e〈·,x〉

)
(y), y ∈ R

d.

It has a unique holomorphic extension to Cd × Cd and it satisfies the following
basic properties: Eκ(x, y) = Eκ(y, x) for x, y ∈ Cd, Eκ(x, 0) = 1 for x ∈ Cd

and |Eκ(ix, y)| 6 1 for x, y ∈ Rd. Considering the definition of Eκ together with
the explicit formula for Vκ gives us

Eκ(x, y) =

d∏

j=1

Eκj
(xj , yj).

In the rank-one case, Eκ is explicitly known. More precisely, it is given for both x
and y in C by

Eκ(x, y) = jκ− 1
2
(ixy) +

xy

2κ+ 1
jκ+ 1

2
(ixy),

where jκ is the normalized Bessel function of the first kind and of order κ (see [19]).
Moreover, we have a crucial one-dimensional product formula for this kernel. Before
formulating it, let us introduce some notations.

Notations. (1) For x, y, z ∈ R, we put

σx,y,z =

{
1

2xy (x
2 + y2 − z2) if x, y 6= 0,

0 if x = 0 or y = 0,

as well as

̺(x, y, z) =
1

2
(1− σx,y,z + σz,x,y + σz,y,x).

(2) For x, y, z > 0, we put

Kκ(x, y, z) = 22κ−2Mκ

∆(x, y, z)2κ−2

(xyz)2κ−1
χ

[|x−y|,x+y]
(z),

where ∆(x, y, z) denotes the area of the triangle (perhaps degenerated) with
sides x, y, z.
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With these notations in mind, we can now state the product formula for the
Dunkl kernel (this formula has been proved in [7] in the more general setting of
signed hypergroups).

Proposition 2.1. Let x, y ∈ R.

(1) For every λ ∈ R we have

Eκ(ix, λ)Eκ(iy, λ) =

∫

R

Eκ(iλ, z) dν
κ
x,y(z),

where the measure νκx,y is given by

dνκx,y(z) =





Kκ(x, y, z) dµκ(z) if x, y 6= 0,

dδx(z) if y = 0,

dδy(z) if x = 0,

with
Kκ(x, y, z) = Kκ

(
|x|, |y|, |z|

)
̺(x, y, z).

(2) The measure νκx,y satisfies

(a) supp νκx,y =
[
−|x|− |y|,−

∣∣|x|− |y|
∣∣
]⋃[∣∣|x|− |y|

∣∣, |x|+ |y|
]
for x, y 6= 0.

(b) νκx,y(R) = 1 and ‖νκx,y‖ 6 4, for x, y ∈ R.

We are now in a position to introduce the Dunkl transform which is taken with
respect to the measure µκ defined by (1.1). For f ∈ L1(µκ), the Dunkl transform
of f , denoted by Fκ(f), is given by

Fκ(f)(x) = cκ

∫

Rd

f(y)Eκ(x,−iy) dµκ(y), x ∈ R
d,

where cκ is the following constant

c−1
κ =

∫

Rd

e−
‖x‖2

2 dµκ(x) =

d∏

j=1

c−1
κj

.

If κ1 = · · · = κd = 0, then Vκ = id and the Dunkl transform coincides with the
Euclidean Fourier transform. In the rank-one case, it is more or less a Hankel trans-
form (see [19]). The following proposition (see [3]) gives us a Plancherel theorem
and an inversion formula.

Proposition 2.2. (1) The Dunkl transform extends uniquely to an isometric
isomorphism of L2(µκ).

(2) If both f and Fκ(f) are in L1(µκ) then

f(x) = cκ

∫

Rd

Fκ(f)(y)Eκ(ix, y) dµκ(y).

The Dunkl transform shares many other properties with the Fourier transform.
Therefore, it is natural to associate a generalized translation operator and a gener-
alized convolution operator with this transform.

There are many ways to define the Dunkl translation. We use the definition
which most underlines the analogy with the Fourier transform. It is the definition
given in [16] with a different convention.
Let x ∈ R

d. The Dunkl translation operator τκx is given for f ∈ L2(µκ) by

Fκ

(
τκx (f)

)
(y) = Eκ(ix, y)Fκ(f)(y), y ∈ R

d.
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It plays the role of f 7→ f(· + x) in Fourier analysis. It is important to note
that it is not a positive operator. The following explicit formula for τκx is due to
Rösler (see [7]). In the case G ≃ Z2, we have for a continuous function f on R and
for x, y ∈ R

(2.1) τκx (f)(y) =
1

2

∫ 1

−1

f
(√

x2 + y2 + 2xyt
)(

1 +
x+ y√

x2 + y2 + 2xyt

)
Φκ(t) dt

+
1

2

∫ 1

−1

f
(
−
√
x2 + y2 + 2xyt

)(
1− x+ y√

x2 + y2 + 2xyt

)
Φκ(t) dt,

where Φκ(t) = Mκ(1 + t)(1 − t2)κ−1. It follows from (2.1) a formula for τκx in the
case G ≃ Zd

2 and this formula implies the boundedness of τκx (it is still a challenging
problem for a general reflection group).

Proposition 2.3. Let x ∈ Rd. The operator τκx extends to Lp(µκ) for p ∈ [1,+∞]
and for f ∈ Lp(µκ) we have

∥∥τκx (f)
∥∥
κ,p

6 C‖f‖κ,p,

where C is independent of x and f .

The last result we mention about the generalized translation is the following one-
dimensional inequality which has been recently proved by C. Abdelkefi and M. Sifi
in [1] (see also [2]).

Proposition 2.4. There exists a positive constant C such that for x, y ∈ R and
for every r > 0 we have

∣∣τκx (χ[−r,r]
)(y)

∣∣ 6 C
µκ

(
]− r, r[

)

µκ

(
I(x, r)

) ,

where we denote by I(x, r) the following set

I(x, r) =
[
max{0; |x| − r}, |x|+ r

[
.

We conclude this section with the definition and the basic properties of the Dunkl
convolution operator. According to [16], this operator is defined for both f and g
in L2(µκ) by

(f ∗κ g)(x) = cκ

∫

Rd

f(y)τκx (g)(−y) dµκ(y), x ∈ R
d.

Thanks to Proposition 2.3, the usual Young’s inequality holds (for the proof, see
for instance [21]).

Proposition 2.5. Assume that p−1 + q−1 = 1 + r−1 with p, q, r ∈ [1,+∞]. Then,
the map (f, g) 7→ f ∗κ g defined on L2(µκ) × L2(µκ) extends to a continuous map
from Lp(µκ)× Lq(µκ) to Lr(µκ) and we have

‖f ∗κ g‖κ,r 6 C‖f‖κ,p ‖g‖κ,q,
where C is independent of f and g.

We finally note that the Dunkl convolution satisfies the properties f ∗κ g = g ∗κf
and Fκ(f ∗κg) = Fκ(f) · Fκ(g).
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3. Fefferman-Stein inequalities

This section is concerned with the proof of our Fefferman-Stein inequalities, that
is to say Theorem 1.2. In fact, as we have already claimed, the proof is straight-
forward once we have constructed an operator MR

κ which controls Mκ and which
satisfies the classical Fefferman-Stein inequalities. What we have in mind for the
construction of MR

κ is that we want to use the sharp inequality of Proposition 2.4
because it is a key argument to bypass the lack of information on the Dunkl transla-
tion operator. Nevertheless, this proposition is one-dimensional. This is the reason
for which we shall introduce a Dunkl maximal operator MQ

κ defined with cubes.

Indeed, the basic observation χ
Qr

(x) =
∏d

j=1 χ[−r,r]
(xj) (together with the fact

that Eκ(x, y) =
∏d

j=1 Eκj
(xj , yj)) will allow us to prove the formula

τκx (χQr
)(y) =

d∏

j=1

τκj
xj

(χ
[−r,r]

)(yj),

from which we will deduce not only the definition of the operator MR
κ but also the

inequality MQ
κ f 6 MR

κ f . Therefore, in order to prove the inequality (1.2), it will
be enough to prove that MQ

κ controls Mκ. Since τκx is not a positive operator, it
is not at all obvious that they are connected. Thus, we shall study how they are
related to each other.

First of all, we introduce the auxiliary operator MQ
κ .

Definition. Let MQ
κ be the Dunkl maximal operator defined with cubes centered

at the origin and whose sides are parallel to the axes by

MQ
κ f(x) = sup

r>0

1

µκ

(
Qr

)
∣∣∣∣
∫

Rd

f(y)τκx (χQr
)(−y) dµκ(y)

∣∣∣∣, x ∈ R
d,

where for every r > 0 we set Qr =
{
x ∈ Rd : |xj | < r, j = 1, . . . , d

}
.

Our first aim is to prove that this maximal operator controls Mκ. In view of this,
we need the following lemma. Before stating it, we have to introduce a notation.

Notation. For x, y ∈ R \ {0}, we denote by νκ,+x,y the measure given for every z ∈ R

by

dνκ,+x,y (z) =
1

2
Kκ

(
|x|, |y|, |z|

)
(1− σx,y,z) dµκ(z).

Let us point out that this measure is positive. Indeed, it is a simple consequence
of the following observation

|z| ∈
[∣∣|x| − |y|

∣∣, |x|+ |y|
]
=⇒ |σx,y,z| 6 1.

With this notation in mind, we can now formulate the lemma.

Lemma 3.1. Let x = (x1, . . . , xd) ∈ R
d
reg. Then τκx (χQr

) is a positive function

on Rd
reg and for y = (y1, . . . , yd) ∈ Rd

reg we have

τκx (χQr
)(y) =

∫

Rd

χ
Qr

(z) dυx,y(z),

where the measure υκ
x,y is given by

dυκ
x,y(z) = dνκ1,+

x1,y1
(z1) · · ·dνκd,+

xd,yd
(zd).
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Before we come to the proof of this lemma, let us introduce the so-called Dunkl

heat kernel qtκ which is associated with the Dunkl Laplacian ∆κ =
∑d

j=1 D2
j . This

kernel is given for every t > 0 by

qtκ(·) =
1

(2t)γκ+
d
2

e−
‖·‖2

4t .

It satisfies Fκ(q
t
κ)(·) = e−t‖·‖2

and the following equality

(3.1) τκx (q
t
κ)(y) =

1

(2t)γκ+
d
2

e−
‖x‖2+‖y‖2

4t Eκ

(
x√
2t
,− y√

2t

)
, x, y ∈ R

d.

Moreover, we know that τκx (q
t
κ)(y) > 0 for x and y in Rd and that

(3.2)

∫

Rd

τκx (q
t
κ)(y) dµκ(y) =

1

cκ
.

For all these results (and for more details), the reader may consult [8] or [10].
We now turn to the proof of Lemma 3.1.

Proof. One begins with the proof of the following one-dimensional equality

(3.3) τκx (χ[−r,r]
)(y) =

∫

R

χ
[−r,r]

(z) dνκ,+x,y (z), x, y ∈ R \ {0}.

Let qtκ be the Dunkl heat kernel defined above.
We readily observe that χ

[−r,r]
∗κ qtκ ∈ L1(µκ), which implies, on account of Propo-

sition 2.3, that τκx (χ[−r,r]
∗κ qtκ) ∈ L1(µκ). Moreover, we have by Hölder’s inequality

and Plancherel’s theorem
∥∥Fκ(χ[−r,r]

) · Fκ(q
t
κ)
∥∥
κ,1

6
∥∥χ

[−r,r]

∥∥
κ,2

∥∥qtκ
∥∥
κ,2

,

from which we deduce that

Fκ(χ[−r,r]
∗κ qtκ) = Fκ(χ[−r,r]

) · Fκ(q
t
κ) ∈ L1(µκ).

Since we have by definition

Fκ

(
τκx (χ[−r,r]

∗κ qtκ)
)
(·) = Eκ(ix, ·)Fκ(χ[−r,r]

∗κ qtκ)(·),

then Fκ

(
τκx (χ[−r,r]

∗κ qtκ)
)
∈ L1(µκ) and we can apply the inversion formula to

obtain

τκx (χ[−r,r]
∗κ qtκ)(y) = cκ

∫

R

Eκ(ix, z)Eκ(iy, z)Fκ(χ[−r,r]
)(z)e−tz2

dµκ(z).

If we now use the product formula of Proposition 2.1 we get

τκx (χ[−r,r]
∗κ qtκ)(y) = cκ

∫

R

(∫

R

Eκ(iz, z
′) dνκx,y(z

′)

)
Fκ(χ[−r,r]

)(z)e−tz2

dµκ(z)

= cκ

∫

R

(∫

R

Eκ(iz, z
′)Fκ(χ[−r,r]

)(z)e−tz2

dµκ(z)

)
dνκx,y(z

′),

from which we deduce thanks to the inversion formula

(3.4) τκx (χ[−r,r]
∗κ qtκ)(y) =

∫

R

(χ
[−r,r]

∗κ qtκ)(z
′) dνκx,y(z

′).
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But we claim that χ
[−r,r]

∗κ qtκ is an even function. Indeed

(χ
[−r,r]

∗κ qtκ)(−ξ) = cκ

∫

R

χ
[−r,r]

(ξ′)τκ−ξ(q
t
κ)(−ξ′) dµκ(ξ

′)

= cκ

∫

R

χ
[−r,r]

(ξ′)τκξ (q
t
κ)(ξ

′) dµκ(ξ
′) = (χ

[−r,r]
∗κ qtκ)(ξ),

where we have used the definition of ∗κ in the first step, the formula (3.1) in the
second step (in order to prove that τκ−ξ(q

t
κ)(−ξ′) = τκξ (q

t
κ)(ξ

′)) and a change of
variables and the definition of the Dunkl convolution in the last step.
Since both z 7→ σz,x,y and z 7→ σz,y,x are odd functions, the equality (3.4) is
therefore equivalent to the following one

(3.5) τκx (χ[−r,r]
∗κ qtκ)(y) =

∫

R

(χ
[−r,r]

∗κ qtκ)(z
′) dνκ,+x,y (z′).

In order to prove (3.3) we will take limit in (3.5) as t goes to 0. Observe that, by
Plancherel’s theorem

∥∥χ
[−r,r]

∗κ qtκ − χ
[−r,r]

∥∥2
κ,2

=
∥∥Fκ(χ[−r,r]

) · Fκ(q
t
κ)−Fκ(χ[−r,r]

)
∥∥2

κ,2

=

∫

R

∣∣Fκ(χ[−r,r]
)(ξ)

∣∣2(1− e−tξ2
)2

dµκ(ξ).

Thus, χ
[−r,r]

∗κ qtκ → χ
[−r,r]

in L2(µκ) as t → 0. Since τκx is a bounded operator

on L2(µκ) we also have τκx (χ[−r,r]
∗κ qtκ) → τκx (χ[−r,r]

) in L2(µκ) as t → 0. By
passing to a subsequence if necessary we can therefore assume that the convergence
is also almost everywhere. Taking limit as t goes to 0 in (3.5) gives us

τκx (χ[−r,r]
)(y) = lim

t→0

∫

R

(χ
[−r,r]

∗κ qtκ)(z
′) dνκ,+x,y (z′).

Then (3.3) is proved if we show the following equality

(3.6) lim
t→0

∫

R

(χ
[−r,r]

∗κ qtκ)(z
′) dνκ,+x,y (z′) =

∫

R

χ
[−r,r]

(z′) dνκ,+x,y (z′).

In view of this, we shall use the Lebesgue dominated convergence theorem. Since
the almost everywhere convergence of χ

[−r,r]
∗κ qtκ to χ

[−r,r]
has been already proved

above, it suffices to majorize |χ
[−r,r]

∗κ qtκ| by a function independent of t and which

is integrable with respect to νκ,+x,y .
By the definition of the Dunkl convolution

(χ
[−r,r]

∗κ qtκ)(z
′) = cκ

∫

R

χ
[−r,r]

(ξ)τκz′ (qtκ)(−ξ) dµκ(ξ),

from which we deduce that
∣∣(χ

[−r,r]
∗κ qtκ)(z

′)
∣∣ 6 cκ

∫

R

∣∣τκz′(qtκ)(−ξ)
∣∣ dµκ(ξ) = cκ

∫

R

τκz′(qtκ)(ξ) dµκ(ξ),

where we have used the positivity of τκz′(qtκ) and a change of variables in the last
step.
On account of (3.2) we then obtain

∣∣(χ
[−r,r]

∗κ qtκ)(z
′)
∣∣ 6 1.

Since the function equal to 1 is integrable with respect to νκ,+x,y , the Lebesgue dom-
inated convergence theorem allows us to complete the proof of (3.6) and then (3.3)
is proved.
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Let us point out that we deduce from (3.3) the positivity of τκx (χ[−r,r]
).

We next prove the following equality

(3.7) τκx (χQr
)(y) =

d∏

j=1

τκj
xj
(χ

[−r,r]
)(yj), x, y ∈ R

d
reg.

We can apply the inversion formula (by a reprise of the argument given above) to
obtain

(3.8) τκx (χQr
∗κ qtκ)(y) = cκ

∫

Rd

Eκ(ix, z)Eκ(iy, z)Fκ(χ
Qr

)(z)e−t‖z‖2

dµκ(z).

Let us notice that we have the following product formula

(3.9) Fκ(χ
Qr

)(z) =

d∏

j=1

Fκj
(χ

[−r,r]
)(zj), z ∈ R

d.

Indeed, by the definition of the Dunkl transform we have

Fκ(χ
Qr

)(z) = cκ

∫

Rd

Eκ(z,−iz′)χ
Qr

(z′) dµκ(z
′).

Since we can separate the variables we get

Fκ(χ
Qr

)(z) =

d∏

j=1

(∫

R

cκj
Eκj

(zj ,−iz′j)χ[−r,r]
(z′j)h

2
κj
(z′j) dz

′
j

)
,

from which (3.9) follows. We combine (3.9) with (3.8) to obtain

τκx (χQr
∗κ qtκ)(y)

=

d∏

j=1

(∫

R

cκj
Eκj

(ixj , zj)Eκj
(iyj, zj)Fκj

(χ
[−r,r]

)(zj)e
−tz2

j h2
κj
(zj) dzj

)
,

that is to say

τκx (χQr
∗κ qtκ)(y) =

d∏

j=1

τκj
xj

(χ
[−r,r]

∗κj
qtκj

)(yj),

from which we deduce (3.7) by taking limit.
The proof of the lemma is now obvious. Indeed, using the equality (3.3) in (3.7)
gives us

τκx (χQr
)(y) =

d∏

j=1

∫

R

χ
[−r,r]

(zj) dν
κj ,+
xj ,yj

(zj),

which is precisely what we wanted to prove. �

We are now in a position to prove that MQ
κ controls Mκ. More precisely, we

have the following proposition.

Proposition 3.1. There exists a positive constant C such that for every x ∈ Rd
reg

we have

0 6 Mκf(x) 6 CMQ
κ |f |(x).
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Proof. Thanks to the definition of Mκ there is nothing to do for the first inequality.
We now turn to the second one.

Let x ∈ Rd
reg and r > 0. Let us remark that we readily have

(3.10)

∫

Rd

f(y)τκx (χBr
)(−y) dµκ(y) =

∫

Rd
reg

f(y)τκx (χBr
)(−y) dµκ(y).

The key argument for the proof is that we can show, even if τκx is not a positive
operator, the following inequality

(3.11) 0 6 τκx (χBr
)(y) 6 τκx (χQr

)(y), x, y ∈ R
d
reg.

Thanks to the explicit formula of τκx (χQr
) given in the previous lemma, it is enough

to show that

(3.12) τκx (χBr
)(y) =

∫

Rd

χ
Br

(z) dυκ
x,y(z), x, y ∈ R

d
reg,

in order to prove (3.11). Therefore, we now turn to the proof of (3.12). By a reprise
of the argument given in the proof of Lemma 3.1, we can apply the inversion formula
to write for both x and y in Rd

reg

τκx (χBr
∗κ qtκ)(y) = cκ

∫

Rd

Eκ(ix, z)Eκ(iy, z)Fκ(χBr
)(z)e−t‖z‖2

dµκ(z).

Since Eκ(x, y) =
∏d

j=1 Eκj
(xj , yj), we have thanks to Proposition 2.1

τκx (χBr
∗κ qtκ)(y)

= cκ

∫

Rd

(∫

Rd

Eκ(iz, z
′) dνκ1

x1,y1
(z′1) · · · dνκd

xd,yd
(z′d)

)
Fκ(χ

Br
)(z)e−t‖z‖2

dµκ(z),

from which it follows

τκx (χBr
∗κ qtκ)(y)

= cκ

∫

Rd

(∫

Rd

Eκ(iz, z
′)Fκ(χ

Br
)(z)e−t‖z‖2

dµκ(z)

)
dνκ1

x1,y1
(z′1) · · ·dνκd

xd,yd
(z′d).

We apply the inversion formula to get

τκx (χBr
∗κ qtκ)(y) =

∫

Rd

(χ
Br

∗κ qtκ)(z
′) dνκ1

x1,y1
(z′1) · · · dνκd

xd,yd
(z′d),

and we obtain thanks to the Fubini theorem
(3.13)

τκx (χBr
∗κ qtκ)(y) =

∫

Rd−1

(∫

R

(χ
Br

∗κ qtκ)(z′) dνκ1
x1,y1

(z′1)

)
dνκ2

x2,y2
(z′2) · · ·dνκd

xd,yd
(z′d).

Since χ
Br

is radial, χ
Br

∗κqtκ is also radial. Therefore, it is even with respect to each

of its variables, that is to say (χ
Br

∗κ qtκ)(ε1z1, . . . , εdzd) = (χ
Br

∗κ qtκ)(z1, . . . , zd)

with εj = ±1. Then (3.13) is equivalent to

τκx (χBr
∗κ qtκ)(y) =

∫

Rd−1

(∫

R

(χ
Br

∗κ qtκ)(z′) dνκ1,+
x1,y1

(z′1)

)
dνκ2

x2,y2
(z′2) · · ·dνκd

xd,yd
(z′d).



12 Luc Deleaval

By successive uses of the Fubini theorem we are readily led to

(3.14) τκx (χBr
∗κ qtκ)(y) =

∫

Rd

(χ
Br

∗κ qtκ)(z
′) dνκ1,+

x1,y1
(z′1) · · · dνκd,+

xd,yd
(z′d).

Taking limit as t tends to 0 in (3.14) gives us (3.12) which in turn implies (3.11).
Consequently, if we apply (3.11) in (3.10) we are led to the following inequality

∣∣∣∣
∫

Rd

f(y)τκx (χBr
)(−y) dµκ(y)

∣∣∣∣ 6
∫

Rd
reg

|f(y)|τκx (χQr
)(−y) dµκ(y).

Since it is obvious that∫

Rd
reg

|f(y)|τκx (χQr
)(−y) dµκ(y) =

∫

Rd

|f(y)|τκx (χQr
)(−y) dµκ(y),

we can therefore write∣∣∣∣
∫

Rd

f(y)τκx (χBr
)(−y) dµκ(y)

∣∣∣∣ 6
∫

Rd

|f(y)|τκx (χQr
)(−y) dµκ(y),

from which it follows at once that
(3.15)

1

µκ(Br)

∣∣∣∣
∫

Rd

f(y)τκx (χBr
)(−y) dµκ(y)

∣∣∣∣ 6
1

µκ(Br)

∫

Rd

|f(y)|τκx (χQr
)(−y) dµκ(y).

Let us notice that µκ(Qr) = Cµκ(Br) with

C =
2d(2γκ + d)

∏d
j=1

(
2κj + 1

)
(∫

Sd−1

h2
κ(y) dy

)−1

.

Indeed, we have on one hand

µκ(Qr) =

d∏

j=1

µκj

(
]− r, r[

)
= 2d

d∏

j=1

( 1

2κj + 1

)
r2γκ+d,

and on the other hand, changing to polar coordinates gives

µκ(Br) =

∫ r

0

u2γκ+d−1 du

∫

Sd−1

h2
κ(y) dy =

1

2γκ + d

(∫

Sd−1

h2
κ(y) dy

)
r2γ+d,

where we have used the fact that h2
κ is homogeneous of degree 2γκ.

We can therefore reformulate (3.15) as follows

1

µκ(Br)

∣∣∣∣
∫

Rd

f(y)τκx (χBr
)(−y) dµκ(y)

∣∣∣∣ 6
C

µκ(Qr)

∫

Rd

|f(y)|τκx (χQr
)(−y) dµκ(y),

from which we deduce that

1

µκ(Br)

∣∣∣∣
∫

Rd

f(y)τκx (χBr
)(−y) dµκ(y)

∣∣∣∣ 6 CMQ
κ |f |(x),

and then the result. �

Thanks to this proposition, it is enough to construct an operator MR
κ which

controlsMQ
κ in order to prove the inequality (1.2). Before we come to the definition

of MR
κ we give some notations.
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Notations. For z = (z1, . . . , zd) ∈ Rd we put z̃ =
(
|z1|, . . . , |zd|

)
and we denote

by R(z, r) (for every r > 0) the following set

R(z, r) = I(z1, r)× · · · × I(zd, r).

Recall that we have defined for x ∈ R and r > 0 the set I(x, r) by

I(x, r) =
[
max{0; |x| − r}, |x|+ r

[
.

Since we want to use the sharp inequality of Poposition 2.4 together with the

fact that τκx (χQr
)(y) =

∏d
j=1 τ

κj
xj (χ[−r,r]

)(yj), we are naturally led to introduce the

following operator.

Definition. Let MR
κ be the weighted maximal operator defined by

MR
κ f(x) = sup

r>0

1

µκ

(
R(x, r)

)
∫

ỹ∈R(x,r)

|f(y)| dµκ(y), x ∈ R
d.

This operator satisfies the classical properties of maximal operators. Let us clar-
ify our statement.
Since µκ is a doubling weight, we have the following covering lemma (a one-
dimensional result for I(x, r) can be found in [1] or [2]).

Lemma 3.2. Let E be a measurable (with respect to µκ) subset of R+ × · · · × R+.
Suppose E ⊂ ∪j∈JRj with Rj = R(zj , rj) bounded for every j ∈ J (where zj ∈ Rd

and rj > 0). Then, from this family, we can choose a sequence (which may be
finite) of disjoint sets R1, . . . , Rn, . . ., such that

µκ(E) 6 C
∑

n

µκ(Rn),

where C is a positive constant which depends only on κ1, . . . , κd.

Thanks to this lemma, a weak-type (1, 1) result for MR
κ can be easily proved.

Indeed, if we set

E+ =
{
x ∈ R

∗
+ × · · · × R

∗
+ : MR

κ f(x) > λ
}
,

we can choose (thanks to the definition of MR
κ and the covering lemma) a suit-

able sequence of disjoint sets Rn such that µκ(E+) 6 C
∑

n µκ(Rn), where C
depends only on κ1, . . . , κd. We can then follow the standard techniques (see for
instance [13]) in order to prove that µκ(E+) 6

C
λ
‖f‖κ,1.

Finally, the basic but crucial observation

(3.16) MR
κ f(x) = MR

κ f(ε1x1, . . . , εdxd),

with εj = ±1, allows us to deduce the weak-type inequality, that is

µκ

({
x ∈ R

d : MR
κ f(x) > λ

})
6

C

λ
‖f‖κ,1.

Since MR
κ is obviously bounded on L∞, the weak-type (1, 1) inequality implies the

strong-type (p, p) inequality by the Marcinkiewicz interpolation theorem (see [13]).
Thus, we have proved the following maximal theorem for MR

κ .

Theorem 3.1. Let f be a function defined on R
d.
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(1) If f ∈ L1(µκ), then for every λ > 0 we have

µκ

({
x ∈ R

d : MR
κ f(x) > λ

})
6

C

λ
‖f‖κ,1,

where C is a positive constant independent of f and λ.
(2) If f ∈ Lp(µκ), 1 < p 6 +∞, then MR

κ f ∈ Lp(µκ) and we have

‖MR
κ f‖κ,p 6 C‖f‖κ,p,

where C is a positive constant independent of f .

Moreover, we claim that the following weighted inequality is true.

Lemma 3.3. Let W be a positive and locally integrable (with respect to µκ) function
defined on Rd. For 1 < q < +∞, there exists a positive constant C which depends
only on κ1, . . . , κd and q and such that

∫

Rd

(
MR

κ f(y)
)q
W (y) dµκ(y) 6 C

∫

Rd

|f(y)|qMR
κ W (y) dµκ(y).

Indeed, by the Marcinkiewicz interpolation theorem, this lemma is an immedi-
ate consequence of the trivial fact that MR

κ is bounded on L∞ together with the
following inequality

(3.17) µ̃κ

({
x ∈ R

d : MR
κ f(x) > λ

})
6

C

λ

∫

Rd

|f(y)|MR
κ W (y) dµκ(y),

where µ̃κ(X) =
∫
X
W (y) dµκ(y) and where C is a positive constant which depends

only on κ1, . . . , κd. The just-written inequality is easy to prove. Indeed, we can
show the key inequality

µ̃κ(K) 6
C

λ

∫

Rd

|f(y)|MR
κ W (y) dµκ(y)

for any compact set K in E+ just as in the proof for the classical maximal opera-
tor (see [15]). Therefore

µ̃κ(E+) 6
C

λ

∫

Rd

|f(y)|MR
κ W (y) dµκ(y)

and we then deduce (3.17) on account of (3.16).
To conclude, we claim that we can combine the maximal theorem and the

weighted inequality for MR
κ with a Calderón-Zygmund decomposition of f (see for

instance [13]) to obtain the Fefferman-Stein inequalities for MR
κ following almost

verbatim the proof in [6].

Theorem 3.2. Let (fn)n>1 be a sequence of measurable functions defined on Rd.

(1) If 1 < r < +∞, 1 < p < +∞ and if
(∑∞

n=1 |fn(·)|r
) 1

r ∈ Lp(µκ), then we
have

∥∥∥∥
( ∞∑

n=1

|MR
κ fn(·)|r

) 1
r

∥∥∥∥
κ,p

6 C

∥∥∥∥
( ∞∑

n=1

|fn(·)|r
) 1

r

∥∥∥∥
κ,p

,

where C = C(κ1, . . . , κd, r, p) is independent of (fn)n>1.
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(2) If 1 < r < +∞ and if
(∑∞

n=1 |fn(·)|r
) 1

r ∈ L1(µκ), then for every λ > 0 we
have

µκ

({
x ∈ R

d :
( ∞∑

n=1

|MR
κ fn(x)|r

) 1
r

> λ

})
6

C

λ

∥∥∥∥
( ∞∑

n=1

|fn(·)|r
) 1

r

∥∥∥∥
κ,1

,

where C = C(κ1, . . . , κd, r) is independent of (fn)n>1 and λ.

Therefore, in order to prove Theorem 1.2, it remains to show that the opera-
tor MR

κ controls MQ
κ . More precisely, we have the following proposition.

Proposition 3.2. There exists a positive constant C such that for every x ∈ Rd
reg

we have

MQ
κ f(x) 6 CMR

κ f(x).

Proof. Let x ∈ Rd
reg and r > 0. By the definition of the Dunkl convolution we have

∣∣(f ∗κ χ
Qr

)(x)
∣∣ = cκ

∣∣∣∣
∫

Rd

f(y)τκx (χQr
)(−y) dµκ(y)

∣∣∣∣,

from which we deduce at once that

∣∣(f ∗κ χ
Qr

)(x)
∣∣ = cκ

∣∣∣∣
∫

Rd
reg

f(y)τκx (χQr
)(−y) dµκ(y)

∣∣∣∣.

Using the positivity of τκx (χQr
) gives us

∣∣(f ∗κ χ
Qr

)(x)
∣∣ 6 cκ

∫

Rd
reg

|f(y)|τκx (χQr
)(−y) dµκ(y).

On account of (3.7) we then obtain

∣∣(f ∗κ χ
Qr

)(x)
∣∣ 6 cκ

∫

Rd
reg

|f(y)|
d∏

j=1

τκj
xj
(χ

[−r,r]
)(−yj) dµκ(y).

Since we can readily deduce from (3.3) the following property

|yj | /∈ I(xj , r) =⇒ τκj
xj

(χ
[−r,r]

)(yj) = 0,

we can write

∣∣(f ∗κ χ
Qr

)(x)
∣∣ 6 cκ

∫

Ax

|f(y)|
d∏

j=1

τκj
xj

(χ
[−r,r]

)(−yj) dµκ(y),

where Ax is the following set

Ax = R
d
reg ∩

{
y ∈ R

d : ỹ ∈ R(x, r)
}
.

If we now apply the inequality of Proposition 2.4 we get

∣∣(f ∗κ χ
Qr

)(x)
∣∣ 6 C

∫

Ax

|f(y)|
d∏

j=1

µκj

(
]− r, r[

)

µκj

(
I(xj , r)

) dµκ(y).

The following obvious equalities

d∏

j=1

µκj

(
]− r, r[

)
= µκ(Qr),

d∏

j=1

µκj

(
I(xj , r)

)
= µκ

(
R(x, r)

)
,
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imply that
∣∣(f ∗κ χ

Qr
)(x)

∣∣ 6 Cµκ(Qr)

µκ

(
R(x, r)

)
∫

Ax

|f(y)| dµκ(y),

from which we deduce that

1

µκ(Qr)

∣∣(f ∗κ χ
Qr

)(x)
∣∣ 6 C

µκ

(
R(x, r)

)
∫

ỹ∈R(x,r)

|f(y)| dµκ(y).

It follows that
1

µκ(Qr)

∣∣(f ∗κ χ
Qr

)(x)
∣∣ 6 CMR

κ f(x),

and then the result. �

This result, combined with Proposition 3.1, leads immediately to the following
corollary.

Corollary 3.1. There exists a positive constant C such that for every x ∈ Rd
reg we

have

0 6 Mκf(x) 6 CMR
κ f(x).

Then, Theorem 1.2 is true thanks to this corollary and the Fefferman-Stein
inequalities for MR

κ (Theorem 3.2).

Remark. Let us point out that Corollary 3.1, together with the maximal result
for MR

κ (Theorem 3.1), implies a maximal theorem for Mκ (proved in [16]) without
using the Hopf-Dunford-Schwartz ergodic theorem (which is a general method given
in [14]).

4. Application

Since the Fefferman-Stein inequalities are an important tool in Harmonic analy-
sis, we would like to define a large class of operators such that each operator of this
class satisfies these inequalities, and such that, in particular, the maximal operator
associated with the Dunkl heat semigroup and the maximal operator associated
with the Dunkl-Poisson semigroup belong to this class (see [14] for details about
the classical heat semigroup and the classical Poisson semigroup).

To become more precise, let us now introduce this class of operators.

Definition. Let φ ∈ L1(µκ) be a radial function, that is φ(x) = φ̃
(
‖x‖

)
for ev-

ery x ∈ Rd, such that φ̃ is differentiable and satisfies the following properties

lim
r→∞

φ̃(r) = 0,

∫ ∞

0

r2γκ+d
∣∣∣
d

dr
φ̃(r)

∣∣∣ dr < +∞.

Then we denote by Mφ
κ the following operator

Mφ
κ f(x) = sup

t>0

∣∣(f ∗κ φt)(x)
∣∣, x ∈ R

d,

where φt is for every t > 0 the dilation of φ given by

φt(x) =
1

t2γκ+d
φ
(x
t

)
, x ∈ R

d.
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Let us present two important examples of functions which satisfy the conditions
of the previous definition.
The first one is concerned with the Dunkl heat kernel qtκ. Indeed if we let

φ(x) = e−
‖x‖2

2 , x ∈ R
d,

then for every t > 0 we have

φ√
2t(x) =

1

(2t)γκ+
d
2

e−
‖x‖2

4t = qtκ(x).

In this case, Mφ
κ is therefore the maximal function of the Dunkl heat semigroup.

Our second example deals with the Dunkl-Poisson kernel. If we define the function φ
for every x ∈ Rd by

φ(x) =
aκ

(1 + ‖x‖2)γκ+
d+1
2

, with aκ =
cκ 2

γκ+
d
2 Γ

(
γκ + d+1

2

)
√
π

,

then for every t > 0 we have

φt(x) =
aκ t

(t2 + ‖x‖2)γκ+
d+1
2

= P t
κ(x),

which is the Dunkl-Poisson kernel (for more details about this kernel, the reader is
referred to [12] and [16]). Thus, in this case, Mφ

κ is the maximal function associated
with the Dunkl-Poisson semigroup.

We now state the Fefferman-Stein inequalities for Mφ
κ (for φ, φ̃ and φt as above).

Theorem 4.1. Let (fn)n>1 be a sequence of measurable functions defined on R
d.

(1) If 1 < r < +∞, 1 < p < +∞ and if
(∑∞

n=1 |fn(·)|r
) 1

r ∈ Lp(µκ), then we
have

∥∥∥∥
( ∞∑

n=1

|Mφ
κ fn(·)|r

) 1
r

∥∥∥∥
κ,p

6 C

∥∥∥∥
( ∞∑

n=1

|fn(·)|r
) 1

r

∥∥∥∥
κ,p

,

where C = C(φ, κ1, . . . , κd, r, p) is independent of (fn)n>1.

(2) If 1 < r < +∞ and if
(∑∞

n=1 |fn(·)|r
) 1

r ∈ L1(µκ), then for every λ > 0 we
have

µκ

({
x ∈ R

d :
( ∞∑

n=1

|Mφ
κ fn(x)|r

) 1
r

> λ

})
6

C

λ

∥∥∥∥
( ∞∑

n=1

|fn(·)|r
) 1

r

∥∥∥∥
κ,1

,

where C = C(φ, κ1, . . . , κd, r) is independent of (fn)n>1 and λ.

Proof. The proof is nearly obvious. Indeed, according to the proof of Theorem 7.5
in [16], we have for such a function φ and for x ∈ Rd

∣∣(f ∗κ φ)(x)
∣∣ 6 CMκf(x)

∫ ∞

0

r2γκ+d
∣∣∣
d

dr
φ̃(r)

∣∣∣ dr,

where C depends only on κ1, . . . , κd. Therefore, for every t > 0 we get

∣∣(f ∗κ φt)(x)
∣∣ 6 CMκf(x)

∫ ∞

0

r2γκ+d
∣∣∣
d

dr
φ̃t(r)

∣∣∣ dr,

with C independent of t. Since we have

d

dr
φ̃t(r) =

1

t2γκ+d+1

d

dr
φ̃
(r
t

)
,
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we can write

∣∣(f ∗κ φt)(x)
∣∣ 6 CMκf(x)

∫ ∞

0

r2γκ+d

t2γκ+d+1

∣∣∣
d

dr
φ̃
(r
t

)∣∣∣dr.

A change of variables gives us

∣∣(f ∗κ φt)(x)
∣∣ 6 CMκf(x)

∫ ∞

0

r2γκ+d
∣∣∣
d

dr
φ̃(r)

∣∣∣ dr,

from which we deduce that

sup
t>0

∣∣(f ∗κ φt)(x)
∣∣ 6 CMκf(x),

where C depends only on κ1, . . . , κd and φ. If we now apply Theorem 1.2 we obtain
the desired result. �
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Trimèche hypergroups. In Applications of hypergroups and related measure algebras (Seattle,
WA, 1993), volume 183 of Contemp. Math., pages 45–70. Amer. Math. Soc., Providence, RI,
1995.

[3] M. F. E. de Jeu. The Dunkl transform. Invent. Math., 113:147–162, 1993.
[4] Charles F. Dunkl. Differential-difference operators associated to reflection groups. Trans.

Amer. Math. Soc., 311:167–183, 1989.
[5] Charles F. Dunkl. Hankel transforms associated to finite reflection groups. In Hypergeometric

functions on domains of positivity, Jack polynomials, and applications (Tampa, FL, 1991),
volume 138 of Contemp. Math., pages 123–138. Amer. Math. Soc., Providence, RI, 1992.

[6] C. Fefferman and E. M. Stein. Some maximal inequalities. Amer. J. Math., 93:107–115, 1971.
[7] Margit Rösler. Bessel-type signed hypergroups on R. In Probability measures on groups and

related structures, XI (Oberwolfach, 1994), pages 292–304. World Sci. Publ., River Edge, NJ,
1995.

[8] Margit Rösler. Generalized Hermite polynomials and the heat equation for Dunkl operators.
Comm. Math. Phys., 192:519–542, 1998.

[9] Margit Rösler. Positivity of Dunkl’s intertwining operator. Duke Math. J., 98:445–463, 1999.
[10] Margit Rösler. Dunkl operators: theory and applications. In Orthogonal polynomials and

special functions (Leuven, 2002), volume 1817 of Lecture Notes in Math., pages 93–135.
Springer, Berlin, 2003.

[11] Margit Rösler. A positive radial product formula for the Dunkl kernel. Trans. Amer. Math.
Soc., 355:2413–2438, 2003.

[12] Margit Rösler and Michael Voit. Markov processes related with Dunkl operators. Adv. in
Appl. Math., 21:575–643, 1998.

[13] Elias M. Stein. Singular integrals and differentiability properties of functions. Princeton Uni-
versity Press, Princeton, N.J., 1970.

[14] Elias M. Stein. Topics in harmonic analysis related to the Littlewood-Paley theory. Princeton
University Press, Princeton, N.J., 1970.

[15] Elias M. Stein. Harmonic analysis: real-variable methods, orthogonality, and oscillatory
integrals. Princeton University Press, Princeton, NJ, 1993.

[16] Sundaram Thangavelu and Yuan Xu. Convolution operator and maximal function for the
Dunkl transform. J. Anal. Math., 97:25–55, 2005.

[17] Sundaram Thangavelu and Yuan Xu. Riesz transform and Riesz potentials for Dunkl trans-
form. J. Comput. Appl. Math., 199:181–195, 2007.
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