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Given a Hilbert space H and a function Φ : H → R of class C 1 , we investigate the asymptotic behavior of the trajectories associated to the following dynamical system (S)

h(s) ds as t → +∞, this equation can be interpreted as an averaged gradient system. We define a natural energy function E associated to system (S) and we give conditions which ensure that E(t) decreases to inf Φ as t → +∞. When Φ is convex and has a set of non-isolated minima, we show that the trajectories of (S) cannot converge if the average process does not "privilege" the recent past. A special attention is devoted to the particular case h(t) = t α , k(t) = t β , which is fully treated.

INTRODUCTION

Given a Hilbert space H with scalar product and corresponding norm respectively denoted by ., . and | . |, let us consider a smooth function Φ : H → R that we wish to minimize. A powerful method consists in following the orbits of a continuous dynamical system, hopefully converging toward some minimizer of Φ. The most classical one is the steepest descent equation ẋ(t) + ∇Φ(x(t)) = 0, t ≥ t 0 , [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF] which falls into the framework of the theory of dissipative dynamical systems (see for example [START_REF] Hale | Asymptotic behavior of dissipative systems[END_REF][START_REF] Haraux | Systèmes dynamiques dissipatifs et applications[END_REF]). The trajectories of the above system are known to converge under various assumptions (Brezis-Bruck's theorem [START_REF] Brézis | Opérateurs maximaux monotones dans les espaces de Hilbert et équations d'évolution[END_REF][START_REF] Bruck | Asymptotic convergence of nonlinear contraction semigroups in Hilbert space[END_REF], Lojasiewicz theorem [START_REF] Lojasiewicz | Ensembles semi-analytiques réels[END_REF]...)

The purpose of this paper is to analyse the effect of a memory term in the previous gradient system. More precisely, we study the following integro-differential equation (S)

ẋ(t) + 1 k(t) t t 0 h(s) ∇Φ(x(s)) ds = 0, t ≥ t 0 ,
where h, k : [t 0 , +∞) → R * + are continuous maps. When k(t) ∼ t t 0 h(s) ds as t → +∞, this equation can be interpreted as an averaged gradient system. In the recent papers [START_REF] Cabot | On the long time behavior of second order differential equations with asymptotically small dissipation[END_REF][START_REF] Cabot | On second order differential equations with asymptotically small dissipation[END_REF], a special attention is devoted to the particular case corresponding to h(t) = 1, k(t) = t for t ≥ 0, thus modelling a situation of uniform memory. When Φ is convex and has a set of non-isolated minima, it is proved in [START_REF] Cabot | On the long time behavior of second order differential equations with asymptotically small dissipation[END_REF] that the non-stationary solutions cannot converge. This result is striking since the corresponding trajectories of the basic gradient system are convergent (at least weakly) under the same assumptions. We show in this paper that the trajectories of (S) converge if and only if the weighted memory privileges enough the recent past. A precise quantification of this phenomenon is given in section 5.

It is immediate that the solutions of (S) satisfy the following second-order differential equation

k(t) ẍ(t) + k(t) ẋ(t) + h(t) ∇Φ(x(t)) = 0, t ≥ t 0 . (2) 
A key idea of the paper consists in observing that a suitable change of variable t = τ(s) allows to rewrite equation ( 2) as follows

ÿ(s) + a(s) ẏ(s) + ∇Φ(y(s)) = 0, s ∈ [0, s max ), (3) 
where the map y is defined by y = x • τ. The quantity s max ∈ R + ∪ {+∞} and the map a : [0, s max ) → R depend respectively on h, k and their derivatives. Equation (3) has been recently studied in [START_REF] Cabot | On the long time behavior of second order differential equations with asymptotically small dissipation[END_REF][START_REF] Cabot | On second order differential equations with asymptotically small dissipation[END_REF], where the mechanical interpretation is emphasized via the use of a suitable energy function. When the map a is constant, the underlying dynamical system is known under the terminology of "Heavy Ball with Friction" system. The (HBF) system has given rise to an abundant literature, see for example [START_REF] Alvarez | On the minimizing property of a second order dissipative system in Hilbert spaces[END_REF][START_REF] Attouch | The heavy ball with friction method: I the continuous dynamical system[END_REF][START_REF] Haraux | Convergence of solutions of second-order gradient-like systems with analytic nonlinearities[END_REF], and many results of convergence for the trajectories have been established under various assumptions like convexity, analyticity,...

In this paper, we exploit fully the recent results of [START_REF] Cabot | On the long time behavior of second order differential equations with asymptotically small dissipation[END_REF][START_REF] Cabot | On second order differential equations with asymptotically small dissipation[END_REF] to derive new results with respect to the generalized averaged gradient system (S). A special attention is devoted to the particular case corresponding to h(t) = t α , k(t) = t β , for t ≥ 1. In this case, our general results allow us to determine the asymptotic behavior of (S) for every couple (α, β) ∈ R 2 . Moreover, when the corresponding equation is linear, it is shown in section 2 that its solutions can be explicitly computed, via the Bessel functions.

STUDY OF A MODEL EXAMPLE

Throughout this section, we assume that H = R and we consider the following linear differential equation

t β ẍ(t) + β t β-1 ẋ(t) + t α x(t) = 0, t ≥ 1. (4) 
This is the second-order differential equation obtained from (S) when Φ = 1 2 | . | 2 , h(t) = t α and k(t) = t β for every t ≥ 1. We are going to show that the solutions of equation ( 4) can be explicitly computed. By multiplying equation ( 4) by t 2-β we obtain

t 2 ẍ(t) + β t ẋ(t) + t α-β+2 x(t) = 0, (5) 
which is the starting point of our analysis. First assume that αβ + 2 = 0. In this case, we have t 2 ẍ(t) + β t ẋ(t) + x(t) = 0, which is an Euler differential equation.

After the change of variable t = e s , the previous equation becomes a second-order ODE with constant coefficients. Setting ∆ = (α+β) 2

4

-4, we let the reader check that there exist A, B ∈ R such that for every t ≥ 1,

x(t) =          t -α+β 4 A cos √ -∆ 2 ln t + B sin √ -∆ 2 ln t if |α + β| < 4 t -α+β 4 A + B ln t if |α + β| = 4 t -α+β 4 A t √ ∆ 2 + B t - √ ∆ 2 if |α + β| > 4.
Now assume that αβ + 2 = 0 and set µ = 2 α-β+2 . In this case, the change of variable t = (s/|µ|) µ shows that equation ( 5) is a transformed version of the Bessel differential equation. Standard references on Bessel equations are [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF][START_REF] Bowman | Introduction to Bessel Functions[END_REF]. We let the reader check that there exist Â, B ∈ R such that for every t ≥ 1,

x(t) = t -β-1 2 Â J ν |µ| t 1/µ + B Y ν |µ| t 1/µ , (6) 
where ν = β-1 α-β+2 and J ν , Y ν denote respectively the Bessel functions of the first and second kind. The coefficients  and B satisfy a linear system involving the initial data (x 1 , ẋ1 ) = (x(1), ẋ(1)) and by using the formula of Lommel 1 , we easily obtain

 = π 2 |µ| x 1 Y ′ ν (|µ|) - π 2 µ β -1 2 x 1 + ẋ1 Y ν (|µ|), (7) 
B = π 2 µ β -1 2 x 1 + ẋ1 J ν (|µ|) - π 2 |µ| x 1 J ′ ν (|µ|). (8) 
Case αβ + 2 > 0. Then we have µ > 0, hence the variable s = µ t 1/µ tends to +∞ as t → +∞. Recall that the asymptotic behavior of Bessel functions of the first and second kind is respectively given by

J ν (s) ∼ 2 π s cos s - π 4 -ν π 2 and Y ν (s) ∼ 2 π s sin s - π 4
ν π 2 as s → +∞. From the expression (6) for x(t), we derive that

x(t) ∼ Ĉ t - β-1 2 -1 2µ cos µ t 1/µ -φ = Ĉ t -α+β 4 cos µ t α-β+2 2 -φ ,
as t → +∞, for a suitable amplitude constant Ĉ and phase shift φ.

Case αβ + 2 < 0. Then we have µ < 0, hence the variable s = |µ| t 1/µ tends to 0 as t → +∞. Recall that the behavior of J ν (s) and Y ν (s) as s → 0 is given by

J ν (s) ∼ 1 Γ(ν + 1) s 2 ν and Y ν (s) ∼ -Γ(ν) π s 2 -ν if ν = 0 2 π ln s if ν = 0,
where Γ is the gamma function. From the expression (6) for x(t), we derive that

• if β > 1 then lim t→+∞ x(t) = -B Γ(ν) π |µ| 2 -ν , • if β = 1 then x(t) = -B 2 π |µ| ln t + o(ln t) if B = 0 Â + o(1) if B = 0,
1 The formula of Lommel states that the Wronskian of the functions J ν , Y ν is given by J

ν (s) Y ′ ν (s) - J ′ ν (s) Y ν (s) = 2
π s for every s > 0.

• if β < 1 then x(t) =    -B Γ(ν) π |µ| 2 -ν t 1-β + o(t 1-β ) if B = 0 Â |µ| 2 ν 1 Γ(ν+1) + o(1) if B = 0,
as t → +∞. Formula [START_REF] Cabot | On second order differential equations with asymptotically small dissipation[END_REF] shows that the circumstance B = 0 is exceptional since it occurs only if

β-1 2 x 1 + ẋ1 J ν (|µ|) + x 1 J ′ ν (|µ|) = 0.
Let us now summarize all the possible asymptotic behaviors of the trajectory x, depending on α, β and the initial data. Denoting by ω x 1 , ẋ1 the ω -limit set as t → +∞ associated to the initial data (x 1 , ẋ1 ) ∈ R2 \ {(0, 0)}, we have

• If α -β + 2 ≥ 0 α + β > 0 then lim t→+∞ x(t) = 0. • If α -β + 2 ≥ 0 α + β = 0 then ω x 1 , ẋ1 = [-C, C], for some C > 0. • If α -β + 2 > 0 α + β < 0 or if α -β + 2 = 0 α + β ∈ (-4, 0) then ω x 1 , ẋ1 = (-∞, +∞). • If α -β + 2 = 0 α + β ≤ -4 then lim t→+∞ x(t) = ±∞. • If α -β + 2 < 0 β ≤ 1 then lim t→+∞ x(t) = ±∞ or 2 lim t→+∞ x(t) = l ∈ R. • If α -β + 2 < 0 β > 1 then lim t→+∞ x(t) = l ′ ∈ R.
The model example considered above will serve us as a guideline throughout the paper.

GLOBAL EXISTENCE AND UNIQUENESS

Given a Hilbert space H and a function Φ : H → R of class C 1 , let us consider the following dynamical system (S)

ẋ(t) + 1 k(t) t t 0 h(s) ∇Φ(x(s)) ds = 0, t ≥ t 0 , with initial data x(t 0 ) = x 0 . If h : [t 0 , +∞) → R + and k : [t 0 , +∞) → R * + are continuous, then any solution x of class C 1 satifies ẋ(t 0 ) = 0. Assuming moreover that k is of class C 1 , let us multiply equation (S) by k(t) and let us differentiate; we obtain k(t) ẍ(t) + k(t) ẋ(t) + h(t) ∇Φ(x(t)) = 0. ( 9 
)
If ∇Φ is locally Lipschitz continuous, the Cauchy-Lipschitz theorem gives the local existence and uniqueness of a maximal solution x of class C 2 satisfying equation ( 9) and the initial conditions (x(t 0 ), ẋ(t 0 )) = (x 0 , 0). The next statement summarizes the above analysis.

Proposition 3.1. Assume that h : [t 0 , +∞) → R + is continuous and that k : [t 0 , +∞) → R * + is of class C 1 . Suppose also that the smooth function Φ : H → R is such that
∇Φ is locally Lipschitz continuous. Given any x 0 ∈ H, there exists a unique solution x(.) ∈ C 2 ([t 0 , T), H) of (S) satisfying x(t 0 ) = x 0 on some maximal time interval [t 0 , T) ⊂ [t 0 , +∞).

Given the change of variable t = τ(s), let us define the map y by y

= x • τ. It is immediate to check that ẋ(t) = ẏ(s) τ(s) and ẍ(t) = ÿ(s) τ(s) 2 -ẏ(s) τ(s) τ(s) 3 .
If we rewrite equation ( 9) by using the variable s and the map y, we obtain after a division by h(τ(s))

k(τ(s)) h(τ(s)) ÿ(s) τ(s) 2 + ẏ(s) h(τ(s)) τ(s) k(τ(s)) -k(τ(s)) τ(s)) τ(s) 2 + ∇Φ(y(s)) = 0. ( 10 
)
Let us choose the map τ so as to have τ(s) =

k(τ(s)) h(τ(s)) . Let us define the map F : [t 0 , +∞) → R + by F(t) = t t 0 h(u) k(u) du and let us set s max = +∞ t 0 h(u) k(u) du ∈ R + ∪ {+∞} . The function F : [t 0 , +∞) → [0, s max
) defines an increasing one-toone map. It is then immediate that τ = F -1 . From now on, let us assume that h, k are both of class C 1 . By differentiating formula τ(s) 2 = k(τ(s)) h(τ(s)) , we easily obtain

τ(s) = k(τ(s))h(τ(s)) -k(τ(s)) ḣ(τ(s)) 2 h(τ(s)) 2 .
The differential equation ( 10) then becomes

ÿ(s) + a(s) ẏ(s) + ∇Φ(y(s)) = 0, s ∈ [0, s max ), (11) 
where the map a : [0, s max ) → R is defined by

a(s) = k(τ(s))h(τ(s)) + k(τ(s)) ḣ(τ(s)) 2 h(τ(s)) 3 2 k(τ(s)) 1 2 . ( 12 
)
By introducing the map η : [t 0 , +∞) → R defined by

η = k h + k ḣ h 3 2 k 1 2 , ( 13 
)
we then have a = 1 2 η • τ. Notice that an alternative expression for the map a is given by

a(s) = k(τ(s))h(τ(s)) + k(τ(s)) ḣ(τ(s)) 2 h(τ(s)) k(τ(s)) τ(s) (14) = 1 2 d ds ln[h(τ(s))k(τ(s))]. ( 15 
)
The dynamical system [START_REF] Haraux | Convergence of solutions of second-order gradient-like systems with analytic nonlinearities[END_REF] has been intensively studied in [START_REF] Cabot | On the long time behavior of second order differential equations with asymptotically small dissipation[END_REF][START_REF] Cabot | On second order differential equations with asymptotically small dissipation[END_REF]. Let us recall that the function E defined by E (s) = 1 2 | ẏ(s)| 2 + Φ(y(s)) is a Lyapounov function associated to the trajectories of [START_REF] Haraux | Convergence of solutions of second-order gradient-like systems with analytic nonlinearities[END_REF]. We define the corresponding energy function E for the trajectories of (S) by E = E • τ -1 and its expression is given by

E(t) = 1 2 k(t) h(t) | ẋ(t)| 2 + Φ(x(t)
). The existence of the Lyapounov function E is a crucial tool to derive a result of global existence for the trajectories of (S). (a) There exists a unique maximal solution x : [t 0 , +∞) → H of class C 2 satisfying equation (S) and the initial condition x(t 0 ) = x 0 . (b) For every t ∈ [t 0 , +∞), the following equality holds:

Ė(t) = - k(t)h(t) + k(t) ḣ(t) 2 h(t) 2 | ẋ(t)| 2 . (c) If h k ∈ L 1 ([t 0 , +∞)), then | ẋ| ∈ L 1 ([t 0 , +∞)) and hence lim t→+∞ x(t) exists. Proof. (a) Let s max = +∞ t 0 h(t) k(t) dt.
The assumptions on h, k imply that the map a : [0, s max ) → R defined by ( 12) is non negative and continuous. An immediate adaptation of [START_REF] Cabot | On the long time behavior of second order differential equations with asymptotically small dissipation[END_REF]Prop. 2.2] shows that the maximal solution y of the differential equation ( 11) satisfying (x(t 0 ), ẋ(t 0 )) = (x 0 , 0) is defined on [0, s max ). Hence the map x : [t 0 , +∞) → H defined by x = y • τ -1 is the unique solution of class C 2 satisfying equation (S) and the initial condition

x(t 0 ) = x 0 . (b) Recalling from [7, Prop. 2.2] that Ė (s) = -a(s) | ẏ(s)| 2 , we derive that Ė(t) = -a(s) | ẏ(s)| 2 1 τ(s) = - k(t)h(t) + k(t) ḣ(t) 2 h(t) 2 | ẋ(t)| 2 .
(c) The decay of the energy function E combined with the fact that inf Φ > -∞ implies that

∀t ≥ t 0 , k(t) h(t) | ẋ(t)| 2 ≤ 2 (E(t 0 ) -inf Φ).
Hence there exists

C ≥ 0 such that | ẋ(t)| ≤ C h(t) k(t) . Since h k ∈ L 1 ([t 0 , +∞))
by assumption, we conclude that | ẋ| ∈ L 1 ([t 0 , +∞)).

Remark 3.1. When h k ∈ L 1 ([t 0 , +∞)), the limit point x ∞ = lim t→+∞ x(t) is not in general a critical point of Φ, see for example section 2. The damping term a(s) blows up as s → s max , which forces the dynamics associated to [START_REF] Haraux | Convergence of solutions of second-order gradient-like systems with analytic nonlinearities[END_REF] to stop at x ∞ even if it is not a critical point of Φ.

Example 3.1. Let us assume that h(t) = t α and k(t) = t β for every t ≥ 1. When α + β ≥ 0, the assumption hk non decreasing is satisfied and Proposition 3.2 applies. In particular, the result of existence and uniqueness holds. Condition

h k ∈ L 1 ([1, +∞)) is satisfied if and only if β -α > 2.
In this case, we deduce from Proposition 3.2 (c) that | ẋ| ∈ L 1 ([1, +∞)). The expression of the map η defined by ( 13) is given by

∀t ≥ 1, η(t) = (α + β) t α+β-1 t 3α 2 t β 2 = (α + β) t β-α-2 2 , ( 16 
)
for every α, β ∈ R. In particular, if βα = 2 the map η is constant and equal to α + β. Since a = 1 2 η • τ we deduce in view of equality [START_REF] Haraux | Convergence of solutions of second-order gradient-like systems with analytic nonlinearities[END_REF] that the map y = x • τ satisfies the following (HBF) system ÿ(s)

+ α + β 2 ẏ(s) + ∇Φ(y(s)) = 0. ( 17 
)
When βα = 2, the solutions of system (4) can then be viewed as re-parametrized (HBF) trajectories, via the change of variable t = τ(s).

CONVERGENCE OF THE ENERGY FUNCTION

The first result below provides a lower estimate for the quantity E(t)inf Φ as t → +∞. It is shown that if the map h k does not tend toward +∞ then the energy function cannot converge toward inf Φ as t → +∞. 

∀t ≥ t 0 , E(t) -inf Φ ≥ (E(t 0 ) -inf Φ) h(t 0 )k(t 0 ) h(t)k(t) . ( 18 
)
If lim t→+∞ h(t)k(t) < +∞ and if Φ(x(t 0 )) > inf Φ, then lim t→+∞ E(t) > inf Φ.
Proof. From [7, Prop. 2.6], the following inequality holds

∀s ∈ [0, s max ), E (s) -inf Φ ≥ (E (0) -inf Φ) e -2 s 0 a(σ) dσ .
In view of expression (15), we have 

s 0 a(σ) dσ = 1 2 ln h(τ(s)) k(τ(s)) h(τ(0)) k(τ(0)) . Since t = τ(s) and E = E • τ -1 ,
η(t) = d dt ln(h(t)k(t)) k(t) h(t) .
Since the map η is non increasing by assumption, we derive that

d dt ln(h(t)k(t)) ≤ η(t 0 ) h(t) k(t) .
Integrating the previous inequality on [t 0 , +∞) and recalling that lim t→+∞ h(t)k(t) = +∞ by assumption, we conclude that

+∞ t 0 h(t)
k(t) dt = +∞. The assumptions on h, k imply that the map a defined by ( 12) is non negative, non increasing and of class C 1 on [0, s max ) = [0, +∞). From [START_REF] Cabot | On the long time behavior of second order differential equations with asymptotically small dissipation[END_REF]Prop. 3.1] we deduce that +∞ 0 a(s) (E (s)min Φ) ds < +∞. It suffices then to replace a(s) by its expression given by ( 14) and estimate (19) follows.

Let us now prove that lim t→+∞ E(t) = min Φ. Let us argue by contradiction and assume that lim t→∞ E(t) > min Φ. This implies the existence of ε > 0 such that E(t)min Φ ≥ ε for every t ≥ t 0 . We deduce that

+∞ t 0 h(t) k(t) + ḣ(t)k(t) h(t)k(t) (E(t) -min Φ) dt ≥ ε +∞ t 0 h(t) k(t) + ḣ(t)k(t) h(t)k(t) dt = ε [ln(h(t)k(t))] +∞ t 0 = +∞, since lim t→+∞ h(t)k(t) = +∞.
This contradicts estimate (19), which proves that lim t→+∞ E(t) = min Φ. The last assertions are immediate.

Example 4.1. Take h(t) = t α and k(t) = t β for every t ≥ 1. Let us assume that α + β > 0 so that lim t→+∞ h(t)k(t) = +∞. Recalling formula (16), the map η is non increasing if and only if βα ≤ 2. If both conditions α + β > 0 and βα ≤ 2 hold and if the map Φ satisfies the same assumptions as in Proposition 4.2, we derive that lim t→+∞ E(t) = min Φ.

In view of Proposition 4.2, we are able to investigate the question of the convergence of the trajectories in the case of a unique minimum. The case of non-isolated minima is more delicate and will be discussed in section 5. The proof is classical and left to the reader. In the same direction, if we assume that x is a strong 3 minimum for Φ, we can easily obtain a result of strong convergence toward x.

THE PROBLEM OF CONVERGENCE OF TRAJECTORIES FOR CONVEX POTENTIALS WITH NON-ISOLATED MINIMA

We are going to investigate the question of convergence of the trajectories associated to (S) when the potential Φ is convex and has non-isolated minima. Let us first consider the particular case Φ ≡ 0. The differential equation ( 9) then becomes k(t) ẍ(t) + k(t) ẋ(t) = 0 and a double integration immediately shows that its solution is given by x

(t) = x(t 0 ) + k(t 0 ) ẋ(t 0 ) t t 0 ds k(s)
. If ẋ(t 0 ) = 0, it ensues that the solution x of equation ( 9) converges if and only if +∞ t 0 ds k(s) < +∞. Therefore it 3 We say that x is a strong minimum for Φ if for every x ∈ H, Φ(x) ≥ Φ(x) + α(|x -x|), where the

map α : R + → R + is such that α(t n ) → 0 =⇒ t n → 0 for every sequence (t n ) ⊂ R + .
is natural to ask whether for a general potential Φ, the trajectory x is convergent under this condition.

5.1.

A general result of non-convergence. First, we give a general result of nonconvergence for the trajectories of (S) under the assumption +∞ t 0 dt k(t) = +∞. This condition expresses that the map k does not tend rapidly to infinity as t → +∞. For example, when the map k is of the form k(t) = t β for t ≥ 

= +∞ t 0 h(t)k(t) k(t) dt ≥ h(t 0 )k(t 0 ) +∞ t 0 dt k(t) = +∞.
We deduce from the assumptions on h, k that the map a defined by ( 12) is continuous and nonnegative on [0, s max ) = [0, +∞). if the weighted memory associated to the density h does not privilege enough the recent past, then the non stationary trajectories of (S) cannot converge. In particular, when the memory is uniform with respect to time (corresponding here to α = α ′ = 0), we recover the fact that non stationary trajectories of (S) are divergent.

Remark Proof. Let us first remark that the assumptions on h, k imply that s max = +∞ t 0 h(t) k(t) dt = +∞ (see the proof of Proposition 4.2). We also deduce from these assumptions that the map a defined by ( 12) is of class C 1 on [0, s max ) = [0, +∞), it is non negative, non increasing and satisfies lim s→+∞ a(s) = 0. It suffices now to check that +∞ 0 e -θ s 0 a(σ) dσ ds < +∞ for some θ < 1 and then to apply ց 0 as t → +∞. On the other hand, if β > 1 condition ( 22) is clearly satisfied with ε = β-1 2 (α+β) . Then we derive from the previous theorem that if β > 1, any trajectory converges toward some minimum x ∞ of Φ.

Remark 5.3. Observe that in the previous example, the case βα = 2 is not covered by Theorem 5.2. In this case, the map y = x • τ satisfies the (HBF) equation ( 17). If α + β > 0 and if Φ is convex with argmin Φ = we know from [START_REF] Alvarez | On the minimizing property of a second order dissipative system in Hilbert spaces[END_REF][START_REF] Attouch | The heavy ball with friction method: I the continuous dynamical system[END_REF] that any trajectory y of equation ( 17) weakly converges toward a minimum of Φ. It ensues immediately that the result of Theorem 5.2 remains true when βα = 2.

Corollary 4 . 1 .

 41 Under the hypotheses of Proposition 4.2, assume moreover that argmin Φ = {x} for some x ∈ H. Then any solution x to the differential equation (S) weakly converges to x in H.

  Let Φ : R → R be a convex function of class C 1 such that Φ ′ is Lipschitz continuous on the bounded sets of R. Assume that argmin Φ = [c, d] with c ≤ d and that there existsδ > 0 such that ∀ξ ∈ (-∞, c], Φ ′ (ξ) ≤ 2 δ (ξc) and ∀ξ ∈ [d, ∞), Φ ′ (ξ) ≥ 2 δ (ξd).Then, any solution x to the differential equation (S) converges as t → +∞ toward some x ∞ ∈ [c, d].

[ 8 ,

 8 Theorem 4.1]. Taking θ = 1 -2 ε, we have +∞ 0 e -θ s 0 a(σ) dσ ds = +∞ 0 h(t 0 )k(t 0 ) h(τ(s))k(τ(s)) τ(s)) k(τ(s))) ε k(τ(s)) τ(s) ds = (h(t 0 )k(t 0 ))

  Proposition 3.2. Let h, k : [t 0 , +∞) → R * + be two maps of class C 1 such that hk is non decreasing. Let Φ : H → R be a function of class C 1 such that ∇Φ is Lipschitz continuous on the bounded subsets of H. Assume moreover that the function Φ is bounded from below on H. Then, we have:

  Proposition 4.1. Let h, k : [t 0 , +∞) → R * + be two maps of class C 1 such that hk is non decreasing. Let Φ : H → R be a function of class C 1 such that ∇Φ is Lipschitz continuous on the bounded subsets of H. Assume moreover that the function Φ is bounded from below on H. Then, we have

  inequality (18) follows directly. The last assertion is immediate.The next result shows conversely that, if lim t→+∞ h(t)k(t) = +∞ then the energy function E(t) satisfies a suitable property of summability, thus implying its convergence toward min Φ as t → +∞. Let h, k : [t 0 , +∞) → R * + be two maps of class C 2 such that hk is non decreasing and lim t→+∞ h(t)k(t) = +∞. Assume that the map η = h k+ ḣk H → R be a function of class C 1 such that ∇Φ is Lipschitz continuous on the bounded subsets of H. Assume moreover that the function Φ is convex, coercive and such that argmin Φ = ∅. Then, the following estimate holds

	Proposition 4.2. h	3 2 k	2 1	is non
	increasing. Let Φ : +∞ t 0	h(t) k(t) + ḣ(t)k(t) h(t)k(t)	(E(t) -min Φ) dt < +∞.	(19)
	Moreover, we have lim t→+∞ E(t) = min Φ. As a consequence, lim t→+∞ and lim t→+∞ Φ(x(t)) = min Φ.	k(t) h(t) | ẋ(t)| 2 = 0
	Proof. Let us first prove that s max =	+∞ t 0	h(t) k(t) dt = +∞. From the definition of
	the map η, we have			

  1, the previous condition is satisfied if and only if β ≤ 1. Let h, k : [t 0 , +∞) → R * + be two maps of class C 1 such that hk is non decreasing. Assume moreover that Let Φ : H → R be a convex function of class C 1 such that ∇Φ is Lipschitz continuous on the bounded sets of H. Assume that for every x ∈ bd (argmin Φ), lim x→x, x ∈argmin Φ exists 4. Given x 0 ∈ H, consider the unique solution x of (S) satisfying x(t 0 ) = x 0 . If x 0 ∈ argmin Φ, then the trajectory x of (S) does not converge. Indeed, since the map hk is non decreasing, we have

	Theorem 5.1. +∞ t 0	dt k(t)	= +∞.	(20)
					∇Φ(x) |∇Φ(x)|
	Proof. Let us first remark that the assumption	+∞ t 0	dt k(t) = +∞ implies that s max =
	+∞ t 0	h(t) k(t) dt = +∞. +∞ t 0 h(t) k(t) dt		

  It suffices now to check that Let Φ : H → R be as in the previous theorem. Assume that h(t) = t α and k(t) = t β for every t ≥ 1. Theorem 5.1 shows that if α + β ≥ 0 and β ≤ 1, the non stationary trajectories are divergent. = R and if the set argmin Φ is not a singleton, this condition is automatically satisfied. In dimension greater than one, this condition is directly connected with smoothness of the set argmin Φ at x. For further details, the reader is referred to[START_REF] Cabot | On the long time behavior of second order differential equations with asymptotically small dissipation[END_REF].For example, if h(t) = t α (ln t) α ′ for every t ≥ 2, condition (21) is satisfied if and only if α < 0 or (α, α ′ ) ∈ {0} × (-∞, 1]. Theorem 5.1 can be interpreted as follows:

	+∞ 0	e -s 0 a(σ) dσ ds = +∞ and then to apply [7, Theorem 4.1]. We have
	0	+∞	e -s 0 a(σ) dσ ds =	0	+∞	h(t 0 )k(t 0 ) h(τ(s))k(τ(s))	ds
			=		h(t 0 )k(t 0 )	0	+∞	τ(s) k(τ(s))	ds = h(t 0 )k(t 0 )	+∞ t 0	dt k(t)	= +∞,
	which ends the proof.						
	Example 5.1. Remark 5.1. Coming back to the interpretation of (S) as an averaged gradient sys-
	tem, let us assume that k(t) ∼ becomes t 0 +1 t t 0 +∞	h(s) ds as t → +∞. In this case, condition (20) dt t t 0 h(s) ds = +∞. (21)
		4 If H						

  5.2. Assume that H = R, that argmin Φ = [c, d] with c < d, and all other hypotheses of Theorem 5.1. If x 0 ∈ [c, d], the corresponding solution x of (S) does not converge and moreover the ω-limit set ω(x 0 ) contains [c, d]. To see this, it suffices to apply the result of [7, Prop. 4.1].5.2. A result of convergence in dimension one.We can now ask if the converse assertion is true: do the trajectories x of (S) converge under the condition In its full generality, this question is difficult and still open. We now give a positive answer in dimension one under a slightly stronger condition. Let h, k : [t 0 , +∞) → R * + be two maps of class C 2 such that hk is non decreasing and tends to +∞ as t → +∞. Assume that the map η = h k+ ḣk → +∞. Suppose moreover that there exists ε 0 such that

	+∞? Theorem 5.2. h increasing and tends to 0 as t +∞ t 0 (h(t) k(t)) ε k(t) dt < +∞.	3 2 k	+∞ t 0 is non dt k(t) < 1 2

  Let Φ : R → R be as in the previous theorem. Assume that h(t) = t α and k(t) = t β for every t ≥ 1. Suppose that α + β > 0 and βα < 2 so that we have h(t)k(t) ր +∞ and h k+ ḣk

	which ends the proof. Example 5.2. h	3 2 k	1 2	1 2 -ε	+∞ t 0	(h(t) k(t)) ε k(t)	dt < +∞,

As seen above, the second eventuality is exceptional and occurs only if B = 0.
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