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ASYMPTOTICS FOR A GRADIENT SYSTEM WITH MEMORY TERM

ALEXANDRE CABOT

ABSTRACT. Given a Hilbert space H and a function Φ : H → R of class C1, we
investigate the asymptotic behavior of the trajectories associated to the following
dynamical system

(S) ẋ(t) +
1

k(t)

∫ t

t0

h(s)∇Φ(x(s)) ds = 0, t ≥ t0,

where h, k : [t0,+∞) → R
∗
+ are continuous maps. When k(t) ∼

∫ t
t0
h(s) ds as

t → +∞, this equation can be interpreted as an averaged gradient system. We
define a natural energy function E associated to system (S) andwe give conditions
which ensure that E(t) decreases to infΦ as t → +∞. When Φ is convex and has
a set of non-isolated minima, we show that the trajectories of (S) cannot converge
if the average process does not “privilege” the recent past. A special attention is

devoted to the particular case h(t) = tα, k(t) = tβ, which is fully treated.

1. INTRODUCTION

Given a Hilbert space H with scalar product and corresponding norm respec-
tively denoted by 〈., .〉 and | . |, let us consider a smooth function Φ : H → R

that we wish to minimize. A powerful method consists in following the orbits of
a continuous dynamical system, hopefully converging toward some minimizer of
Φ. The most classical one is the steepest descent equation

ẋ(t) + ∇Φ(x(t)) = 0, t ≥ t0, (1)

which falls into the framework of the theory of dissipative dynamical systems (see
for example [9, 10]). The trajectories of the above system are known to converge
under various assumptions (Brezis-Bruck’s theorem [5, 6], Lojasiewicz theorem
[12]...)

The purpose of this paper is to analyse the effect of a memory term in the pre-
vious gradient system. More precisely, we study the following integro-differential
equation

(S) ẋ(t) +
1

k(t)

∫ t

t0
h(s)∇Φ(x(s)) ds = 0, t ≥ t0,

where h, k : [t0,+∞) → R
∗
+ are continuous maps. When k(t) ∼

∫ t
t0
h(s) ds as

t → +∞, this equation can be interpreted as an averaged gradient system. In
the recent papers [7, 8], a special attention is devoted to the particular case corre-
sponding to h(t) = 1, k(t) = t for t ≥ 0, thus modelling a situation of uniform
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memory. When Φ is convex and has a set of non-isolated minima, it is proved in
[7] that the non-stationary solutions cannot converge. This result is striking since
the corresponding trajectories of the basic gradient system are convergent (at least
weakly) under the same assumptions. We show in this paper that the trajectories
of (S) converge if and only if the weighted memory privileges enough the recent
past. A precise quantification of this phenomenon is given in section 5.

It is immediate that the solutions of (S) satisfy the following second-order dif-
ferential equation

k(t) ẍ(t) + k̇(t) ẋ(t) + h(t)∇Φ(x(t)) = 0, t ≥ t0. (2)

A key idea of the paper consists in observing that a suitable change of variable
t = τ(s) allows to rewrite equation (2) as follows

ÿ(s) + a(s) ẏ(s) + ∇Φ(y(s)) = 0, s ∈ [0, smax), (3)

where the map y is defined by y = x ◦ τ. The quantity smax ∈ R+ ∪ {+∞} and
the map a : [0, smax) → R depend respectively on h, k and their derivatives. Equa-
tion (3) has been recently studied in [7, 8], where the mechanical interpretation is
emphasized via the use of a suitable energy function. When the map a is constant,
the underlying dynamical system is known under the terminology of “Heavy Ball
with Friction” system. The (HBF) system has given rise to an abundant literature,
see for example [2, 3, 11], andmany results of convergence for the trajectories have
been established under various assumptions like convexity, analyticity,...

In this paper, we exploit fully the recent results of [7, 8] to derive new results
with respect to the generalized averaged gradient system (S). A special attention

is devoted to the particular case corresponding to h(t) = tα, k(t) = tβ, for t ≥ 1.
In this case, our general results allow us to determine the asymptotic behavior of

(S) for every couple (α, β) ∈ R
2. Moreover, when the corresponding equation is

linear, it is shown in section 2 that its solutions can be explicitly computed, via the
Bessel functions.

2. STUDY OF A MODEL EXAMPLE

Throughout this section, we assume that H = R and we consider the following
linear differential equation

tβ ẍ(t) + β tβ−1 ẋ(t) + tα x(t) = 0, t ≥ 1. (4)

This is the second-order differential equation obtained from (S) when Φ = 1
2 | . |2,

h(t) = tα and k(t) = tβ for every t ≥ 1. We are going to show that the solutions of

equation (4) can be explicitly computed. By multiplying equation (4) by t2−β we
obtain

t2 ẍ(t) + β t ẋ(t) + tα−β+2 x(t) = 0, (5)

which is the starting point of our analysis. First assume that α − β + 2 = 0. In this

case, we have t2 ẍ(t) + β t ẋ(t) + x(t) = 0, which is an Euler differential equation.
After the change of variable t = es, the previous equation becomes a second-order



ASYMPTOTICS FOR A GRADIENT SYSTEM WITH MEMORY TERM 3

ODE with constant coefficients. Setting ∆ = (α+β)2

4 − 4, we let the reader check
that there exist A, B ∈ R such that for every t ≥ 1,

x(t) =



















t−
α+β
4

[

A cos
(√

−∆

2 ln t
)

+ B sin
(√

−∆

2 ln t
)]

if |α + β| < 4

t−
α+β
4

[

A + B ln t
]

if |α + β| = 4

t−
α+β
4

[

A t
√

∆

2 + B t−
√

∆

2

]

if |α + β| > 4.

Now assume that α − β + 2 6= 0 and set µ = 2
α−β+2 . In this case, the change

of variable t = (s/|µ|)µ shows that equation (5) is a transformed version of the
Bessel differential equation. Standard references on Bessel equations are [1, 4]. We

let the reader check that there exist Â, B̂ ∈ R such that for every t ≥ 1,

x(t) = t−
β−1
2

[

Â Jν
(

|µ| t1/µ
)

+ B̂ Yν

(

|µ| t1/µ
)]

, (6)

where ν =
∣

∣

∣

β−1
α−β+2

∣

∣

∣
and Jν, Yν denote respectively the Bessel functions of the first

and second kind. The coefficients Â and B̂ satisfy a linear system involving the

initial data (x1, ẋ1) = (x(1), ẋ(1)) and by using the formula of Lommel1, we easily
obtain

Â =
π

2
|µ| x1 Y′

ν(|µ|) −
π

2
µ

(

β − 1

2
x1 + ẋ1

)

Yν(|µ|), (7)

B̂ =
π

2
µ

(

β − 1

2
x1 + ẋ1

)

Jν(|µ|) −
π

2
|µ| x1 J′ν(|µ|). (8)

Case α − β + 2 > 0. Then we have µ > 0, hence the variable s = µ t1/µ tends
to +∞ as t → +∞. Recall that the asymptotic behavior of Bessel functions of the
first and second kind is respectively given by

Jν(s) ∼
√

2

π s
cos

(

s− π

4
− ν

π

2

)

and Yν(s) ∼
√

2

π s
sin

(

s− π

4
− ν

π

2

)

as s → +∞. From the expression (6) for x(t), we derive that

x(t) ∼ Ĉ t
− β−1

2 − 1
2µ cos

(

µ t1/µ − φ̂
)

= Ĉ t−
α+β
4 cos

(

µ t
α−β+2

2 − φ̂
)

,

as t → +∞, for a suitable amplitude constant Ĉ and phase shift φ̂.

Case α − β + 2 < 0. Then we have µ < 0, hence the variable s = |µ| t1/µ tends
to 0 as t → +∞. Recall that the behavior of Jν(s) and Yν(s) as s → 0 is given by

Jν(s) ∼
1

Γ(ν + 1)

( s

2

)ν
and Yν(s) ∼

{

− Γ(ν)
π

(

s
2

)−ν
if ν 6= 0

2
π ln s if ν = 0,

where Γ is the gamma function. From the expression (6) for x(t), we derive that

• if β > 1 then limt→+∞ x(t) = −B̂
Γ(ν)

π

( |µ|
2

)−ν
,

• if β = 1 then x(t) =

{

−B̂ 2
π |µ| ln t + o(ln t) if B̂ 6= 0

Â + o(1) if B̂ = 0,

1The formula of Lommel states that the Wronskian of the functions Jν, Yν is given by Jν(s)Y′
ν(s) −

J′ν(s)Yν(s) = 2
π s for every s > 0.
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• if β < 1 then x(t) =







−B̂
Γ(ν)

π

( |µ|
2

)−ν
t1−β + o(t1−β) if B̂ 6= 0

Â
( |µ|

2

)ν
1

Γ(ν+1)
+ o(1) if B̂ = 0,

as t → +∞. Formula (8) shows that the circumstance B̂ = 0 is exceptional since

it occurs only if
(

β−1
2 x1 + ẋ1

)

Jν(|µ|) + x1 J
′
ν(|µ|) = 0.

Let us now summarize all the possible asymptotic behaviors of the trajectory
x, depending on α, β and the initial data. Denoting by ωx1,ẋ1 the ω -limit set as

t → +∞ associated to the initial data (x1, ẋ1) ∈ R
2 \ {(0, 0)}, we have

• If

{

α − β + 2 ≥ 0
α + β > 0

then limt→+∞ x(t) = 0.

• If

{

α − β + 2 ≥ 0
α + β = 0

then ωx1,ẋ1 = [−C,C], for some C > 0.

• If

{

α − β + 2 > 0
α + β < 0

or if

{

α − β + 2 = 0
α + β ∈ (−4, 0)

then ωx1,ẋ1 = (−∞,+∞).

• If

{

α − β + 2 = 0
α + β ≤ −4

then limt→+∞ x(t) = ±∞.

• If

{

α − β + 2 < 0
β ≤ 1

then limt→+∞ x(t) = ±∞ or2 limt→+∞ x(t) = l ∈ R.

• If

{

α − β + 2 < 0
β > 1

then limt→+∞ x(t) = l′ ∈ R.

The model example considered above will serve us as a guideline throughout
the paper.

3. GLOBAL EXISTENCE AND UNIQUENESS

Given a Hilbert space H and a function Φ : H → R of class C1, let us consider
the following dynamical system

(S) ẋ(t) +
1

k(t)

∫ t

t0
h(s)∇Φ(x(s)) ds = 0, t ≥ t0,

with initial data x(t0) = x0. If h : [t0,+∞) → R+ and k : [t0,+∞) → R
∗
+ are

continuous, then any solution x of class C1 satifies ẋ(t0) = 0. Assuming moreover

that k is of class C1, let us multiply equation (S) by k(t) and let us differentiate; we
obtain

k(t) ẍ(t) + k̇(t) ẋ(t) + h(t)∇Φ(x(t)) = 0. (9)

If ∇Φ is locally Lipschitz continuous, the Cauchy-Lipschitz theorem gives the lo-

cal existence and uniqueness of a maximal solution x of class C2 satisfying equa-
tion (9) and the initial conditions (x(t0), ẋ(t0)) = (x0, 0). The next statement sum-
marizes the above analysis.

Proposition 3.1. Assume that h : [t0,+∞) → R+ is continuous and that k : [t0,+∞) →
R

∗
+ is of class C1. Suppose also that the smooth function Φ : H → R is such that

2As seen above, the second eventuality is exceptional and occurs only if B̂ = 0.
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∇Φ is locally Lipschitz continuous. Given any x0 ∈ H, there exists a unique solu-
tion x(.) ∈ C2([t0, T),H) of (S) satisfying x(t0) = x0 on some maximal time interval
[t0, T) ⊂ [t0,+∞).

Given the change of variable t = τ(s), let us define the map y by y = x ◦ τ. It is
immediate to check that

ẋ(t) =
ẏ(s)

τ̇(s)
and ẍ(t) =

ÿ(s)

τ̇(s)2
− ẏ(s)

τ̈(s)

τ̇(s)3
.

If we rewrite equation (9) by using the variable s and the map y, we obtain after a
division by h(τ(s))

k(τ(s))

h(τ(s))

ÿ(s)

τ̇(s)2
+

ẏ(s)

h(τ(s))τ̇(s)

[

k̇(τ(s))− k(τ(s))
τ̈(s))

τ̇(s)2

]

+ ∇Φ(y(s)) = 0. (10)

Let us choose the map τ so as to have τ̇(s) =
√

k(τ(s))
h(τ(s))

. Let us define the map

F : [t0,+∞) → R+ by F(t) =
∫ t
t0

√

h(u)
k(u)

du and let us set smax =
∫ +∞

t0

√

h(u)
k(u)

du ∈
R+ ∪ {+∞} . The function F : [t0,+∞) → [0, smax) defines an increasing one-to-

one map. It is then immediate that τ = F−1. From now on, let us assume that h, k

are both of class C1. By differentiating formula τ̇(s)2 = k(τ(s))
h(τ(s))

, we easily obtain

τ̈(s) =
k̇(τ(s))h(τ(s))− k(τ(s))ḣ(τ(s))

2 h(τ(s))2
.

The differential equation (10) then becomes

ÿ(s) + a(s) ẏ(s) + ∇Φ(y(s)) = 0, s ∈ [0, smax), (11)

where the map a : [0, smax) → R is defined by

a(s) =
k̇(τ(s))h(τ(s)) + k(τ(s))ḣ(τ(s))

2 h(τ(s))
3
2 k(τ(s))

1
2

. (12)

By introducing the map η : [t0,+∞) → R defined by

η =
k̇ h + k ḣ

h
3
2 k

1
2

, (13)

we then have a = 1
2 η ◦ τ. Notice that an alternative expression for the map a is

given by

a(s) =
k̇(τ(s))h(τ(s)) + k(τ(s))ḣ(τ(s))

2 h(τ(s)) k(τ(s))
τ̇(s) (14)

=
1

2

d

ds
ln[h(τ(s))k(τ(s))]. (15)

The dynamical system (11) has been intensively studied in [7, 8]. Let us recall

that the function E defined by E(s) = 1
2 |ẏ(s)|2 + Φ(y(s)) is a Lyapounov function

associated to the trajectories of (11). We define the corresponding energy function

E for the trajectories of (S) by E = E ◦ τ−1 and its expression is given by E(t) =
1
2

k(t)
h(t)

|ẋ(t)|2 + Φ(x(t)). The existence of the Lyapounov function E is a crucial tool

to derive a result of global existence for the trajectories of (S).
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Proposition 3.2. Let h, k : [t0,+∞) → R
∗
+ be two maps of class C1 such that hk is non

decreasing. Let Φ : H → R be a function of class C1 such that∇Φ is Lipschitz continuous
on the bounded subsets of H. Assume moreover that the function Φ is bounded from below
on H. Then, we have:

(a) There exists a unique maximal solution x : [t0,+∞) → H of class C2 satisfying
equation (S) and the initial condition x(t0) = x0.

(b) For every t ∈ [t0,+∞), the following equality holds:

Ė(t) = − k̇(t)h(t) + k(t)ḣ(t)

2 h(t)2
|ẋ(t)|2.

(c) If
√

h
k ∈ L1([t0,+∞)), then |ẋ| ∈ L1([t0,+∞)) and hence limt→+∞ x(t) exists.

Proof. (a) Let smax =
∫ +∞

t0

√

h(t)
k(t)

dt. The assumptions on h, k imply that the map

a : [0, smax) → R defined by (12) is non negative and continuous. An immediate
adaptation of [7, Prop. 2.2] shows that the maximal solution y of the differential
equation (11) satisfying (x(t0), ẋ(t0)) = (x0, 0) is defined on [0, smax). Hence the

map x : [t0,+∞) → H defined by x = y ◦ τ−1 is the unique solution of class C2

satisfying equation (S) and the initial condition x(t0) = x0.

(b) Recalling from [7, Prop. 2.2] that Ė(s) = −a(s) |ẏ(s)|2, we derive that

Ė(t) = −a(s) |ẏ(s)|2 1

τ̇(s)
= − k̇(t)h(t) + k(t)ḣ(t)

2 h(t)2
|ẋ(t)|2.

(c) The decay of the energy function E combined with the fact that infΦ > −∞

implies that

∀t ≥ t0,
k(t)

h(t)
|ẋ(t)|2 ≤ 2 (E(t0) − infΦ).

Hence there exists C ≥ 0 such that |ẋ(t)| ≤ C
√

h(t)
k(t)

. Since
√

h
k ∈ L1([t0,+∞)) by

assumption, we conclude that |ẋ| ∈ L1([t0,+∞)). �

Remark 3.1. When
√

h
k ∈ L1([t0,+∞)), the limit point x∞ = limt→+∞ x(t) is not

in general a critical point of Φ, see for example section 2. The damping term a(s)
blows up as s → smax, which forces the dynamics associated to (11) to stop at x∞

even if it is not a critical point of Φ.

Example 3.1. Let us assume that h(t) = tα and k(t) = tβ for every t ≥ 1. When
α + β ≥ 0, the assumption hk non decreasing is satisfied and Proposition 3.2
applies. In particular, the result of existence and uniqueness holds. Condition
√

h
k ∈ L1([1,+∞)) is satisfied if and only if β − α > 2. In this case, we deduce

from Proposition 3.2 (c) that |ẋ| ∈ L1([1,+∞)). The expression of the map η de-
fined by (13) is given by

∀t ≥ 1, η(t) = (α + β)
tα+β−1

t
3α
2 t

β
2

= (α + β) t
β−α−2

2 , (16)

for every α, β ∈ R. In particular, if β − α = 2 the map η is constant and equal to

α + β. Since a = 1
2η ◦ τ we deduce in view of equality (11) that the map y = x ◦ τ
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satisfies the following (HBF) system

ÿ(s) +
α + β

2
ẏ(s) + ∇Φ(y(s)) = 0. (17)

When β− α = 2, the solutions of system (4) can then be viewed as re-parametrized
(HBF) trajectories, via the change of variable t = τ(s).

4. CONVERGENCE OF THE ENERGY FUNCTION

The first result below provides a lower estimate for the quantity E(t)− infΦ as
t → +∞. It is shown that if the map h k does not tend toward +∞ then the energy
function cannot converge toward infΦ as t → +∞.

Proposition 4.1. Let h, k : [t0,+∞) → R
∗
+ be two maps of class C1 such that hk is non

decreasing. Let Φ : H → R be a function of class C1 such that∇Φ is Lipschitz continuous
on the bounded subsets of H. Assume moreover that the function Φ is bounded from below
on H. Then, we have

∀t ≥ t0, E(t) − infΦ ≥ (E(t0) − infΦ)
h(t0)k(t0)

h(t)k(t)
. (18)

If limt→+∞ h(t)k(t) < +∞ and if Φ(x(t0)) > infΦ, then limt→+∞ E(t) > infΦ.

Proof. From [7, Prop. 2.6], the following inequality holds

∀s ∈ [0, smax), E(s) − infΦ ≥ (E(0) − infΦ) e−2
∫ s
0 a(σ) dσ.

In view of expression (15), we have
∫ s
0 a(σ) dσ = 1

2 ln
h(τ(s)) k(τ(s))
h(τ(0)) k(τ(0))

. Since t = τ(s)

and E = E ◦ τ−1, inequality (18) follows directly. The last assertion is immediate.
�

The next result shows conversely that, if limt→+∞ h(t)k(t) = +∞ then the en-
ergy function E(t) satisfies a suitable property of summability, thus implying its
convergence toward minΦ as t → +∞.

Proposition 4.2. Let h, k : [t0,+∞) → R
∗
+ be two maps of class C2 such that hk is

non decreasing and limt→+∞ h(t)k(t) = +∞. Assume that the map η = hk̇+ḣk

h
3
2 k

1
2

is non

increasing. Let Φ : H → R be a function of class C1 such that∇Φ is Lipschitz continuous
on the bounded subsets of H. Assume moreover that the function Φ is convex, coercive
and such that argminΦ 6= ∅. Then, the following estimate holds

∫ +∞

t0

h(t)k̇(t) + ḣ(t)k(t)

h(t)k(t)
(E(t) −minΦ) dt < +∞. (19)

Moreover, we have limt→+∞ E(t) = minΦ. As a consequence, limt→+∞
k(t)
h(t)

|ẋ(t)|2 = 0

and limt→+∞ Φ(x(t)) = minΦ.

Proof. Let us first prove that smax =
∫ +∞

t0

√

h(t)
k(t)

dt = +∞. From the definition of

the map η, we have

η(t) =
d

dt
ln(h(t)k(t))

√

k(t)

h(t)
.
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Since the map η is non increasing by assumption, we derive that

d

dt
ln(h(t)k(t)) ≤ η(t0)

√

h(t)

k(t)
.

Integrating the previous inequality on [t0,+∞) and recalling that limt→+∞ h(t)k(t) =

+∞ by assumption, we conclude that
∫ +∞

t0

√

h(t)
k(t)

dt = +∞.

The assumptions on h, k imply that the map a defined by (12) is non negative, non

increasing and of class C1 on [0, smax) = [0,+∞). From [7, Prop. 3.1] we deduce

that
∫ +∞

0 a(s) (E(s) −minΦ) ds < +∞. It suffices then to replace a(s) by its ex-
pression given by (14) and estimate (19) follows.
Let us now prove that limt→+∞ E(t) = minΦ. Let us argue by contradiction and
assume that limt→∞ E(t) > minΦ. This implies the existence of ε > 0 such that
E(t) −minΦ ≥ ε for every t ≥ t0. We deduce that

∫ +∞

t0

h(t)k̇(t) + ḣ(t)k(t)

h(t)k(t)
(E(t) −minΦ) dt ≥ ε

∫ +∞

t0

h(t)k̇(t) + ḣ(t)k(t)

h(t)k(t)
dt

= ε [ln(h(t)k(t))]+∞

t0
= +∞,

since limt→+∞ h(t)k(t) = +∞. This contradicts estimate (19), which proves that
limt→+∞ E(t) = minΦ. The last assertions are immediate. �

Example 4.1. Take h(t) = tα and k(t) = tβ for every t ≥ 1. Let us assume that
α + β > 0 so that limt→+∞ h(t)k(t) = +∞. Recalling formula (16), the map η is
non increasing if and only if β − α ≤ 2. If both conditions α + β > 0 and β − α ≤ 2
hold and if the map Φ satisfies the same assumptions as in Proposition 4.2, we
derive that limt→+∞ E(t) = minΦ.

In view of Proposition 4.2, we are able to investigate the question of the conver-
gence of the trajectories in the case of a unique minimum. The case of non-isolated
minima is more delicate and will be discussed in section 5.

Corollary 4.1. Under the hypotheses of Proposition 4.2, assumemoreover that argminΦ =
{x} for some x ∈ H. Then any solution x to the differential equation (S) weakly converges
to x in H.

The proof is classical and left to the reader. In the same direction, if we assume

that x is a strong3 minimum for Φ, we can easily obtain a result of strong conver-
gence toward x.

5. THE PROBLEM OF CONVERGENCE OF TRAJECTORIES FOR CONVEX POTENTIALS

WITH NON-ISOLATED MINIMA

We are going to investigate the question of convergence of the trajectories asso-
ciated to (S) when the potential Φ is convex and has non-isolated minima. Let us
first consider the particular case Φ ≡ 0. The differential equation (9) then becomes

k(t) ẍ(t) + k̇(t) ẋ(t) = 0 and a double integration immediately shows that its so-

lution is given by x(t) = x(t0) + k(t0) ẋ(t0)
∫ t
t0

ds
k(s)

. If ẋ(t0) 6= 0, it ensues that the

solution x of equation (9) converges if and only if
∫ +∞

t0
ds
k(s)

< +∞. Therefore it

3We say that x is a strong minimum for Φ if for every x ∈ H, Φ(x) ≥ Φ(x) + α(|x− x|), where the

map α : R+ → R+ is such that α(tn) → 0 =⇒ tn → 0 for every sequence (tn) ⊂ R+.
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is natural to ask whether for a general potential Φ, the trajectory x is convergent
under this condition.

5.1. A general result of non-convergence. First, we give a general result of non-

convergence for the trajectories of (S) under the assumption
∫ +∞

t0
dt
k(t)

= +∞. This

condition expresses that the map k does not tend rapidly to infinity as t → +∞.

For example, when the map k is of the form k(t) = tβ for t ≥ 1, the previous
condition is satisfied if and only if β ≤ 1.

Theorem 5.1. Let h, k : [t0,+∞) → R
∗
+ be two maps of class C1 such that hk is non

decreasing. Assume moreover that
∫ +∞

t0

dt

k(t)
= +∞. (20)

Let Φ : H → R be a convex function of class C1 such that∇Φ is Lipschitz continuous on

the bounded sets of H. Assume that for every x ∈ bd (argminΦ), limx→x, x 6∈argminΦ

∇Φ(x)
|∇Φ(x)|

exists4. Given x0 ∈ H, consider the unique solution x of (S) satisfying x(t0) = x0. If
x0 6∈ argminΦ, then the trajectory x of (S) does not converge.

Proof. Let us first remark that the assumption
∫ +∞

t0
dt
k(t)

= +∞ implies that smax =
∫ +∞

t0

√

h(t)
k(t)

dt = +∞. Indeed, since the map hk is non decreasing, we have

∫ +∞

t0

√

h(t)

k(t)
dt =

∫ +∞

t0

√

h(t)k(t)

k(t)
dt ≥

√

h(t0)k(t0)
∫ +∞

t0

dt

k(t)
= +∞.

We deduce from the assumptions on h, k that the map a defined by (12) is con-
tinuous and nonnegative on [0, smax) = [0,+∞). It suffices now to check that
∫ +∞

0 e−
∫ s
0 a(σ) dσ ds = +∞ and then to apply [7, Theorem 4.1]. We have

∫ +∞

0
e−

∫ s
0 a(σ) dσ ds =

∫ +∞

0

√

h(t0)k(t0)

h(τ(s))k(τ(s))
ds

=
√

h(t0)k(t0)
∫ +∞

0

τ̇(s)

k(τ(s))
ds =

√

h(t0)k(t0)
∫ +∞

t0

dt

k(t)
= +∞,

which ends the proof. �

Example 5.1. Let Φ : H → R be as in the previous theorem. Assume that h(t) = tα

and k(t) = tβ for every t ≥ 1. Theorem 5.1 shows that if α + β ≥ 0 and β ≤ 1, the
non stationary trajectories are divergent.

Remark 5.1. Coming back to the interpretation of (S) as an averaged gradient sys-

tem, let us assume that k(t) ∼
∫ t
t0
h(s) ds as t → +∞. In this case, condition (20)

becomes
∫ +∞

t0+1

dt
∫ t
t0
h(s) ds

= +∞. (21)

4If H = R and if the set argminΦ is not a singleton, this condition is automatically satisfied. In
dimension greater than one, this condition is directly connected with smoothness of the set argminΦ at

x. For further details, the reader is referred to [7].
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For example, if h(t) = tα (ln t)α′ for every t ≥ 2, condition (21) is satisfied if and
only if α < 0 or (α, α′) ∈ {0}× (−∞, 1]. Theorem 5.1 can be interpreted as follows:
if the weighted memory associated to the density h does not privilege enough
the recent past, then the non stationary trajectories of (S) cannot converge. In
particular, when the memory is uniform with respect to time (corresponding here
to α = α′ = 0), we recover the fact that non stationary trajectories of (S) are
divergent.

Remark 5.2. Assume that H = R, that argminΦ = [c, d] with c < d, and all other
hypotheses of Theorem 5.1. If x0 6∈ [c, d], the corresponding solution x of (S) does
not converge and moreover the ω- limit set ω(x0) contains [c, d]. To see this, it
suffices to apply the result of [7, Prop. 4.1].

5.2. A result of convergence in dimension one. We can now ask if the converse

assertion is true: do the trajectories x of (S) converge under the condition
∫ +∞

t0
dt
k(t)

<

+∞? In its full generality, this question is difficult and still open. We now give a
positive answer in dimension one under a slightly stronger condition.

Theorem 5.2. Let h, k : [t0,+∞) → R
∗
+ be two maps of class C2 such that hk is non

decreasing and tends to +∞ as t → +∞. Assume that the map η = hk̇+ḣk

h
3
2 k

1
2

is non

increasing and tends to 0 as t → +∞. Suppose moreover that there exists ε > 0 such that
∫ +∞

t0

(h(t) k(t))ε

k(t)
dt < +∞. (22)

Let Φ : R → R be a convex function of class C1 such that Φ′ is Lipschitz continuous on
the bounded sets of R. Assume that argminΦ = [c, d] with c ≤ d and that there exists
δ > 0 such that

∀ξ ∈ (−∞, c], Φ
′(ξ) ≤ 2 δ (ξ − c) and ∀ξ ∈ [d,∞), Φ

′(ξ) ≥ 2 δ (ξ − d).

Then, any solution x to the differential equation (S) converges as t → +∞ toward some
x∞ ∈ [c, d].

Proof. Let us first remark that the assumptions on h, k imply that smax =
∫ +∞

t0

√

h(t)
k(t)

dt =

+∞ (see the proof of Proposition 4.2). We also deduce from these assumptions

that the map a defined by (12) is of class C1 on [0, smax) = [0,+∞), it is non neg-
ative, non increasing and satisfies lims→+∞ a(s) = 0. It suffices now to check that
∫ +∞

0 e−θ
∫ s
0 a(σ) dσ ds < +∞ for some θ < 1 and then to apply [8, Theorem 4.1].

Taking θ = 1− 2 ε, we have

∫ +∞

0
e−θ

∫ s
0 a(σ) dσ ds =

∫ +∞

0

(

h(t0)k(t0)

h(τ(s))k(τ(s))

)
θ
2

ds

= (h(t0)k(t0))
1
2−ε

∫ +∞

0

(h(τ(s)) k(τ(s)))ε

k(τ(s))
τ̇(s) ds

= (h(t0)k(t0))
1
2−ε

∫ +∞

t0

(h(t) k(t))ε

k(t)
dt < +∞,

which ends the proof. �

Example 5.2. Let Φ : R → R be as in the previous theorem. Assume that h(t) = tα

and k(t) = tβ for every t ≥ 1. Suppose that α + β > 0 and β − α < 2 so that
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we have h(t)k(t) ր +∞ and hk̇+ḣk

h
3
2 k

1
2

ց 0 as t → +∞. On the other hand, if

β > 1 condition (22) is clearly satisfied with ε = β−1
2 (α+β)

. Then we derive from the

previous theorem that if β > 1, any trajectory converges toward some minimum
x∞ of Φ.

Remark 5.3. Observe that in the previous example, the case β− α = 2 is not covered
by Theorem 5.2. In this case, the map y = x ◦ τ satisfies the (HBF) equation (17).
If α + β > 0 and if Φ is convex with argminΦ 6= ∅, we know from [2, 3] that any
trajectory y of equation (17) weakly converges toward a minimum of Φ. It ensues
immediately that the result of Theorem 5.2 remains true when β − α = 2.
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