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DISCRETE APPROXIMATION OF THE FREE FOCK SPACE

STÉPHANE ATTAL AND ION NECHITA

Abstract. We prove that the free Fock space F(R+; C), which is very commonly used
in Free Probability Theory, is the continuous free product of copies of the space C

2.
We describe an explicit embedding and approximation of this continuous free product
structure by means of a discrete-time approximation: the free toy Fock space, a countable
free product of copies of C

2. We show that the basic creation, annihilation and gauge
operators of the free Fock space are also limits of elementary operators on the free toy Fock
space. When applying these constructions and results to the probabilistic interpretations
of these spaces, we recover some discrete approximations of the semi-circular Brownian
motion and of the free Poisson process. All these results are also extended to the higher
multiplicity case, that is, F(R+; CN) is the continuous free product of copies of the space
C

N+1.

1. Introduction

In [1] it is shown that the symmetric Fock space Γs(L
2(R+; C)) is actually the continuous

tensor product ⊗t∈R+C
2. This result is obtained by means of an explicit embedding and

approximation of the space Γs(L
2(R+; C)) by countable tensor products ⊗n∈hNC

2, when h
tends to 0. The result contains explicit approximation of the basic creation, annihilation
and second quantization operators by means of elementary tensor products of 2 by 2
matrices.

When applied to probabilistic interpretations of the corresponding spaces (e.g. Brownian
motion, Poisson processes, ...), one recovers well-known approximations of these processes
by random walks. This means that these different probabilistic situations and approxima-
tions are all encoded by the approximation of the three basic quantum noises: creation,
annihilation and second quantization operators.

These results have found many interesting applications and developments in quantum
statistical mechanics, for they furnished a way to obtain quantum Langevin equations
describing the dissipation of open quantum systems as a continuous-time limit of basic
Hamiltonian interactions of the system with the environment: repeated quantum interac-
tions (cf [4, 7, 8] for example).

When considering the fermionic Fock space, even if it has not been written anywhere,
it is easy to show that a similar structure holds, after a Jordan-Wigner transform on the
spin-chain.
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It is thus natural to wonder if, in the case of the free Fock space, a similar struc-
ture, a similar approximation and similar probabilistic interpretations exist. Whereas the
continuous tensor product structure of the bosonic Fock space exhibit its natural “tensor-
independence” structure, it is natural to think that the free Fock space will exhibit a similar
property with respect to the so-called “free-independence”, as defined in Free Probability
Theory.

The key of our construction relies on the so-called “free products of Hilbert spaces”. We
needed to make explicit the constructions of countable free products, as a first step. Then,
by an approximation method, to define the structure of continuous free products of Hilbert
spaces. This structure appears to be exactly the natural one which describes the free Fock
space and its basic operators.

2. Free probability and the free Fock space

Let us start by recalling the general framework of non commutative probability theory.
A non commutative probability space is a couple (A, ϕ), where A is a complex ∗−algebra
(in general non commutative) and ϕ is a faithful positive linear form such that ϕ(1) = 1.
We shall call the elements of A non commutative random variables. The distribution of a
family (xi)i∈I of self-adjoint random variables of A is the application which maps any non-
commutative polynomial P ∈ C〈Xi|i ∈ I〉 to its moment ϕ(P ((xi)i∈I)). Thus, the map ϕ
should be considered as the analogue of the expectation from classical probability theory.
From this abstract framework, one can easily recover the setting of classical probability
theory by considering a commutative algebra A (see [10, 11, 14]).

In order to have an interesting theory, one needs a notion of independence for non
commutative probability spaces. However, classical (or tensor) independence is not adapted
in this more general setting. Free independence was introduced by Voiculescu in the 1980’s
in order to tackle some problems in operator theory, and has found many applications since,
mainly in random matrix theory. Freeness provides rules for computing mixed moments of
random variables when only the marginal distributions are known. More precisely, unital
sub-algebras (Ai)i∈I of A are called free (or freely independent) if ϕ(a1 · · · an) = 0 for all
n ∈ N and ai ∈ Aj(i) whenever ϕ(ai) = 0 for all i and neighboring ai do not come from the
same sub-algebra: j(1) 6= j(2) 6= · · · 6= j(n). This definition allows one to compute mixed
moments of elements coming from different algebras Ai, when only the distributions inside
each algebra Ai are known. Note that freeness is a highly non commutative property: two
free random variables commute if and only if they are constant.

A remarkable setting in which freeness appears naturally is provided by creation and
annihilation operators on the full Fock space. Let us now briefly describe this construction.
Consider a complex Hilbert space H and define

F(H) =

∞
⊕

n=0

H⊗n,

where H⊗0 is a one-dimensional Hilbert space we shall denote by CΩ. Ω ∈ F(H) is
a distinguished norm one vector which is called the vacuum vector and it will play an
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important role in what follows. For each f ∈ H, we define the left creation operator ℓ(f)
and the left annihilation operator ℓ∗(f) by

l(f)Ω = f, l(f)e1 ⊗ · · · ⊗ en = f ⊗ e1 ⊗ · · · ⊗ en;

l∗(f)Ω = 0, l∗(f)e1 ⊗ · · · ⊗ en = 〈f, e1〉e2 ⊗ · · · ⊗ en.

For every T ∈ B(H), the gauge (or second quantization) operator Λ(T ) ∈ B(F(H)) is
defined by

Λ(T )Ω = 0, Λ(T )e1 ⊗ · · · ⊗ en = T (e1) ⊗ e2 ⊗ · · · ⊗ en.

All these operators are bounded, with ‖l(f)‖ = ‖l∗(f)‖ = ‖f‖ and ‖Λ(T )‖ = ‖T‖. On the
space B(F(H)) of bounded operators on the full Fock space we consider the vector state
given by the vacuum vector

τ(X) = 〈Ω,XΩ〉, X ∈ B(F(H)).

The usefulness of the preceding construction when dealing with freeness comes from the
following result ([11]).

Proposition 1. Let H be a complex Hilbert space and consider the non commutative
probability space (B(F(H)), τ). Let H1, . . . ,Hn be a family of orthogonal subspaces of H,
and, for each i, let Ai be the unital ∗-algebra generated by the set of operators

{l(f)|f ∈ Hi} ∪ {Λ(T )|T ∈ B(H), T (Hi) ⊂ Hi and T vanishes on H⊥
i }.

Then the algebras A1, . . . ,An are free in (B(F(H)), τ).

In the present note, we shall be concerned mostly with the case of H = L2(R+; C), the
complex Hilbert space of square integrable complex valued functions; in Section 8 we shall
consider the more general case of L2(R+; CN ). Until then, we put Φ = F(L2(R+; C)), and
we call this space the free (or full) Fock space. An element f ∈ Φ admits a decomposition
f = f0Ω+

∑

n>1 fn, where f0 ∈ C and fn ∈ L2(Rn
+). In this particular case we shall denote

the creation (resp. annihilation) operators by a+ (resp. a−):

a+(h)Ω = h, a+(h)fn = [(x1, x2, . . . , xn, xn+1) 7→ h(x1)fn(x2, . . . , xn+1)],

a−(h)Ω = 0, a−(h)fn = [(x2, . . . , xn) 7→
∫

h(x)fn(x, x2 . . . , xn)dx],

where h is an arbitrary function of L2(R+). For a bounded function b ∈ L∞(R+), let a◦(b)
be the gauge operator associated to the operator of multiplication by b:

a◦(b)Ω = 0, a◦(b)fn = [(x1, x2, . . . , xn) 7→ b(x1)fn(x1, . . . , xn)],

and a×(b) the scalar multiplication by
∫

b:

a×(b)Ω =

∫

b(x)dx · Ω, a×(b)fn = [(x1, x2, . . . , xn) 7→
(∫

b(x)dx

)

· fn(x1, . . . , xn)].

Finally, we note 1t = 1[0,t) the indicator function of the interval [0, t) and, for all t ∈ R+

and ε ∈ {+,−, ◦,×}, we put aε
t = aε(1[0,t)). Obviously, a×t = t · Id.
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3. The free product of Hilbert spaces

In the previous section we have seen that the algebras generated by creation, annihilation
and gauge operators acting on orthogonal subspaces of a Hilbert space H are free in the
algebra of bounded operators acting on the full Fock space F(H). However, one would like,
given a family of non commutative probability spaces, to construct a larger algebra which
contains the initial algebras as sub-algebras which are freely independent. In classical
probability (usual) independence is achieved by taking the tensor products of the original
probability spaces. This is the reason why classical independence is sometimes called tensor
independence. In the free probability theory, there is a corresponding construction called
the free product. Let us recall briefly this construction (see [13, 14] for further details).

Consider a family (Hi,Ωi)i∈I where the Hi are complex Hilbert spaces and Ωi is a
distinguished norm one vector of Hi. Let Ki be the orthocomplement of Ωi in Hi and
define the free product

(1) (H,Ω) = ⋆
i∈I

(Hi,Ωi) := CΩ ⊕
⊕

n>1

⊕

i1 6=i2 6=···6=in

Ki1 ⊗ · · · ⊗ Kin ,

where the direct sums are orthogonal and, as usual, ‖Ω‖ = 1. As in [14], we proceed with
the identification of the algebras of bounded operators B(Hi) inside B(H). To this end,

we shall identify an operator Ti ∈ B(Hi), with the operator T̃i ∈ B(H) which acts in the
following way:

T̃i(Ω) = Ti(Ωi)(2)

T̃i(ki ⊗ kj1 ⊗ · · · ⊗ kjn) = Ti(ki) ⊗ kj1 ⊗ · · · ⊗ kjn(3)

T̃i(kj1 ⊗ · · · ⊗ kjn) = Ti(Ωi) ⊗ kj1 ⊗ · · · ⊗ kjn(4)

where j1 6= i and we identify an element of Hi with the corresponding element of H. The
main interest of this construction is the following straightforward result.

Proposition 2. The algebras {B(Hi)}i∈I are free in (B(H), ϕ).

Proof. Consider a sequence Ti(1), . . . , Ti(n) of elements of B(Hi(1)), . . . ,B(Hi(n)) respectively
such that i(1) 6= i(2) 6= · · · 6= i(n) and 〈Ωi(k), Ti(k)Ωi(k)〉 = 0 for all k. By the definition

of freeness, it suffices to show that 〈Ω, T̃i(1) · · · T̃i(n)Ω〉 = 0. Using the previously described

embedding, we get T̃i(n)Ω = Ti(n)Ωi(n). Since i(n − 1) 6= i(n) and T̃i(n)Ω /∈ CΩ, it follows

that T̃i(n−1)T̃i(n)Ω = [Ti(n−1)Ωi(n−1)] ⊗ [Ti(n)Ωi(n)]. Continuing this way, it is easy to see

that T̃i(1) · · · T̃i(n)Ω = [Ti(1)Ωi(1)] ⊗ · · · ⊗ [Ti(n)Ωi(n)], and the conclusion follows. �

We look now at the free Fock space of a direct sum of Hilbert spaces. In the symmetric
case (see [1]), it is known that one has to take the tensor product of the symmetric Fock
spaces in order to obtain the Fock space of the sum. The free setting admits an analogue
exponential property, where instead of the tensor product one has to use the free product
introduced earlier.
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Lemma 1. Consider a family of orthogonal Hilbert spaces (Hi)i∈I . Then

(5) F(⊕i∈IHi) = ⋆i∈IF(Hi).

Proof. Fix for each Hi an orthonormal basis (Xj(i))j∈B(i). Then, an orthonormal basis of

F(⊕Hi) is given by {Ω} ∪ {Xj1(i1) ⊗ · · · ⊗ Xjn(in)}, where n > 1, ik ∈ I and jk ∈ B(ik)
for all 1 6 k 6 n. One obtains a Hilbert space basis of ⋆F(Hi) by grouping adjacent
elements of Xj1(i1)⊗ · · · ⊗Xjn(in) with the same i-index (i.e. belonging to the same Hi).
Details are left to the reader. �

4. The free toy Fock space

In this section we introduce the free toy Fock space, the main object of interest in our
paper. From a probabilistic point of view, it is the “smallest” non commutative proba-
bility space supporting a free identically distributed countable family of Bernoulli random
variables (see Section 7).

The free toy Fock space is a countable free product of two-dimensional complex Hilbert
spaces: in equation (1), take Hi = C

2 for all i. In order to keep track of which copy of C
2

we are referring to, we shall label the i-th copy with C
2
(i). Each copy is endowed with the

canonical basis {Ωi = (1, 0)⊤,Xi = (0, 1)⊤}. Since the orthogonal space of CΩi is simply
CXi, we obtain the following simple definition of the free toy Fock space TΦ:

(TΦ,Ω) := ⋆
i∈N

(C2
(i),Ωi) = CΩ ⊕

⊕

n>1

⊕

i1 6=···6=in

CXi1 ⊗ · · · ⊗ CXin ,

where, as usual, Ω is the identification of the vacuum reference vectors Ωi (‖Ω‖ = 1). Note
that the orthonormal basis of TΦ given by this construction is indexed by the set of all
finite (eventually empty) words with letters from N with the property that neighboring
letters are distinct. More formally, a word σ = [i1, i2, . . . , in] ∈ N

n is called adapted if
i1 6= i2 6= · · · 6= in. By convention, the empty word ∅ is adapted. We shall denote by Wn

(resp. W∗
n) the set of all words (resp. adapted words) of size n and by W (resp. W∗) the

set of all words (resp. adapted words) of finite size (including the empty word). For a word
σ = [i1, i2, . . . , in], let Xσ be the tensor Xi1 ⊗ Xi2 ⊗ · · · ⊗ Xin and put X∅ = Ω. With this
notation, an orthonormal basis of TΦ is given by {Xσ}σ∈W∗ .

We now turn to operators on C
2
(i) and their embedding into B(TΦ). We are interested

in the following four operators acting on C
2:

a+ =

[

0 0
1 0

]

, a− =

[

0 1
0 0

]

, a◦ =

[

0 0
0 1

]

, a× =

[

1 0
0 0

]

.

For ε ∈ {+,−, ◦,×}, we shall denote by aε
i the image of aε acting on the i-th copy of

C
2, viewed (by the identification described earlier in eq. (2) - (4)) as an operator on TΦ.

The action of these operators on the orthonormal basis of TΦ is rather straightforward to
compute (σ = [σ1, . . . , σn] is an arbitrary non-empty adapted word and 1 is the indicator
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function):

a+
i Ω = Xi, a+

i Xσ = 1σ1 6=iX[i,σ];(6)

a−i Ω = 0, a−i Xσ = 1σ1=iX[σ2,...,σn];(7)

a◦i Ω = 0, a◦i Xσ = 1σ1=iXσ;(8)

a×i Ω = Ω, a×i Xσ = 1σ1 6=iXσ .(9)

5. Embedding of the toy Fock space into the full Fock space

Our aim is now to show that the free toy Fock space can be realized as a closed subspace
of the full (or free) Fock space Φ = F(L2(R+; C)) of square integrable functions. What is
more, to each partition of R+ we shall associate such an embedding, and, as we shall see in
the next section, when the diameter of the partition becomes small, one can approximate
the full Fock space with the (much simpler) toy Fock space.

Let S = {0 = t0 < t1 < · · · < tn < · · · } be a partition of R+ of diameter δ(S) =
supi |ti+1− ti|. The main idea of [1] was to decompose the symmetric Fock space of L2(R+)
along the partition S. In our free setting we have an analogue exponential property (see
eq. (5)):

Φ = ⋆
i∈N

Φi,

where Φi = F(L2[ti, ti+1)), the countable free product being defined with respect to the
vacuum functions. Inside each Fock space Φi, we consider two distinguished functions: the
vacuum function Ωi and the normalized indicator function of the interval [ti, ti+1):

Xi =
1[ti,ti+1)√
ti+1 − ti

=
1ti+1 − 1ti√

ti+1 − ti
.

These elements span a 2-dimensional vector space CΩi⊕CXi inside each Φi. The toy Fock
space associated to the partition S is the free product of these two-dimensional vector
spaces:

TΦ(S) = ⋆
i∈N

(CΩi ⊕ CXi).

TΦ(S) is a closed subspace of the full Fock space Φ and it is naturally isomorphic (as a
countable free product of two-dimensional spaces) to the abstract free toy Fock space TΦ
defined in the previous section. It is spanned by the orthonormal family {Xσ}σ∈W∗ , where
Xσ = Xσ(S) is defined by

Xσ = Xσ1 ⊗ Xσ2 ⊗ · · · ⊗ Xσn =

[

(x1, . . . , xn) 7→
∏n

j=1 1[tσj
,tσj+1)(xj)

∏n
j=1

√

tσj+1 − tσj

]

,

with σ = [σ1, . . . , σn]. We shall denote by PS ∈ B(Φ) the orthogonal projector on TΦ(S).
For a function f ∈ Φ, which admits a decomposition f = f0Ω +

∑

n>1 fn with f0 ∈ C and

fn ∈ L2(Rn
+), the action of PS is straightforward to compute:

PSf = f0Ω +
∑

n>1

∑

σ∈W∗
n

〈Xσ , fn〉Xσ,
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where the scalar products are taken in the corresponding L2 spaces.
We ask now how the basic operators aε

t , ε ∈ {+,−, ◦,×}, t ∈ R
+ of the free Fock space

relate to their discrete counterparts aε
i . In order to do this, we consider the following

rescaled restrictions of a+
t , a−t and a◦t on the toy Fock space TΦ(S):

a+
i (S) = PS

a+
ti+1

− a+
ti√

ti+1 − ti
PS = PSa+

(

1[ti,ti+1)√
ti+1 − ti

)

PS ;(10)

a−i (S) = PS
a−ti+1

− a−ti√
ti+1 − ti

PS = PSa−
(

1[ti,ti+1)√
ti+1 − ti

)

PS ;(11)

a◦i (S) = PS(a◦ti+1
− a◦ti)PS = PSa◦

(

1[ti,ti+1)

)

PS .(12)

The operators aε
i (S) ∈ B(Φ) are such that aε

i (S)(TΦ(S)) ⊂ TΦ(S) and they vanish on
TΦ(S)⊥, so one can also see them as operators on TΦ(S). For ε = ×, one can not define
a×i (S) from a×t as it was done in eq. (10) – (12). Instead, we define it as the linear

extension of a×i (via the isomorphism TΦ ≃ TΦ(S)) which vanishes on TΦ(S)⊥. Hence,

a×i (S) = PS(Id − a◦i (S))PS .

Proposition 3. For ε ∈ {+,−, ◦,×}, the operators aε
i (S), acting on the toy Fock space

TΦ(S), behave in the same way as their discrete counterparts aε
i .

Proof. For each σ = [σ1, σ2, . . . , σn] ∈ W∗, consider the corresponding basis function of
TΦ(S):

Xσ(S) =
1σ(S)

∏n
j=1

√

tσj+1 − tσj

,

where 1σ(S) is the indicator function of the rectangle ×n
j=1[tσj

, tσj+1). We have:

a+
i (S)Xσ(S) = PS

a+(1[ti,ti+1))√
ti+1 − ti

Xσ(S) = PSX[i,σ](S) = 1σ1 6=iX[i,σ](S),

a−i (S)Xσ(S) = PS
a−(1[ti,ti+1))√

ti+1 − ti
Xσ(S) = PS1σ1=iX[σ2,...,σn](S) = 1σ1=iX[σ2,...,σn](S),

a◦i (S)Xσ(S) = PSa◦(1[ti,ti+1))Xσ(S) = PS1σ1=iXσ(S) = 1σ1=iXσ(S).

These relations are identical to the action of the corresponding operators aε
i on the abstract

toy Fock space TΦ ≃ TΦ(S) (compare to eq. (6) – (8)). For a×i (S), the conclusion is
immediate from the last equation above and its definition:

a×i (S)Xσ(S) = PS [Id − a◦i (S)]Xσ(S) = Xσ(S) − 1σ1=iXσ(S) = 1σ1 6=iXσ(S).

�

6. Approximation results

This section contains the main result of this work, Theorem 1. We show that the toy
Fock space TΦ(S) together with its operators aε

i approach the full Fock space Φ and its
operators aε

t when the diameter of the partition S approaches 0.
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Let us consider a sequence of partitions Sn = {0 = t
(n)
0 < t

(n)
1 < · · · < t

(n)
k < · · · } such

that δ(Sn) → 0. In order to lighten the notation, we put TΦ(n) = TΦ(Sn), Pn = PSn and
aε

i (n) = aε
i (Sn).

Theorem 1. For a sequence of partitions Sn of R+ such that δ(Sn) → 0, one has the
following approximation results:

(1) For every f ∈ Φ, Pnf → f .
(2) For all t ∈ R+, the operators

a±t (n) =
∑

i:t
(n)
i 6t

√

t
(n)
i+1 − t

(n)
i a±i (n),

a◦t (n) =
∑

i:t
(n)
i 6t

a◦i (n),

a×t (n) =
∑

i:t
(n)
i

6t

(

t
(n)
i+1 − t

(n)
i

)

a×i (n)

converge strongly, when n → ∞, to a±t , a◦t and a×t respectively.

Proof. For the fist part, consider a (not necessarily adapted) word σ = [σ1, . . . , σk] and

denote by 1
(n)
σ the indicator function of the rectangle ×k

j=1[t
(n)
σj , t

(n)
σj+1) of R

k
+. It is a

classical result in integration theory that the simple functions {1(n)
σ }σ∈Wk ,n>1 are dense in

L2(Rk
+) for all k. It is obvious that the result still holds when replacing Wk with the set

of adapted words W∗
k .

As for the second statement of the theorem, let us start by treating the case of a+
t . For

fixed n and t, let t(n) = t
(n)
i+1 , where i is the last index appearing in the definition of a+

t (n),

i.e. t
(n)
i 6 t < t

(n)
i+1. With this notation, we have a+

t (n) =
∑

i:t
(n)
i 6t

√

t
(n)
i+1 − t

(n)
i a+

i (n) =

Pna+
t(n)Pn. Hence, for any function f ∈ F , we obtain:

‖a+
t (n)f − a+

t f‖ = ‖Pna+
t(n)Pnf − a+

t f‖ 6

6 ‖Pna+
t(n)Pnf − Pna+

t(n)f‖ + ‖Pna+
t(n)f − Pna+

t f‖ + ‖Pna+
t f − a+

t f‖ 6

6 ‖Pna+
t(n)‖‖(Pn − I)f‖ + ‖Pna+1[t,t(n))‖‖f‖ + ‖(Pn − I)(a+

t f)‖.
By the first point, Pn → I strongly, hence the first and the third terms above converge to
0. The norm of the operator appearing in the second term is bounded by the L2 norm of
1[t,t(n)) which is infinitely small when n → ∞. Hence, the entire quantity converges to 0

and we obtained the announced strong convergence. The proof adapts easily to the cases
of a−t and a◦t .

Finally, recall that a×i (n) = Pn(Id− a◦i (n))Pn. Hence, with the same notation as above,
∑

i:t
(n)
i 6t

(

t
(n)
i+1 − t

(n)
i

)

a×i (n) = t(n)Pn +
∑

i:t
(n)
i 6t

(

t
(n)
i+1 − t

(n)
i

)

a◦i (n).
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The second term above converges to zero in the strong operator topology thanks to the

factor t
(n)
i+1 − t

(n)
i which is less than δ(Sn), and thus we are left only with t(n)Pn which

converges, by the first point, to t · Id. �

7. Applications to free probability theory

This section is more probabilistic in nature. We use the previous approximation result to
show that the free Brownian motion and the free Poisson operators can be approached, in
the strong operator topology, by sums of free Bernoulli-distributed operators living on the
free toy Fock space. We obtain, as corollaries, already known free Donsker-like convergence
results.

Let us start by recalling some basic facts about free noises and their realization on the
free Fock space Φ. The free Brownian motion Wt and the free Poisson process Nt were
constructed in [12] as free analogues of the classical Brownian motion (or Wiener process)
and, respectively, classical Poisson jump processes. Recall that a process with stationary
and freely independent increments is a collection of non commutative self-adjoint random
variables (Xt)t with the following properties:

(1) For all s < t, Xt − Xs is free from the algebra generated by {Xu, u 6 s};
(2) The distribution of Xt − Xs depends only on t − s.

A free Brownian motion is a process with stationary and freely independent increments
(Wt)t such that the distribution of Wt − Ws is a semi-circular random variable of mean 0
and variance t − s. Recall that a standard (i.e. mean zero and variance one) semicircular
random variable has distribution

dµ(x) =
1

2π

√

4 − x21[−2,2](x)dx.

If X is a standard semicircular random variable, then (t − s)X is semicircular of variance
(t − s). In an analogue manner, a free Poisson process is a process with stationary and
freely independent increments (Nt)t such that the distribution of Nt −Ns is a free Poisson
random variable of parameter λ = t − s. In general, the density of a free Poisson random
variable is given by

dνλ(x) =







√
4λ−(x−1−λ)2

2πx
χ(x)dx if λ > 1,

(1 − λ)δ0 +

√
4λ−(x−1−λ)2

2πx
χ(x)dx if 0 < λ < 1,

where χ is the indicator function of the interval [(1 −
√

λ)2, (1 +
√

λ)2].
The free Brownian motion and the free Poisson process can be realized on the full Fock

space Φ as Wt = a+
t + a−t and, respectively, Nt = a+

t + a−t + a◦t + t · Id. Generalization of
these processes and stochastic calculus were considered in [5, 6, 9].

For the sake of simplicity, throughout this section we shall consider the sequence of
partitions Sn = {k/n; k ∈ N}; obviously δ(Sn) = 1

n
→ 0. The following result is an easy

consequence of Theorem 1.

Proposition 4. On TΦ(n), consider the operator X
(n)
i = a+

i + a−i , i ∈ N. Then
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(1) For all n > 1, the family {X(n)
i }i∈N is a free family of Bernoulli random variables

of distribution 1
2δ−1 + 1

2δ1.
(2) For all t ∈ R+, the operator

W
(n)
t =

1√
n

⌊nt⌋
∑

i=0

X
(n)
i

converges in the strong operator topology, when n → ∞, to the operator of free
Brownian motion Wt = a+

t + a−t .

Let us show now that the strong operator convergence implies the convergence in distri-
bution of the corresponding processes. Let t1, . . . , ts ∈ R+ and k1, . . . , ks ∈ N. Since, by the

previous result, W
(n)
t → Wt strongly, and multiplication is jointly strongly continuous on

bounded subsets, we get that (W
(n)
t1

)k1 · · · (W (n)
ts

)ks → W k1
t1

· · ·W ks

ts
strongly. Strong con-

vergence implies convergence of the inner products 〈Ω, ·Ω〉 and thus the following corollary
(which is a direct consequence of the Free Central Limit Theorem [11, 13]) holds.

Corollary 1. The distribution of the family {W (n)
t }t∈R+ converges, as n goes to infinity,

to the distribution of a free Brownian motion {Wt}t∈R+ .

We move on to the free Poisson process Nt and we state the analogue of Proposition 4.

Proposition 5. On TΦ(n), consider the operator Y
(n)
i = a+

i + a−i +
√

na◦i + 1√
n
a×i . Then

(1) For all n > 1, the family {Y (n)
i }i∈N is a free family of Bernoulli random variables

of distribution 1
n+1δn+1√

n

+ n
n+1δ0.

(2) For all t ∈ R+, the operator

N
(n)
t =

1√
n

⌊nt⌋
∑

i=0

Y
(n)
i

converges strongly, when n → ∞, to the operator of the free Poisson process Nt =
a+

t + a−t + a◦t + a×t .

Proof. As an operator on C
2, Y

(n)
i has the form

Y
(n)
i =

[ 1√
n

1

1
√

n

]

.

The k-th moment of Y
(n)
i is easily seen to be given by the formula

〈Ω, (Y
(n)
i )kΩ〉 =

1

n + 1

(

n + 1√
n

)k

,
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which is the same as the k-th moment of the probability distribution 1
n+1δn+1√

n

+ n
n+1δ0,

and the first part follows. For the second part, we have

N
(n)
t =

1√
n

⌊nt⌋
∑

i=0

Y
(n)
i =

∑

i;t
(n)
i 6t

[

1√
n

a+
i +

1√
n

a−i + a◦i +
1

n
a×i

]

=

=
∑

i;t
(n)
i 6t

√

t
(n)
i+1 − t

(n)
i

(

a+
i (n) + a−i (n)

)

+
∑

i;t
(n)
i 6t

a◦i +
∑

i;t
(n)
i 6t

(

t
(n)
i+1 − t

(n)
i

)

a×i .

Using Theorem 1, one obtains N
(n)
t → Nt in the strong operator topology. �

Again, we obtain as a corollary the convergence in distribution of the process (N
(n)
t )t to

the free Poisson process, which is in fact a reformulation of the Free Poisson limit theorem
([11], pp. 203).

Corollary 2. The distribution of the family {N (n)
t }t∈R+ converges, as n goes to infinity,

to the distribution of a free Poisson process {Nt}t∈R+ .

8. Higher multiplicities

We generalize now the previous construction of the free toy Fock space by replacing C
2

with the N + 1-dimensional complex Hilbert space C
N+1. Much of what was done in the

C
2 extends easily to the generalized case, so we only sketch the construction, leaving the

details to the reader (for an analogue setup in the symmetric Fock space, see [3]). In what
follows, N > 1 is a fixed integer, called the multiplicity of the Fock space.

Start with a countable family of copies of C
N+1, each endowed with a fixed basis

(Ω,X1, . . . ,XN ). We shall sometimes note X0 = Ω. We introduce the free toy Fock
space of multiplicity N (see Section 4):

TΦ = ⋆
i∈N

C
N+1(i),

where the countable tensor product is defined with respect to the stabilizing sequence
of vectors Ω(i) ∈ C

N+1(i). An orthonormal basis of this space is indexed by the set
WN∗ of generalized adapted words σ = [(i1, j1), (i2, j2), . . . , (in, jn)], where n ∈ N, i1 6=
i2 6= · · · 6= in and j1, . . . , jn ∈ {1, . . . , N}, the corresponding basis element being Xσ =
Xj1(i1) ⊗ Xj2(i2) ⊗ · · · ⊗ Xjn(in).

On each copy of C
N+1 we introduce the matrix units ai

j defined by

ai
jX

k = δikX
j , i, j, k = 0, 1, . . . , N.

We shall now show how the discrete structure of the free toy Fock space of multiplicity
N approximates the free Fock space Φ = F(L2(R+; CN )). To this end, consider a partition
S = {0 = t0 < t1 < · · · < tn < · · · } of R+ and recall the decomposition of the free Fock
space of multiplicity N as a free product of “smaller” Fock spaces:

F(L2(R+; CN )) = ⋆
i∈N

F(L2([ti, ti+1); C
N )).
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In each factor of the free product we consider N + 1 distinguished functions: the constant
function Ωi (sometimes denoted by X0(i)) and the normalized indicator functions

Xj(i) =
1

j

[ti,ti+1)√
ti+1 − ti

=
1

j
ti+1

− 1
j
ti√

ti+1 − ti
, 1 6 j 6 N,

where 1
j
A(x) = (0, . . . , 0, 1, 0, . . . , 0)⊤ with the 1 in the j-th position if x ∈ A and 0

otherwise. For a generalized word σ = [(i1, j1), (i2, j2), . . . , (in, jn)], define the element
Xσ(S) ∈ Φ by

Xσ(S) = Xj1(i1) ⊗ · · · ⊗ Xjn(in) = [(x1, . . . , xn) 7→
∏n

k=1 1
jk

[tik ,tik+1)
(xk)

∏n
k=1

√
tik+1 − tik

],

with σ = [(i1, j1), (i2, j2), . . . , (in, jn)]. The toy Fock space associated to S (denoted by
TΦ(S)) is the span of Xσ(S) for all generalized adapted words σ ∈ WN∗. TΦ(S) is a
closed subspace of the full Fock space Φ and it is naturally isomorphic to the abstract toy
Fock space of multiplicity N , TΦ. For a given sequence of refining partitions Sn whose
diameters converge to zero, the toy Fock spaces and the operators ai

j approximate the Fock

space Φ and its corresponding operators (compare with Theorem 1):

Theorem 2. Let Φ be the free Fock space of multiplicity N and Sn a sequence of refining
partitions of R+ such that δ(Sn) → 0. Then one has the following approximation results:

(1) For every f ∈ Φ, Pnf → f .
(2) For i, j ∈ {0, 1, . . . , N}, define εij = 1

2(δ0i+δ0j). Then, for all t ∈ R+, the operators
∑

k:t
(n)
k

6t

(t
(n)
k+1 − t

(n)
k )εijai

j(k)

converge strongly, when n → ∞, to ai
j(t).

An example for N = 2. Let us end this section by constructing an approximation of
a two-dimensional free Brownian motion constructed on a free Fock space of multiplicity
N = 2. To this end, define the free Fock space Φ = F(L2(R+; C2)) and its discrete approx-
imation, the free toy Fock space TΦ = ⋆k∈NC

3
(k). The simplest realization of two freely in-

dependent free Brownian motions on Φ is the pair of operator processes W1(·),W2(·) ∈ B(Φ)
defined by:

W1(t) = a0
1(t) + a1

0(t) and W2(t) = a0
2(t) + a2

0(t).

First of all, it is obvious that both W1(·) and W2(·) are free Brownian motions (see Section
7). Moreover, the families (W1(t))t and (W2(t))t are freely independent since the functions
11

s and 12
t are orthogonal in F(L2(R+; C2)) (see Proposition 1). We consider, as we did

in Section 7, the sequence of refining partitions Sn = {k/n; k ∈ N}. We introduce the
following two families of operators:

Y1(k) = a0
1(k) + a1

0(k),

Y2(k) = a0
2(k) + a2

0(k),
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and respectively

Z1(k) = a0
1(k) + a1

0(k) − a2
2(k),

Z2(k) = a0
2(k) + a2

0(k) − [a1
2(k) + a2

1(k) + a2
2(k)],

for k ∈ N. It follows from Theorem 2 that for all t ∈ R+, both families are approximations
of a two-dimensional Brownian motion:

1√
n





⌊nt⌋
∑

i=0

Y1(n),

⌊nt⌋
∑

i=0

Y2(n)



 −→
n→∞

(W1(t),W2(t))

and

1√
n





⌊nt⌋
∑

i=0

Z1(n),

⌊nt⌋
∑

i=0

Z2(n)



 −→
n→∞

(W1(t),W2(t)) ,

where the limits hold in the strong operator topology. However, the building blocks of
these approximating processes have completely different behaviors at fixed k. To start,
note that the self-adjoint operators Y1(k) and Y2(k), represented, in the basis (Ω,X1,X2),
by the hermitian matrices

Y1 =





0 1 0
1 0 0
0 0 0



 and Y2 =





0 0 1
0 0 0
1 0 0





do not commute. Hence, they do not admit a classical joint distribution, i.e. it does not
exist a probability measure µ on R

2 such that

(13)

∫

R2

ym
1 yn

2 dµ(y1, y2) = 〈Ω, Y m
1 Y n

2 Ω〉.

On the contrary, for each k, the operators Z1(k) and Z2(k), which act on C
3 as the matrices

Z1 =





0 1 0
1 0 0
0 0 −1



 and Z2 =





0 0 1
0 0 −1
1 −1 −1



 ,

commute and they admit the following classical joint distribution (in the sense of equation
(13)):

µ =
1

2
δ(1,0) +

1

3
δ(−1,1) +

1

6
δ(−1,−2).

More details on high multiplicity Fock spaces and the analogue construction in the com-
mutative case can be found in [2, 3].
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