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Abstract 

In this paper, we present an efficient method based on safe Petri nets to construct a controller. A set of linear constraints al-
lows forbidding the reachability of specific states. The number of these so-called forbidden states and consequently the 
number of constraints are large and lead to a large number of control places. A systematic method to reduce the size and the 
number of constraints for safe Petri Nets is offered. By using a method based on Petri nets invariants, maximal permissive 
controllers are determined. 
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1. Introduction 

Supervisory control theory is essentially a theory for re-
stricting the behavior of the plant to satisfy a "safety speci-
fication" that specifies which evolutions of the plant should 
not be allowed. The theory of Ramadge and Wonham 
(1987; 1989) is based on the modeling of the systems using 
formal languages and finite automata. However, the great 
number of states representing the behavior of system, and 
the lack of structure in the model, limit the possibility of 
developing an effective algorithm for the analysis and the 
synthesis of real systems. To solve these problems, several 
methods of controller synthesis based on Petri Nets (PNs) 
were proposed. PNs are a suitable tool to study Discrete 
Event Systems (DES) due to its capability in modeling and 
its mathematical properties. Very active research in the 
field of the controller synthesis for DES was born during 
the last decade (Roussel and  Giua 2005; Giua et Xie 2005; 
Basile et al. 2006). 

In (Yamalidou and Moody 1996), (Moody and Antsak-
lis 2000) and (Basile et al. 2006), the authors use the mark-
ing invariants to determine algebraically the incidence ma-
trix of the supervisor PNs model. This method is very sim-
ple to be used. However, if some transitions are uncontrol-
lable, it does not give the maximal permissive solution. In 
the method presented in (Basile et al. 2006) the authors 

used the structural controllability condition which is only a 
sufficient condition for having a controllable model. This 
technique presents two other disadvantages: 1) it is not al-
ways possible to describe the specifications by constraints 
and, 2) the number of constraints can be very large.  

The control synthesis consists in preventing from for-
bidden states. These states may be deduced from specifica-
tions and can also be deadlock states. A method to mini-
mize the addition of PN places is proposed in (ZhiWu and  
Zhou 2004), it is based on elementary siphons. There are 
some drawbacks in their study. Firstly, one can see that it 
is based on the computation of minimal siphons and sec-
ondly the proposed method is not generally optimal. A 
third problem is that uncontrollable transitions cannot be 
considered. In (Uzam 2002; Ghaffari 2003b), the authors 
proposed a method for solving the problems of forbidden 
states by the theory of regions. The advantage of this 
method is its generality for non-safe PNs. However, there 
are some drawbacks for this method, too:  

-Generally, the number of control places is close to the 
number of border forbidden states. 

- The computation time for solving the set of integer 
equations can be very large.  

In (Giua et al. 1992), it is shown that it is possible to use   
linear constraints to specify forbidden states for safe and 
conservative PNs. The proposed approach is based on the 
equivalence between the set of forbidden states and the set 
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of linear constraints deduced from it. Using the invariants 
technique presented in (Yamalidou and Moody 1996), al-
lows building a set of control places, which constitutes the 
optimal controller. However, the number of forbidden 
states, and consequently, the number of constraints, are 
large and leads to a large number of control places. In 
(Giua et al. 1992), it is also shown that some constraints 
can be replaced by a single one; however, there is no sys-
tematic method to calculate the simplified constraints in a 
general case. The method comes from the linear con-
straints, which can be simplified taking the PNs structural 
properties into account. 

In (Dideban and Alla 2005), a systematic method has 
been presented to reduce the number of constraints for safe 
and conservative PNs. The equations deduced from P-
invariants property in conservative PNs are used for sim-
plification.  This method needs to construct the set of pos-
sible states which is more expensive than the set of reach-
able states.  

In this paper, we relax the property of conservative PNs. 
Then, a method is proposed to reduce the number of linear 
constraints for safe PNs. The advantage of this method is 
that the time and memory space for simplification are less 
than those presented in (Dideban and Alla 2005). In our 
approach, we use constraints which are equivalent to for-
bidden states. These constraints can be calculated in two 
different ways.  They can be given directly as specifica-
tions or they can be deduced thanks to the Kumar approach 
(Kumar and Holloway, 1996).    

In this paper, the important concept of over–state will 
be defined. This concept corresponds to a set of markings 
which has the same property. This idea will help us to 
build the simplest constraints, which forbid a greater num-
ber of states. A property for the existence of the maximal 
permissive controller will be analytically proved. In some 
very particular cases of non conservative PNs, the optimal 
solution does not exist. We show that this approach allows 
highlighting this problem in a simple way. This important 
concept can be used in other approaches.    

In our approach, as in (Dideban and Alla 2005), we use 
the Reachability Graph (RG) as an intermediate step for 
calculating the controller. Although the complexity of the 
computation of RG is exponential, this calculation is per-
formed off-line.  Moreover, the implemented final control-
ler is a PN model, whose size is very close to the initial 
model. Generally, few control places are added. 

The rest of this paper is organized as follows: In Section 
2, the motivation and the fundamental definitions will be 
presented and illustrated via an example. In Section 3, the 
idea of passage from forbidden states to the linear con-
straints will be introduced. The concept of over-state and 
the basic idea of the simplification will be presented in 
Section 4. The calculation of the maximal permissive con-
troller will be described in Sections 5. Finally, the conclu-
sion is given in the last section. 

2. Preliminary presentation    

In this paper, it is supposed that the reader is familiar 
with the PNs basis (David and Alla 2005) and the theory of 

supervisory control (Ramadge and Wonham 1987; 1989). 
In this section, we present only the notations and defini-
tions which will be used later.  

A PN is represented by a quadruplet R = {P, T, W, M0} 
where P is the set of places, T is the set of transitions, W is 
the incidence matrix and M0 is the initial marking. This PN 
is assumed to be safe; the marking of each place is Boo-
lean. 

Definition 1: The set {0,1}N represents all the Boolean 
vectors of dimension N.  

 

    A marking of a safe PN containing N places is a vec-
tor of the set {0,1}N. 

    The set of the marked places of a marking M is given by 
a function support defined as below: 

Definition 2: The function Support(X) of a vector 
X ∈ {0,1}N is:  
Support(X) = the set of marked places in X. 

 
The support of vector M0

T
 = [1, 0, 1, 0, 0, 1, 0] is: 

Support (M0) = {P1P3P6} or more simply: 
 Support (M0) = P1P3P6 
To simplify the notation of the formal expressions, we 

will use the support of a marking instead of its correspond-
ing vector. 

MR denotes the set of PN reachable markings. In MR, 
two subsets could be distinguished: the set of authorized 
states MA and the set of forbidden states MF. The set of for-
bidden states correspond to two groups: 1) the set of reach-
able states (MF’) which either do not respect the specifica-
tions or are deadlock states. 2) the set of states for which 
the occurrence of uncontrollable events leads to states in 
MF’. 

The set of authorized states are the reachable states 
without the set of forbidden states: 

MA = MR \ MF 

Among the forbidden states, an important subset is con-
stituted by the border forbidden state denoted as MB. 

Definition 3: Let MB be the set of border forbidden 
state: 

MB ={Mi ∈ MF |  ∃ σ ∈Σc and ∃ Mj ∈ MA, Mj ⎯→⎯σ  Mi} 

Where Σc is the set of controllable transitions  
 

 We will use the following example in order to illustrate 
the definitions and the results developed in this paper.  
Consider a system composed of two machines Ma1 and 
Ma2 which can work independently. The starting and the 
end of the tasks on these machines are respectively realized 
by controllable events c1 and c2, and by uncontrollable 
events f1 and f2. When machine Ma1 ends its task on a part, 
it stays available for a new task while machine Ma2 has to 
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transfer its produced part in a buffer before beginning a 
new task (event b2). Both machines are activated simulta-
neously (event start) but each of them can be inactivated 
separately (events sp1 and sp2). The specifications impose a 
sequence of the events f1 and b2. An elementary production 
is a result of a process on a part by Ma1 followed by an-
other process by Ma2. This production is repeated in a cy-
clic way. The system can be started by a start command 
and can be stopped by a stop command. At the end, the 
production process on a part must be completed.  For re-
start, we need to initialization of the controller.  The proc-
ess and specifications models are represented in Figure 1.  
They are non conservative PNs. 

 

 
Fig. 1. PN model of the  a) Process  b) specification 
 
The synchronous composition between the models of 

process and the model of specifications is given by a safe 
PN in Figure 2. 

Fig. 2. PN model of the system coupled with its specification 
 
The existence of uncontrollable events leads to the exis-

tence of forbidden states. For example when the system is 
in state M5, it is possible to fire the uncontrollable event f1, 
while it is not authorized by the specifications. This state is  
a forbidden state. The set of forbidden states can be deter-
mined by the algorithm established by Kumar and Hollo-
way (1996).  

Figure 3 gives the reachability Graph of the PN pre-
sented in Figure 2. The forbidden states are indicated in 
dark gray and the authorized states in white. The construc-
tion of the reachability graph is stopped when a forbidden 
state is reached. 

 
 

Fig. 3  Reachability graph 

From the set of forbidden states MF = {M5, M6, M7, M8, 
M9, M10, M12, M15, M16,…}, we can construct the set of 
border forbidden states MB  

MB = {M5, M6, M7, M8, M12, M15} 
In a conservative and safe PN, the inequality 

m1+ m4 + m6  + m9  ≤ 3 forbids only the state P1P4P6P9. 
(Giua et al. 1992). In this situation, for N forbidden states, 
we will need N linear constraints. The complexity of the 
controller model increases extremely when the number of 
forbidden states increases for we need one control place for 
each constraint (Yamalidou and Moody 1996). In this pa-
per, we propose a method to reduce the number and the 
size of the linear constraints for a given set of forbidden 
states. We give the necessary and sufficient condition for 
having a maximal permissive controller in the case of non 
conservatives PNs. To achieve this goal, we need to intro-
duce the important concept of “over-state”. In this paper 
we use a hypothesis that is presented below: 

Hypothesis 1:  All of the events are independent.  
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3. From forbidden states to linear constraints 

Let Mi (Mi
T = [m1, m2, …, mN]) be a forbidden state1 in 

set MB and Support(Mi) = {Pi1 Pi2 Pi3... Pin} the set of mar-
ked places of Mi. From a forbidden state, a linear constraint 
can be constructed (Giua et al. 1992). 

The linear constraint deduced from the forbidden state 
Mi is given below. The state Mi does not verify this relati-
on. Therefore, by applying this relation, Mi will be forbid-
den. 

∑
=

n

k1

mik ≤  n – 1 

Where n = Card [Support (Mi)] is the number of marked 
places of Mi, and mik is the marking of place Pik of state Mi. 

Let M (MT = [m1, m2,…, mN])  be a general marking and  
Mi be a forbidden state. The constraint (forbidding state 
Mi) is denoted by ci and can be rewritten in the following 
form: 

Mi
T. M  ≤ Card [Support (Mi)] - 1       

For example if: 

  Mi
T = [0, 1, 1, 0, 0, 0, 1]  Card [Support (Mi)] = 3  

    m2 + m3 + m7  ≤ 2                             (1) 
Verifying Relation 1 is equivalent to forbid state Mi 

when the PN model is conservative. However, in a safe PN 
not necessarily conservative, this equivalence is not always 
true. This problem will be discussed later. This equiva-
lence is necessary to obtain the optimal supervisor.  

4. Simplification by using over-state concept 

4.1. Definition of an over - state 

The concept of over-state is very important in this pa-
per. An over-state can represent a complete state or a part 
of this one. In the example of the two machines, P2P3P6P9 
is a complete state that represents the situation of both ma-
chines and the specifications. P2P3 is an over-state of this 
state that represents a partial state of the system. We have 
noted that a state can be forbidden by a linear constraint. In 
the same way, it is possible to forbid an over-state by its 
corresponding constraint. 

Definition 4: Let M2 = P21 P22 …P2m be an accessible 
state, M1 = P11 P12 …P1n will be an over-state of M2 if: 

M1  ≤  M2  
 

For example M1= P1P3 is an over-state of M2= P1P3P6P9. 
The name “over-state” is used because the constraint 

corresponding to an over-state holds the state’s constraint. 
For example, the constraint m4 + m6 ≤ 1 that corresponds to 
the over-state M1 = P4P6 holds both following constraints:  

 
1  When there is no ambiguity, the word border will be omitted. 

m1 + m4 + m6 + m9 ≤ 3 
m2 + m4 + m6+ m9 ≤ 3 

These two constraints forbid states M6 = P1P4P6P9 and 
M7 = P2P4P6P9. P4P6 is an over-state of both states 
P1P4P6P9 and P2P4P6P9 which could be verified by M1  ≤ 
 M6 and M1  ≤  M7. Thus by using only the constraint 
m4 + m6 ≤ 1, both states M6 and M7 will be forbidden. 
However, this reduction is not always simple; it is possible 
that the simplified constraint forbids also some authorized 
states. We present below a method of simplification which 
guarantees that the constraints forbid only the forbidden 
states. 

Remark 2: With each over-state bi, we associate a con-
straint ci in the following way: 

     bi = (Pi1P i2P i3 …P in)   ⇒    ci = (Pi1P i2P i3 …P in , n-1)             

That means: 
mi1+ mi2+ …+ min  ≤  n-1 

 
Remark 3: It is possible to use an over-state without 

taking into account the fact that an authorized state can be 
forbidden. In that case, the controller would not be maxi-
mal permissive.  

 
Remark 4: There are two relations of inclusion, which 

operate in opposite directions: a set inclusion and a mark-
ing inclusion.   Let M1  ≤ M2:  

1) The set of the marked places in the over-state 
M1 is included in the set of the marked places in 
the state M2. 

2) The set of the markings covered by M1 contains 
those covered by marking M2. 

 
Property 1: Let M1 and M2 be two vectors of {0, 1}N, and 
c1 and c2 be two corresponding constraints. If M1  ≤ M2 (M1 
is an over-state of M2) and c1 is true, then c2 is also true: 

M1  ≤ M2 and  c1 : M1
T. M ≤ Card[Support(M1)]- 1 

               ⇒  c2:    M2
T. M ≤ Card[Support(M2)]- 1 

Proof: 
The PN model is safe then: 

 (M2
T - M1

T).M  ≤ Card[Support(M2)] - Card[Support(M1)] 
And: 
  M2

T. M = (M2
T - M1

T+ M1
T).M = (M2

T - M1
T).M + M1

T.M 

By using the constraint c1, we have: 

(M2
T - M1

T).M + M1
T.M  ≤  (Card[Support(M2)]  - 

Card[Support(M1)]) +  Card[Support(M1)] – 1  
⇒     M2

T. M ≤ Card[Support(M2)] - 1 
 

4.2. Set of over-states 

We have noted that to forbid a state, it is enough to for-
bid its over-state, but which over-state? This question will 
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be answered in the sequel. To achieve this goal, we need to 
construct the set of over-states for the forbidden states.  

Firstly, we calculate the set of over-states for each state 
and then the union of all over-states gives the final set.  

Definition 5: Let Mi = {Pi1P i2Pi3 …Pin} be a state of the 
system. The set of the over-states of Mi, denoted by Mi

 over, 
is equal to the set of the subsets of Mi without the empty 
set.  

 
For example, the state M1 = P1P4P6P9      give: 

M1
 over = {P1, P4, P6, P9, P1P4, P1P6, P1P9, P4P6, P4P9, 

P1P4P6, P1P4P9, P1P6P9, P4P6P9, P1P4P6P9} 

Among, the set of forbidden states in MF, only the bor-
der states have to be considered in the controller synthesis. 
Let MB be this set and B1 be the set of over-states of MB.  

U
)(

1
1B

BMCard

i

over
iM

=

= 

4.3. Basic idea to build the minimal set of constraints      

For a given set and a property, we can define three dis-
joint sub-sets:  

1) The set where each element verifies this property  
2) The set where each element does not verify this pro-

perty, and   
3) The set which is indifferent to this property. 
The third set is important and will be used advantage-

ously to improve the simplifications.     
Definition 6: Let E1 and E2 be two sets included in a set 

G and hold: 
E1I E2 = φ  
E1U E2 = E 
EU Ē = G 

Ē is the complementary set of E in G. 
V is an element of G. 

 A property P according to V is true if V ∈E1 and false if V 
∈E2.  

 
 This property is not defined if V ∈  Ē, it can then be 

said that this property is true if V ∉E2. 

We will use this definition on the set of states to achieve 
our goal. Let E1 be the set of the forbidden states and E2 
the set of the authorized states and let P be the forbidding 
property. The state V can be forbidden if it is not in E2. 
This means that the states which are not accessible could 
be forbidden. This consideration will make the constraints 
to be further simplified. This idea is similar to the concept 
of don’t care states that are used in the minimization of 
combinatorial and sequential logic. In logic circuits don’t 
care states are the states that are not reachable because of 
the input variables or initial states. In PN models, non 
reachable states are the states that are not accessible from 
the initial state.  

In Property 1, it was shown that one over-state can cover 
a great number of states. Therefore, we can forbid an over - 
state if it does not cover any authorized state. 

Our objective is to find a method to reduce the number 
and the bound of the constraints. For that, we build the set 
of all over-states of the border forbidden states. This set 
will be calculated by removing all authorized over-states 
from it. The minimal set of constraints will then be ob-
tained. Finally, the best choice will be established.  
The different steps formalizing this approach are presented 
in the following section.  

4.4. Building the reduced set of over-states      

It is possible to build two sets of over-states; a set of the 
authorized over-states A1, and that of the forbidden states 
B1. It is obvious that no over-state of A1 must be forbidden. 
Thus it is necessary to remove from set B1, all over-states 
which are in A1. This gives set B2: 

B2 = B1\ A1 
Remark 5: From the implementation point of view, it is 

not necessary to construct A1. The set MA is directly used. 
Property 2: Let B1 be the set of over-states of MB and 

A1 be the set of over-states of MA and: 
B2 = B1 \ A1 

The markings verifying the set of constraints C2 
(equivalent to B2) correspond to the complete set of au-
thorized states. 

 
    The proof of this property is obvious. 

In set B2, it often possible to find couple of states M1 and 
M2 such that M1  ≤ M2 (M1 is an over-state of M2). In that 
case, M2 must be removed. It is a redundant state, and set 
B3 is then defined formally as follows: 

B3 = B2 – {M2i ∈ B2│∃ M2j ∈ B2, M2i  ≥  M2j} 

B3 is the minimal set of over-states to be forbidden. 
 For the example, from Figure 2, the sets of border for-

bidden states and authorized states are: 

MB = {P1P4P6P9, P2P4P6P9, P2P3P7P9, P2P4P7P9, P2P5P7P9, 
P2P4P6P10}     
MA = {P6P8, P3P7P11, P4P7P11, P5P7P11, P3P6P11, 
P1P3P6P9, P2P3P6P9, P1P3P7P9, P1P4P7P9, P1P5P7P9, 
P1P3P6P10, P2P3P6P10, P1P3P7P10} 

Sets A1, B1, B2 and B3 are then calculated as follows:  

B1 = M1
over ∪ M2

over ∪ M3
over

 ∪ M4
over ∪ M5

over ∪ M6
over =        

{ P1 , P2, P3, P4 , P5 , P6 , P7 , P9, P10, P1P4 , P1P6 , P1P9, 
P4P6 , P4P9, P6P9, P2P4 , P2P6 , P2P9, P2P3 , P2P7 , P3P7, 
P3P9 , P7P9, P4P7 , P2P5 , P5P7 , P5P9, P2P10 , P4P10 , P6P10, 
P1P4P6, P1P4P9, P1P6P9, P4P6P9, P2P4P6, P2P4P9, P2P6P9, 
P2P3P7, P2P3P9, P2P7P9, P3P7P9, P2P4P7, P2P7P9, P4P7P9, 
P2P5P7, P2P5P9, P5P7P9, P2P4P10, P2P6P10, P4P6P10, 
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P1P4P6P9, P2P4P6P9, P2P3P7P9, P2P4P7P9, P2P5P7P9, 
P2P4P6P10}                    
A1 ={ P1 , P2 , P3 , P4 , P5 , P6, P7 , P8, P9, P10, P11, P6P8, 
P3P7, P3P11 , P7P11 , P4P7, P4P11 , P5P7 , P5P11 ,…, P3P7P11, 
P4P7P11, P5P7P11, P3P6P11, P1P3P6P9, P2P3P6P9, P1P3P7P9, 
P1P4P7P9, P1P5P7P9, P1P3P6P10, P2P3P6P10, P1P3P7P10}  
B2= { P1 , P2, P3, P4 , P5 , P6 , P7 , P9, P10, P1P4 , P1P6 , 
P1P9, P4P6 , P4P9, P6P9, P2P4 , P2P6 , P2P9, P2P3 , P2P7 , 
P3P7, P3P9 , P7P9, P4P7 , P2P5 , P5P7 , P5P9, P2P10 , P4P10 , 
P6P10, P1P4P6, P1P4P9, P1P6P9, P4P6P9, P2P4P6, P2P4P9, 
P2P6P9, P2P3P7, P2P3P9, P2P7P9, P3P7P9, P2P4P7, P2P7P9, 
P4P7P9, P2P5P7, P2P5P9, P5P7P9, P2P4P10, P2P6P10, 
P4P6P10, P1P4P6P9, P2P4P6P9, P2P3P7P9, P2P4P7P9, 
P2P5P7P9, P2P4P6P10}   
B3={P4P6 , P2P4 , P2P7 , P2P5 , P4P10 , P1P4P6, P4P6P9, 
P2P4P6, P2P4P9, P2P3P7, P2P7P9, P2P4P7, P2P7P9, P2P5P7, 
P2P5P9, P2P4P10, P4P6P10, P1P4P6P9, P2P4P6P9, P2P3P7P9, 
P2P4P7P9, P2P5P7P9, P2P4P6P10} = {P4P6, P2P4, P2P7, P2P5, 
P4P10} 

Remark 6: In reality we don’t need to construct A1. It is 
possible calculate B2 from B1 and MA.  

 

5. Controller synthesis 

5.1.  Maximal permissive controller 

In the previous section, we have determined the set B3, 
which is the set of over-states that must be forbidden. In 
the two following sections, we present the necessary and 
sufficient conditions to design a maximal permissive con-
troller.  

With each over-state of B3, we associated a constraint in 
the following way: 
     bi = (Pi1P i2P i3 …P in)   ⇔    ci = (Pi1P i2P i3 …P in , n-1)             

Let C3 be the set of these constraints for the example: 
C3 = {(P4P6,1), ( P2P4, 1), (P2P7, 1), ( P2P5, 1), (P4P10, 1)} 

This set C3 defines the set of non-forbidden states, de-
noted as ME. Now the objective is to compare the set of 
authorized states MA and ME. 

Remark 7: Constraint ci and over-state bi are equivalent 
as shown above. 

 
Definition 7: Let B3 = {b1, b2, …, bm} be the set of sim-

plified over-states and MB = {M1, M1,…, MN} be the set of 
border forbidden states. The relation R: MB × B3 → {0, 1} 
is as: 

not if     
) of state-over is (        

0
 1

  )( ijij
ji

MbMb
bMR

≤

⎩
⎨
⎧

=,  

The covering of a marking is an integer number: 

∑
=

=
m

j
jii bMRMCv

1

),()(  

 
Cv(Mi) ≥ 1 means that forbidden state Mi is covered by 

at least one over-state. 

Property 3:   The set of non forbidden state ME is equal 
to the set of authorized state MA if and only if: 

∀ Mi ∈ MB     Cv(Mi) ≥ 1 
 

Proof:  
Necessary Condition: 
Assume that MA = ME, we prove that:  

∀Mi ∈MB Cv(Mi) ≥ 1 
If  ∃ Mi ∈ MB / Cv(Mi) = 0  ⇒   R(Mi, bj) = 0  ∀ bj ∈B3, 
There is not any constraint cj deduced from bj that for-

bids Mi. Then  
  Mi ∈ ME 

However, Mi is a forbidden state and, Mi ∉ MA,  
Then MA  ≠  ME that it is not true.  

Sufficient condition:  
Assume that  ∀ Mi ∈ MB  Cv(Mi) ≥ 1, we prove:  
 MA  =  ME    
∀ Mi ∈ MB  ,  Cv(Mi) ≥ 1 ⇒ 
∀ Mi ∈ MB  ∃ bj ∈ B3 / R(Mi, bj) = 1, (Mi would be for-

bidden by this constraint) 
    ⇒ ∀ Mi ∈ MB ,  Mi  ∉  ME  Then : 
       ME  ⊆  MA    
    In addition, according to the method used for the con-
struction of B3,   MA  ⊆  ME    (any authorized state is not 
forbidden) 
    Then   MA = ME 

 
Now, let us illustrate the results established above in the 

example of Figure 2. Property 3 should initially be 
checked. For this, we construct a table (Table 1) where the 
first row represents the set of forbidden states MB and the 
first column is the set of simplified over -states B3. In the 
case of our example, these sets are:  

MB = {P1P4P6P9, P2P4P6P9, P2P3P7P9, P2P4P7P9, P2P5P7P9, 
P2P4P6P10}     

B3 = {P4P6, P2P4, P2P7, P2P5, P4P10} 

cj         Mi P1P4P6P9 P2P4P6P9 P2P3P7P9 P2P4P7P9 P2P5P7P9 P2P4P6P10

P2P4 0 1 0 1 0 1 

P2P5 0 0 0 0 1 0 

P4P6 1 1 0 0 0 1 

P2P7 0 0 1 1 1 0 

P4P10 0 0 0 0 0 1 

Cv(Mi) 1 2 1 2 2 3 

Tab. 1.  Function R(cj, Mi)  and Cv(Mi) 

This table shows that ∀ Mi ∈ MB  Cv(Mi) ≥ 1, and thus 
the set of non forbidden states ME is equal to the set of au-
thorized states MA.  
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We will see that this is not always the case. For that, we 
take the example presented in (Bratosin et al. 2005) . It is a 
system made up of two machines M1 and M2. The begin-
nings of the tasks are denoted by the controllable events c1 
and c2 and the ends are synchronized by the uncontrollable 
event f. The specification authorizes the occurrence of the 
event f only once. The PN model R, of the closed-loop 
operation for this system is presented in Figure 4. 

 
Fig. 4. Closed loop PN Model in case of non optimal supervisor 

The sets of the authorized and forbidden states are pre-
sented below: 
MB = {P1P4, P2P3}     
MA = {P1P3P5, P2P3P5, P2P4P5, P1P4P5, P1P3} 
B1 = {P1, P2, P3, P4, P1P4, P2P3}     
A1 = {P1, P2, P3, P4, P5, P1P3, P1P5, P3P5, P2P3, P2P5, P2P4, 
P4P5, P1P4, P1P3, P1P3P5, P2P3P5, P2P4P5, P1P4P5}     
B2 = { P1, P2, P3, P4, P1P4, P2P3 } = φ  ⇒    B3 =  φ 
∀ Mi ∈ MB    Cv(Mi) = 0 and ME  = MR  (All accessible 
states). 

Here is a case where MA  ⊂  ME. Then it is not possible 
to construct the maximal permissive controller for this mo-
del of system.  

 This type of behavior is rarely met in real cases.  We 
have built it artificially. Moreover, generally as in this ex-
ample, for the case of non conservative and safe PN, we 
can modify the PN model by adding one place in order to 
have a conservative PN. For example, It is sufficient to add 
place P6 after transition t3 as it is shown in Figure 5. Now 
the set of places P5 and P6 belongs to the invariant:  m5 + 
m6 = 1 and in this case we are able to construct a maximal 
permissive controller.  

5.2. Final covering  

After the simplifications presented above, it is possible 
to choose the simplest constraints covering all forbidden 
states. In the result of the last step, the same forbidden state 
can be covered by several over-states. The rules to choose 
the final over-states are similar to the rules of the Quine-
McCluskey method to simplify the logical expressions 

(Morris Mano 2001). To choose the final results, table 1 is 
used and modified in table2.  

Fig. 5.  Modified model of Figure 4 
 

cj         Mi P1P4P6P9 P2P4P6P9 P2P3P7P9 P2P4P7P9 P2P5P7P9 P2P4P6P10 B4

P2P4 0 1 0 1 0 1 -

P2P5 0 0 0 0 1 0 -

P4P6 1 1 0 0 0 1 1

P2P7 0 0 1 1 1 0 1

P4P10 0 0 0 0 0 1 -
Cf (Mi)  1 1 1 1 1 1  

Tab.  2.  Function R(cj, Mi)  and Cf (Mi)   

To choose the minimal set of constraints, denoted by B4, 
firstly it is necessary to choose the over-state for which 
there exists a forbidden state that can be covered only by 
this over-state (Cv(Mi  )= 1). If such over-states are found, 
we mark all the corresponding forbidden states in line 
Cf(Mi). This line corresponds   to   the   final covering.  
Then if a forbidden state is covered by two or several over-
states, it is necessary to choose the over-state which covers 
the most non selected forbidden states. In the case of equa-
lity, the simplest over-state will be selected. These ideas 
are formalized in the algorithm 1 presented in appendix I.  

Corollary 1: The set of the non forbidden states ME de-
fined by the set of the constraints deduced from B4 is equal 
to MA if and only if: 
       ∀ Mi ∈ MB     Cf(Mi) = 1 

 
This corollary means that it is necessary for each for-

bidden state to be covered at least by one over-state. When 
this is verified, the maximal permissive controller is ob-
tained.  

5.3. Control places  

The set of the constraints equivalent to B4 is denoted by 
C4. To calculate the control places corresponding to each 
linear constraint, we will use the method developed in 
(Yamalidou and Moody 1996). This technique based on the 
PNs invariant is recalled briefly below. Let WR be the inci-
dence matrix of the system (process and specifications). 
Each place of the controller will add a line to the matrix. 
Let WRC be the incidence matrix of the PN model corres-
ponding to the controlled system. It is made up of two ma-
trices, the original matrix of system R, WR and the inciden-
ce matrix of the controller, WC. From the set of constraints 
C4, matrix L and constant vector C_bound can be construc-
ted. It is possible to calculate in an algebraic way the inci-
dence matrix of the controller as it is presented below. MRi 
is the initial marking of system R and MCi is the initial 
marking of the control places. The very simple way to cal-
culate WC makes this approach very popular. 

WC  =  - L.WR 
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MC_i = C_bond - L.MR_i 
 

Let us take again the example of Figure 2, the set of fi-
nal constraints (C4) is: 
                   m4+ m6 ≤  1 ,    m2+ m7 ≤  1 

           ⎥
⎦

⎤
⎢
⎣

⎡
=

00001000010
00000101000

L    

WC = - L.WR 

         ⇒    ⎥
⎦

⎤
⎢
⎣

⎡
−

−−
=

000100010
000111100

CW  

MC_i = C_bond - L.MR_i 
⇒            Mc1 = 0;      Mc2 = 1 

Yamalidou and Moody (1996) showed that if all events 
are controllable, the controller is maximal permissive. Ho-
wever, if there are uncontrollable events, the extended me-
thod presented in (Moody and Antsaklis 2000) does not 
generally give the optimal solution. The problem exists 
when a control place is synchronized with a place of the 
process by an uncontrollable event as indicated in figure 6. 

  

Fig. 6.  Control place synchronized with the process by an un-
controllable event 

 In the case presented in Figure 6, the process cannot 
always respect the PN firing rules. Suppose that place Pc is 
not marked and P1 is marked. Since σu is uncontrollable, 
then transition T1 is fired even if it is forbidden by the con-
trol place. It means that it is possible that the set of reach-
able states will be greater than the set given by the PN 
model. According to definition of structural controllable 
model in (Basile et al. 2006), the model in this case is not 
controllable. We prove in Property 4 that it is not a neces-
sary condition after applying our method of controller syn-
thesis. After using our method, when the places belong to 
the process are marked, the control and specifications 
places will be always marked.    

Definition 8: The set of accessible states for controlled 
system is presented by the set ARC  .  

 
We are going to show that if the condition in Corollary 

1 is true, the obtained controller is maximal permissive 
even if uncontrollable transitions exist. 

Remark 8: A marking of the set ARC differs from a 
marking of ME because of the added control places. This is 
only a coding of these sets. To be able to compare the va-
rious sets of states, we will omit the control places for the 
elements of the set ARC.  

 
Property 4: Let ME be the set of authorized states by 

the constraints deduced from B4 and let ARC be the 
automaton that corresponds to the set of accessible state in 
the controlled system, 
If ME = MA , then ARC is isomorphic to ME and the con-
troller obtained by the invariant approach is maximal per-
missive.  

 

Proof:  

By the invariant approach, we have always: 

     ME  ⊆  ARC               (2) 

     Now we show that:    

              ARC ⊆  ME   (knowing that ME = MA) 
 Suppose that      ∃ Mi ∈ ARC and    Mi ∉ ME   

   ⇒ ∃ σu ∈Σu and ∃ Mj ∈ ME,  Mj ⎯→⎯ uσ
 Mi 

  However MA  =  ME  ⇒   Mj ∈ MA  and   Mi∉ MA 
Mi ∉ MA  ⇒   Mi∈ MF   (MF = MR \ MA ) 

It is obvious that:  Mj ⎯⎯→⎯ uσ  Mi then Mj ∈ MF (defini-
tion of forbidden states) 

Mj ∈ MA     and   Mj ∈ MF   (contradiction), then 

    ARC  ⊆  ME            (3) 

(2) and (3)      ⇒    ME  =  ARC       ⇒            ARC =  MA    

 
In the case of our example, the function Cf(Mi) (final 

covering ) is equal to 1 for each Mi ∈ MB, therefore ME = 
MA  (Corollary 1) then the controller is maximal permissi-
ve (Property 4). The PN model of the final controller is re-
presented in Figure 7. 

It should be noticed that there are some control places 
with uncontrollable output transitions. However, that never 
leads to a bad behavior, i.e. when a control place is not 
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marked; there is at least one non marked input place for 
this uncontrollable transition, which belongs to the process. 
Moreover, controllable events c1 and c2 have been removed 
since the control is now performed by the control places. 
The complete algorithm for controller synthesis is presen-
ted in Appendix I. The computation of some sets is of po-
lynomial complexity except for the MB over-states com-
putation which is exponential. Fortunately the number of 
border sates is often small. 

Fig.  7.  PN Model in closed loop with control places 

5.4. From PNs to SFC models 

The controllers have always a deterministic behavior. A 
given set of inputs corresponds to a unique set of outputs. 
In this paper we consider an asynchronous functioning, all 
events are independent and the simultaneous occurring of 
two independent events is not possible. However in real 
implementation, due to cycle time in a PLC (Programma-
ble Logic Controller), it is possible to have simultaneous 
occurring of events. Then, sometimes the controller obtai-
ned with our approach can be non deterministic. In that ca-
se, the conflicts must be solved for example by making a 
choice. 

In the example of Figure 6, the model is deterministic 
and there is no conflict. We can transfer directly the PN 
model into a Sequential Function Chart (SFC) or ladder 
diagram language (LD)2. (Giua and  DiCesare 1993; Uzam 
and Jones 1998). 
Here, the SFC model is obtained by replacing each place of 
the PN model by a step.  A control action is associated 
with each step that corresponds to the event (sensor) and 
belongs to the output transition. Transitions and events re-
main unchanged. This technique is inspired from the works 
presented in (Giua and  DiCesare 1993; Uzam and Jones 
1998). The SFC model for this example is presented in 
Figure 8. 

 
2Sequential Function Chart (SFC) and Ladder Diagram (LD) are the PLC 
standard language that describe by IEC 1131-3 standard 
 

 
Fig. 8. SFC model corresponding to the PN controller in Fig. 7 

Actions A1 and A2 correspond to the assembly opera-
tions and action B2 corresponds to the transfer operation. 
Sensors f1, f2 and t2 detect the ends of operations. 

6. Conclusion and future works   

In this paper, we have presented a systematic method to 
reduce the number of linear constraints corresponding to 
the forbidden states for a safe PN.  This is realized by us-
ing non- reachable states and by building the constraints 
using a systematic method. The important concept of over-
state has been defined; it corresponds to a set of markings 
which keep the same property (forbidden or authorized). 
From the forbidden states, the set of over-states is calcu-
lated. The utilization of non-reachable markings allows 
great simplification of the constraints. 

Properties which give necessary and sufficient condi-
tions for the existence of a maximal permissive controller 
were established and illustrated for a manufacturing sys-
tem. After the simplifications, the existence of the control-
ler is proved. When this controller exists, the invariant ap-
proach allows the computation of the controller that can be 
transformed to a SFC model and be directly implemented 
in a PLC. 

Our future work will include:  
1) Developing this method of simplification to achieve 

more reduced results using the partial invariant idea, 
 2) Using this idea for simplification of conditions that 

are employed as predicates for controllable transitions. In 
this case, we can develop the idea of over-state for non-
safe Petri Nets. The idea is to introduce the number of to-
kens as a power of the place identifiers. This can be indi-
cated as follows:  P1

3 P4
2 …, place P1

 and place P4 contain-
ing respectively 3 and 2 tokens. Thus, some of the proper-
ties presented in this paper can be generalized. Of course, 
some fundamental research needs to be done. 
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APPENDIX I:  ALGORITHMS  

A) Algorithm 1: Selection of  the set of  final over-states 
Step 1: Find the forbidden state Mi for which 

Cv(Mi) (Definition 7) is: a) non null, b) the  smallest 
one, and  c) Cf  (Mi)  = 0 ; 

If Mi does not exist, go to step 5;  
Step 2: a) Find the set of constraints C = {c1,…, ck,…, cm}  

such that: R(ck,Mi) = 1,  
             b) Find the constraint cj in set C which covers the 

maximal number of states Mr. with Cf (Mr)  = 0, and 
c) Take the  simpler cj in case of equality. 

Step 3: Save cj in B4;  
Step 4: Mark the forbidden states which are covered by the 

constraint cj in the line Cf ; Go to step 1; 
Step 5: End;  
 

B) Algorithm 2 : Complete algorithm for controller synthesis  
 

Step 1: Compute the set of over-states B1 for the set of bor-
der forbidden state MB. 

Step 2: Compute the set of over-states B2 by deleting from 
B1, the over states that exist in MA. 

Step 3: Compute B3 by deleting redundant over-states from 
B2. 

Step 4: Verifying Corollary 1 for maximal permissive con-
troller: if it is verified go to step 5 else there is no 
maximal permissive controller. Go to Step 8. 

Step 5: Apply algorithm 1 for computing B4. 
Step 6: Compute the control places from set of constraints B4 

by Yamalidou method. 
Step 7: Transforming PN model into a SFC. 

Step 8 : End  
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