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Using Coulombian Approach for Modeling Scalar
Potential and Magnetic Field of a Permanent

Magnet With Radial Polarization
H. L. Rakotoarison, J.-P. Yonnet, and B. Delinchant

Laboratoire d’Electrotechnique de Grenoble, Saint Martin d’Hères 38402, France

New compact semianalytical expressions of the scalar potential and magnetic fields produced by a radially polarized permanent magnet
are described in this paper by using Coulombian approach. It uses fictitious magnetic charge to model the magnetic field intensity. With
this fast model, we can compute the demagnetization field in each point inside the permanent magnet and the magnetic fields outside it.

Index Terms—Analytical model, magnetic field, radial polarized magnet.

I. INTRODUCTION

RADIAL polarized sector permanent magnets are often
used in electromagnetic device. Most applications of this

type of magnet were found in electrical motor and no-contact
magnetic torque transmitter [1]. Recently, new application of
this type of magnet is encountered in diamagnetic levitation
device, used for microparticle sorting [2], 3-D force sensor [3],
and accelerometer; those applications lead us to realize this
investigation.

For cuboïdal magnets with a uniform magnetization, ana-
lytical expression can be used to calculate the magnetic field
and even the forces created between two magnets [4]. However,
for arc-shaped magnets with radial magnetization, the magnetic
field calculation is more difficult.

Furlani [5] had proposed the first 3-D semianalytical model of
flux density, using amperian approach, but the expressions of
and need the sum of two integrals computation, which can be
time consuming if the model is used for dynamic simulation or
optimization process. This paper proposes a compact magnetic
field modeling with single numerical integration.

The final result is helpful if a continuous model of the mag-
netic field is required and demagnetization study is needed.

We suppose that the magnet’s polarization is rigid and uni-
form. The magnetic field is only generated by the arc-shaped
magnet. If the real device is made with more than one sector, the
field can be obtained by addition of the different contributions.

II. ELECTROSTATIC AND MAGNETOSTATIC ANALOGY

A. Basic Equations

Let us start from the four Maxwell’s equations in electrostatic
[(1) and (2)] and magnetostatic [(3) and (4)]

(1)

(2)
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(3)

(4)

where and are electric field, electric flux den-
sity, magnetic field intensity, magnetic flux density, electrical
charge, electric current density, respectively.

The magnetic field is only produced by the magnet, so (3)
becomes

(5)

Taking the material properties into account

(6)

(7)

and are, respectively, the permittivity and the permeability
of the vacuum, and is the polarization of the magnet.

By using (6) and (7), expression (2) and (4) become, respec-
tively, (8) and (9)

(8)

(9)

Equations (1) and (8) show the duality between electrical field
and electrical charge density in electrostatic problem.

If we introduce the fictitious magnetic charge density and
by applying the same duality as in (1) and (8) between magnetic
field and fictitious magnetic charge in magnetostatic equations
(5) and (9), we can write

(10)

By identification with (9), the fictitious charge density is

(11)

This fictitious magnetic charge density is composed by a
volume charge density and surface charge density (Fig. 1).
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Fig. 1. Upper view of the magnet, showing its model with fictitious surface and
volume charges.

If the magnetic polarization is uniform and radial, the ex-
pression of in cylindrical coordinate system is

(12)

Finding the surface charge density is straightforward; it
can be obtained by referencing (4), which means that, consid-
ering the entire volume of the magnet, there was no monopole
magnetic charge, so

(13)

defines the unit vector normal to surface; by using (12) and
applying Green’s theorems, after identification, we obtain

(14)

B. Electrostatic Equivalent Model

Finally, the electrostatic equivalent model of the permanent
magnet with radial polarization can be illustrated as in Fig. 1.
By projecting the polarization into the six surfaces of a magnet,
the surface charge densities exist only in the inner and outer
surface of the magnet.

The volume charge decreases according to a function
from the inner to the outer surface. From (5), we can proof the
existence of the magnetic scalar potential with

(15)

Basic expression for scalar potential and field calculation pro-
duced by the permanent magnet are obtained in (16) and (17),
by using the electrostatic approach

(16)
By applying (15), the magnetic field intensity is

(17)

Fig. 2. Computing magnetic field produced by surface and volume charge den-
sity on a point P in cylindrical coordinate.

Fig. 3. Parameterization of the magnet.

The radii and define the observation point position
and its distance to the elementary field source enclosed by or

(Fig. 2).

III. SCALAR POTENTIAL

After integrating (16) analytically, we obtain a single numer-
ical integration with the parameterization shown in Fig. 3

(18)
By using with and

(19)

(20)

IV. MAGNETIC FIELD EXPRESSION

After defining the magnetic scalar potential of the magnet, we
can express the three components of the field by using (15).
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TABLE I
GEOMETRICAL SPECIFICATIONS OF THE PERMANENT MAGNET

A. Radial Component of the Field

Formula of the radial field component is

(21)
can be written as follows:

(22)

B. Azimuthal Component

(23)
with

(24)

C. Axial Component

(25)
with

(26)

Fig. 4. Mesh used for the finite element analysis.

Fig. 5. Radial component of the filed from r = 0 mm to r = 6 mm, with z =

0 mm and � = 0

V. RESULTS AND FINITE ELEMENT MODELING

As validation of the model, a finite element analysis was done
by using FLUX3D software [6].

We have chosen the dimensions given in Table I, and we have
taken .

For obtaining a precise result in finite element analysis, the
mesh close to the inner radius of the sector must be very fine
(Fig. 4).

A. Discontinuity of the Normal Component of the Magnetic
Field Intensity

Fig. 5 shows the discontinuity of radial field (the tangential
component) inside and outside the magnet ( varying from 0 to
6 mm); it illustrates as well that the demagnetization effect is
less important near the inner radius (1 mm) than close to the
outer radius (4 mm). This feature can contribute to the design
parameters during sizing process.

B. Comparing the Azimuthal Component

This investigation allows us to check the continuity of the
normal component (Fig. 6) of the magnetic field intensity.
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Fig. 6. Azimuthal component of the field from � = �45 to � = 45 , with
r = 2:5 mm and z = 0 mm.

Fig. 7. Axial component of the field from z = �2:5mm to z = 2:5mm, with
r = 2:5 mm and � = 0 .

C. Comparing the Axial Component

As the azimuthal component, the behavior of the axial com-
ponent (Fig. 7) is continued, because it is the normal component
of the magnetic field intensity.

D. Magnetic Field Radiated by a Cylinder Magnet

The distribution of the modulus of the magnetic field radiated
by a ring-shaped magnet is depicted in Fig. 8. The polarization
remains radial. Let us remark the presence of a hole of field in

Fig. 8. Cross-section view of the field radiated by a right-shaped magnet with
a radial polarization.

the center of the magnet; this feature is significant if diamagnetic
levitation is required [3].

VI. CONCLUSION

This article proposes a fast 3-D semianalytical expression of
the scalar potential and the magnetic field produced by an arc-
shaped permanent magnet with radial polarization. The result
can also be used for ring-shaped magnet. Expressions of the
scalar potential and the magnetic field intensity is detailed and
compared with a finite element method (FEM) simulation.
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