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campus de Beaulieu, 35042 Rennes Cedex, France.

email: dorian.lepeutrec@univ-rennes1.fr

October 22, 2008

Abstract

WKB p-forms are constructed as approximate solutions to bound-
ary value problems associated with semi-classical Witten Laplacians.
Naturally distorted Neumann or Dirichlet boundary conditions are
considered.
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1 Introduction

1.1 Motivations

In order to compute accurately the small eigenvalues (i.e. of order O(e−
C
h )

with C > 0) of a self adjoint Witten Laplacian acting on 0-forms,

∆
(0)
f,h = −h2∆ + |∇f(x)|2 − h∆f(x) ,

as the small parameter h > 0 goes to 0 (where the function f is assumed to
be a Morse function on some bounded domain Ω with or without boundary),
we need WKB approximations of the 1-eigenforms associated with the small
eigenvalues of ∆

(1)
f,h, the Witten Laplacian acting on 1-forms.

In the article of B. Helffer, M. Klein and F. Nier [HKN], the authors worked
and constructed local WKB approximations of 1-eigenforms in the case of a
manifold without boundary.
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According to [ChLi], [HeNi1], and [Lep], the p-eigenforms corresponding to

the small eigenvalues of ∆
(p)
f,h, the self adjoint Witten Laplacian acting on

p-forms, concentrate around some generalized critical points of f with index
p which can belong to the boundary when we consider a self adjoint Witten
Laplacian with Neumann or Dirichlet type boundary conditions (in the case
of a manifold with boundary).
Hence, in the case with boundary, we need local WKB approximations of
1-eigenforms which concentrate near these generalized critical points like it
was done in [HeNi1] for Dirichlet type boundary conditions. Nevertheless,
the construction done in [HeNi1] relied on some specific trick which cannot
be extended to the construction of local WKB forms in the Neumann case.
To treat this last case (see [Lep]), a finer treatment of the three geometries
involved in the boundary problem (boundary, metric, Morse function) is car-
ried out.
Moreover, this treatment immediately extends to the construction of local
WKB p-forms (for the Neumann case) and it can be extended to the con-
struction of local WKB p-forms for the Dirichlet case by ”dual computations”.
However, only the construction of local WKB p-forms is considered here and
the comparison with the corresponding p-eigenforms has only be treated in
the case p = 1 (in [HeNi1] and [Lep]).

1.2 Main notations

Let Ω be a C∞ connected compact oriented Riemannian manifold with bound-
ary ∂Ω and dimension n ∈ N∗. We will denote by g0 the given Riemannian
metric on Ω ; Ω and ∂Ω will denote respectively its interior and its boundary.
The cotangent (resp. tangent) bundle on Ω is denoted by T ∗Ω (resp. TΩ) and
the exterior fiber bundle by ΛT ∗Ω = ⊕np=0ΛpT ∗Ω (resp. ΛTΩ = ⊕np=0ΛpTΩ).

The fiber bundles ΛT∂Ω = ⊕n−1
p=0ΛpT∂Ω and ΛT ∗∂Ω = ⊕n−1

p=0ΛpT ∗∂Ω are
defined similarly. The space of C∞, C∞0 , L2, Hs , etc. sections in any of
these fiber bundles, E, on O = Ω or O = ∂Ω, will be denoted respectively by
C∞(O;E), C∞0 (O;E), L2(O;E), Hs(O;E), etc.
When no confusion is possible we will simply use the short notations ΛpC∞,
ΛpC∞0 , ΛpL2 and ΛpHs for E = ΛpT ∗Ω or E = ΛpT ∗∂Ω.
Note that the L2 spaces are those associated with the unit volume form for
the Riemannian structure on Ω or ∂Ω (Ω and ∂Ω are oriented).
The notation C∞(Ω;E) is used for the set of C∞ sections up to the boundary.

Let d be the exterior differential on C∞0 (Ω; ΛT ∗Ω),

d(p) : C∞0 (Ω; ΛpT ∗Ω)→ C∞0 (Ω; Λp+1T ∗Ω) ,
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and d∗ its formal adjoint with respect to the L2-scalar product inherited from
the Riemannian structure,

d(p),∗ : C∞0 (Ω; Λp+1T ∗Ω)→ C∞0 (Ω; ΛpT ∗Ω) .

Remark 1.2.1. Note that d and d∗ are both well defined on C∞(Ω; ΛT ∗Ω) .

Set, for a function f ∈ C∞(Ω; R) and h > 0, the distorted operators defined
on C∞(Ω; ΛT ∗Ω):

df,h = e−f(x)/h (hd) ef(x)/h and d∗f,h = ef(x)/h (hd∗) e−f(x)/h .

The Witten Laplacian is the differential operator defined on C∞(Ω; ΛT ∗Ω)
by:

∆f,h = d∗f,hdf,h + df,hd
∗
f,h = (df,h + d∗f,h)

2 . (1.2.1)

Remark 1.2.2. The last equality becomes from the property dd = d∗d∗ = 0
which implies:

df,hdf,h = d∗f,hd
∗
f,h = 0. (1.2.2)

It means, by restriction to the p-forms in C∞(Ω; ΛpT ∗Ω):

∆
(p)
f,h = d

(p),∗
f,h d

(p)
f,h + d

(p−1)
f,h d

(p−1),∗
f,h .

Note that (1.2.2) implies that, for all u in C∞(Ω; ΛpT ∗Ω),

∆
(p+1)
f,h d

(p)
f,hu = d

(p)
f,h∆

(p)
f,hu (1.2.3)

and

∆
(p−1)
f,h d

(p−1),∗
f,h u = d

(p−1),∗
f,h ∆

(p)
f,hu . (1.2.4)

We end up this section by a few relations with exterior and interior prod-
ucts (respectively denoted by ∧ and i), gradients (denoted by ∇) and Lie
derivatives (denoted by L) which will be very useful:

(df∧)∗ = i∇f (in L2(Ω; ΛpT ∗Ω )) , (1.2.5)

df,h = hd+ df∧ , (1.2.6)

d∗f,h = hd∗ + i∇f , (1.2.7)

d ◦ iX + iX ◦ d = LX , (1.2.8)

∆f,h = h2(d+ d∗)2 + |∇f |2 + h
(
L∇f + L∗∇f

)
, (1.2.9)

where X denotes a vector field on Ω or Ω.
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Remark 1.2.3. The operators introduced depend on the Riemannian metric
g0 but we omit this dependence for conciseness.

Definition 1.2.4. We denote by ~nσ the outgoing normal at σ ∈ ∂Ω and by
~n∗σ the 1-form dual to ~nσ for the Riemannian scalar product.

For any ω ∈ C∞(Ω; ΛpT ∗Ω), the form tω is the element of C∞(∂Ω; ΛpT ∗Ω)
defined by:

(tω)σ(X1, . . . , Xp) = ωσ(XT
1 , . . . , X

T
p ) , ∀σ ∈ ∂Ω ,

with the decomposition into the tangential and normal components to ∂Ω at
σ: Xi = XT

i ⊕ x⊥i ~nσ.
Moreover,

(tω)σ = i~nσ(~n∗σ ∧ ωσ) .

The projected form tω, which depends on the choice of ~nσ (i.e. on g0), can be
compared with the canonical pull-back j∗ω associated with the embedding
j : ∂Ω→ Ω. Actually the exact relationship is j∗ω = j∗(tω).
The normal part of ω on ∂Ω is defined by:

nω = ω|∂Ω − tω ∈ C∞(∂Ω; ΛpT ∗Ω).

Definition 1.2.5. We denote by ∂f
∂n

(σ) or ∂nf(σ) the normal derivative of
f at σ:

∂f

∂n
(σ) = ∂nf(σ) := 〈∇f(σ) |~nσ〉 .

Assumption 1.2.6. The functions f ∈ C∞(Ω,R) and f
∣∣
∂Ω
∈ C∞(∂Ω,R) are

Morse functions. Moreover, the function f has no critical points on ∂Ω.

According to [ChLi], [HeNi1], and [Lep], the Neumann realization (resp. the
Dirichlet realization) of the Witten Laplacian, denoted by ∆N

f,h (resp. ∆N
f,h),

is the self adjoint realization of ∆f,h whose domain is

D(∆N
f,h) = {ω ∈ ΛH2(Ω) , nω = 0 , ndf,hω = 0}

(resp. D(∆D
f,h) =

{
ω ∈ ΛH2(Ω) , tω = 0 , td∗f,hω = 0

}
) .

Definition 1.2.7. A point U ∈ Ω is called a generalized critical point of f
with index p in the Neumann case (resp. in the Dirichlet case) if:

• either U ∈ Ω and U is a critical point of f with index p ,

• or U ∈ ∂Ω and U is a critical point with index p of f |∂Ω such that
∂f
∂n

(U) < 0 (resp. U ∈ ∂Ω and U is a critical point with index p− 1 of

f |∂Ω such that ∂f
∂n

(U) > 0) .
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Remark 1.2.8. This convention implies, in the Neumann case (resp. in the
Dirichlet case), that for a generalized critical point U with index p,

p ∈ {0, . . . , n− 1} (resp. p ∈ {1, . . . , n}) .

Moreover, according to these references extending to the boundary case the
analysis by Witten in [Wit], we know that the dimension of the spectral

subspace associated with the small eigenvalues (i.e. smaller than h) of ∆
(p),N
f,h

(resp. ∆
(p),D
f,h ) is mp(f), the number of generalized critical points of f with

index p, and that the corresponding eigenvectors concentrate around these
generalized critical points.
The construction of WKB approximations of these eigenvectors already exists
in the case of a manifold without boundary (see [Wit][HeSj4][HKN][Hel2]).
We want here to obtain similar results around the generalized critical points
on the boundary for the Neumann and Dirichlet cases.

1.3 A few preliminary results

In the sequel, we will work with different coordinate systems and we will
often refer to the next definition.

Definition 1.3.1. Let σ be a point on the boundary ∂Ω. A local adapted
coordinate system around σ is a local coordinate system (x1, . . . , xn) = (x′, xn)
centered at σ satisfying the following properties:

i) dx1, . . . , dxn is an orthonormal basis of T ∗U(Ω) positively oriented.

ii) The boundary ∂Ω corresponds locally to xn = 0 and the interior Ω to
xn < 0.

iii) ∂
∂xn
|∂Ω = ~n, the outgoing normal at the boundary. Moreover, ∂

∂xn
is

unitary and normal to {xn = Constant}.

Such a coordinate system is more specific that the one provided by the col-
lar theorem in [Sch], [Duf], and [DuSp]. Moreover, the analysis done in
[Pet] pp. 117-122 leads to the next proposition:

Proposition 1.3.2. A local coordinate system satisfying Definition 1.3.1
always exists.

Proof. Consider indeed (see [Pet] pp. 119-120)

T∂Ω⊥ =
{
v ∈ TσΩ : σ ∈ ∂Ω, v ∈ (Tσ∂Ω)⊥ ⊂ TσΩ

}
,
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where (Tσ∂Ω)⊥ is the orthogonal complement of T∂Ω in TσΩ (so for each
σ ∈ ∂Ω, TσΩ = Tσ∂Ω⊕⊥ (Tσ∂Ω)⊥). Then, the map exp⊥ introduced in [Pet]
is a diffeomorphism from an open neighborhood of the zero section in T∂Ω⊥

onto its image in Ω. It means, choosing a point σ near the boundary ∂Ω, that
there exists an unique geodesic ν joining σ to a point σb on the boundary
which satisfies ν̇(σb) ∈ T∂Ω⊥. It is equivalent to say that there exists an
unique geodesic ν joining σ to σb with ν̇(σb) = ~nσb .
Set now −xn the geodesic distance to ∂Ω and take x′ such that x′

∣∣
∂Ω

is a
coordinate system on the boundary and x′ is constant along the geodesics
parametrized by xn. The second point of the definition is then satisfied and
∂
∂xn

is unitary. Moreover, the choice of x′
∣∣
∂Ω

is arbitrary and we can choose

it centered at U such that dx1, . . . , dxn is an orthonormal basis of T ∗U(Ω)
positively oriented. Then the first point of the definition is also satisfied.
Verify now that the third point of the definition is fulfilled. Write

∂

∂xn
〈 ∂
∂xn
| ∂
∂xi
〉σ = 〈∇ ∂

∂xn

∂

∂xn
| ∂
∂xi
〉σ + 〈 ∂

∂xn
| ∇ ∂

∂xn

∂

∂xi
〉σ

= 0 + 〈 ∂
∂xn
| ∇ ∂

∂xn

∂

∂xi
〉σ

= 〈 ∂
∂xn
| ∇ ∂

∂xi

∂

∂xn
〉σ

=
1

2

∂

∂xi
〈 ∂
∂xn
| ∂

∂xn
〉σ = 0 ,

where we used the fact that ∇ is the Levi-Civita connexion and ∇ ∂
∂xn

∂
∂xn

= 0

since xn is a geodesic curve. Hence,

〈 ∂
∂xn
| ∂
∂xi
〉σ = 〈 ∂

∂xn
| ∂
∂xi
〉σb = 〈~nσb |

∂

∂xi
〉σb = 0 ,

which gives the third point of the definition.

Remark 1.3.3. In a local adapted coordinate system (x′, xn) around σ, re-
mark that the metric g0 writes

g0(x) = d(xn)2 +
∑

1≤i,j<n

gij(x)dxidxj .

Moreover, it can be convenient to work with matrices and we note
G0(x) = (gij(x))ij, G

−1
0 (x) = (gij(x))ij (remember that gij =

〈
∂
∂xi
| ∂
∂xj

〉
,
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gij = 〈dxi | dxj〉, and dxi( ∂
∂xj

) = δij).
Hence, G±1

0 (x) has the form, in the coordinate system (x′, xn):

G±1
0 (x) =


0

G±1′

0 (x)
...
0

0 · · · 0 1

 ,

with G±1
0 (0) = In.

Lemma 1.3.4. 1) Let be f1 ∈ C∞(Ω,R) and U ∈ ∂Ω a critical point of f1|∂Ω

with ∂f1

∂n
(U) 6= 0 . Assume furthermore α ∈ C∞(∂Ω,R) be a local solution to

|∇Tα|2 = |∇Tf1|2 around U .
Then there exists a neighborhood V of U in Ω such that the eikonal equation

|∇Φ±|2 = |∇f1|2 (1.3.1)

(on the boundary, it means |∇Φ±|2 = |∂nΦ±|2 + |∇TΦ±|2 ; see the details in
the proof)
with the boundary conditions

Φ±|∂Ω∩V = α , ∂nΦ±|∂Ω∩V = ±∂f1

∂n
|∂Ω∩V

admits a unique local smooth real-valued solution.

2) There exist local coordinates (x1, . . . , xn) = (x′, xn) in a neighborhood of
U in Ω with (x′, xn)(U) = 0 where the function Φ± and the metric g0 have
the form:

Φ± = ∓xn + α(x′) and g0 = gnn(x) d (xn)2 +
n−1∑
i,j=1

gij(x)dxidxj .

Moreover, the boundary ∂Ω is locally defined by {xn = 0} and Ω corresponds
to
{
sgn

(
∂f1

∂n
(U))

)
xn > 0

}
.

Proof. 1) Take a local adapted coordinate system (x′, xn) around U in order
to write (1.3.1):

|∂xnΦ±|2 + |∇TΦ±|2 = |∂xnf1|2 + |∇Tf1|2

(see Appendix A.1 for the exact meaning of ∇T in the interior). We obtain
in particular on the boundary,

|∂nΦ±|2 + |∇TΦ±|2 = |∂nf1|2 + |∇Tα|2 .

7



The first point is then a direct consequence of the Hamilton-Jacobi theorem,
due to the condition ∂f1

∂n
(U) 6= 0 .

2) Like in [HeSj4], set:

f+ = Φ+ − Φ− and f− = Φ+ + Φ− ,

and note the relations:

Φ− = −1

2
f+ +

1

2
f− , Φ+ =

1

2
f+ +

1

2
f− , (1.3.2)

∇f+ · ∇f− = 0 , (1.3.3)

f+|∂Ω∩V = 0 ,
∂f+

∂n
|∂Ω∩V = 2

∂f1

∂n
|∂Ω∩V 6= 0 , (1.3.4)

and f−|∂Ω∩V = 2α ,
∂f−
∂n
|∂Ω∩V = 0 . (1.3.5)

Let (x1, . . . , xn−1) = x′ denote a set of coordinates on ∂Ω in a neighborhood
of U (then contained in V) and such that xj(U) = 0 . We extend them in
a neighborhood of U in Ω as constant along the integral curve of the vector
field ∇f+. Then we take xn = −1

2
f+(x) for the last coordinate.

In these coordinates, the functions Φ± and the metric g0 have the forms an-
nounced in the lemma.
We remark furthermore, by (1.3.4) and ∂f1

∂n
(U) 6= 0 , that the boundary ∂Ω

is locally defined by {xn = 0} and Ω corresponds to
{
sgn

(
∂f1

∂n
(U)
)
xn > 0

}
.

In the sequel, we will apply the first result of this lemma in the Neumann
case (resp. in the Dirichlet case) in order to introduce the Agmon distance
(associated with the function f) to a generalized critical point U with index
p on the boundary.
Then, using the second result of this lemma and Proposition 3.2.11 of [Lep]

(resp. Proposition 3.3.9 of [HeNi1]), ∆
(p),N
f,h (resp. ∆

(p),D
f,h ) can be viewed

locally in V around U ∈ ∂Ω as A(p)
N

∣∣
V (resp. as A(p)

D

∣∣
V) where A(p)

N (resp.

A(p)
D ) is a self adjoint Witten Laplacian on Rn

− = Rn−1 × (−∞, 0) (ever if it
means choosing −xn instead of xn) whose domain is

D(AN) =
{
ω ∈ ΛH2(Rn

−) , nω = ndf,hω = 0
}

(resp. D(AD) =
{
ω ∈ ΛH2(Rn

−) , tω = td∗f,hω = 0
}

) ,

and which satisfies

dim Ker A(p)
N = 1 and σ(A(p)

N ) \ {0} ⊂
[
Ch6/5,+∞

)
(1.3.6)

(resp. dim Ker A(p)
D = 1 and σ(A(p)

D ) \ {0} ⊂
[
Ch6/5,+∞

)
). (1.3.7)
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2 WKB construction near the boundary for

∆
(p)
f,h , with p in {0, . . . , n}

2.1 Local WKB construction in the Neumann case

Let U be a critical point with index p ∈ {0, . . . , n− 1} of f
∣∣
∂Ω

satisfying
∂f
∂n

(U) < 0 and take a local adapted coordinate system (x′, xn) around U .

Let ϕ be the Agmon distance to U on the boundary (i.e. associated with the
metric |∇x′f(x′, 0)|2 dx′2). We recall that, on the boundary,

|∇Tf |2 = |∇ϕ|2

and that ϕ is smooth near U (see [HeSj1]).
We now use the first result of Lemma 1.3.4 with f1 = f and α = ϕ and we
denote by Φ the function Φ+ of the lemma (Φ is consequently the Agmon
distance to U i.e. associated with the metric |∇f(x)|2 dx2). Hence we have
locally:

|∂nΦ|2 + |∇TΦ|2 = |∇Φ|2 = |∇f |2 , (2.1.1)

Φ|∂Ω = ϕ , (2.1.2)

∂nΦ|∂Ω =
∂f

∂n
|∂Ω . (2.1.3)

Moreover, the next relation is valid:

∂2
xnxn(f − Φ)(0) = ∂2

nn(f − Φ)(0) = 0 . (2.1.4)

Write indeed in the coordinates (x′, xn), for the metric g0:

|∂xnΦ|2 + |∇TΦ|2g0
= |∂xnf |2 + |∇Tf |2g0

where |∇TΦ|2g0
= O(|x|2) and |∇Tf |2g0

= O(|x|2) because 0 is a critical point

of f
∣∣
∂Ω

in the coordinates (x′, xn) (see indeed for example Appendix A.1).
Apply then ∂xn to the last equation:

∂xn |∂xnΦ|2 +O(|x|) = ∂xn |∂xnf |2 +O(|x|)

i.e., using (2.1.3),
2∂2

xnxn(f − Φ)∂xnf = O(|x|)
which yields the result.
According to [HeSj4] pp. 279-280, there exist local coordinates (x′, xn) cen-
tered at U , where x′ = (x1, . . . , xn−1) are Morse coordinates for f

∣∣
∂Ω

around
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U , such that dx1, . . . , dxn−1, dxn is orthonormal at U , and

f(x′, 0) =
λ1

2
(x1)2 + · · ·+ λn−1

2
(xn−1)2 + f(U) (2.1.5)

and ϕ(x′) =
|λ1|
2

(x1)2 + · · ·+ |λn−1|
2

(xn−1)2 . (2.1.6)

with λi < 0 for i ∈ {1, . . . , p} and λi > 0 for i ∈ {p+ 1, . . . , n− 1}.
Furthermore, the coordinates (x′, xn) can be chosen such that dx1, . . . , dxn−1

and dx1, . . . , dxn−1 coincide at U , and even such that x′
∣∣
∂Ω

= x′
∣∣
∂Ω

since

x′
∣∣
∂Ω

can be chosen freely.

Theorem 2.1.1. Consider around U a local adapted coordinate system x =
(x′, xn) such that dxi = dxi at U (for i in {1, . . . , n− 1}). There exists
locally, in a neighborhood of x = 0, a C∞ solution uwkbp to

∆
(p)
f,hu

wkb
p = e−

Φ
hO(h∞) (2.1.7)

nuwkbp = 0 on ∂Ω (2.1.8)

ndf,hu
wkb
p = 0 on ∂Ω , (2.1.9)

where uwkbp has the form:

uwkbp = a(x, h)e−
Φ
h ,

with a(x, h) ∼
∑
k

ak(x)hk and a0(0) = dx1 ∧ · · · ∧ dxp .

2.2 First boundary conditions in the Neumann case

Let us first write, in our coordinate system,

a(x, h) = aI(x, h) dxI = aI′(x, h)dxI
′
+ aIn(x, h)dxIn , (2.2.1)

where I ∈ I := {(i1, . . . , ip) ∈ {1, . . . , n}p , i1 < · · · < ip},
I ′ ∈ I ′ := {(i1, . . . , ip) ∈ {1, . . . , n}p , i1 < · · · < ip < n},
In ∈ In := {(i1, . . . , ip) ∈ {1, . . . , n}p , i1 < · · · < ip = n},
and dx(i1,...,ip) = dxi1 ∧ · · · ∧ dxip . Remark that the Einstein summation
convention where repeated indices implies addition has been employed in
formula (2.2.1) and, in the sequel, we shall adhere to this notation.
The first boundary condition says only that:

∀In ∈ In , aIn((x′, 0), h) ∼
∑
k

akIn(x′, 0)hk ≡ 0 (2.2.2)
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which is equivalent to

∀k ∈ N, ∀In ∈ In , akIn(x′, 0) ≡ 0 . (2.2.3)

This paragraph specifies some consequences of these conditions.

Proposition 2.2.1. Using the notations of Appendices A.1 and A.2, the next
relations are satisfied for k in N, when (2.2.3) is fulfilled:{

t
(
(2L∇Φ +R1)ak

)
= (2L∇Φ̃ ⊗ Id+RT

Neu)akI′dx
I′ + 2 ∂Φ

∂xn
i ∂
∂xn

dak

n
(
(2L∇Φ +R1)ak

)
= 2

(
∂akIn
∂xn

∂Φ
∂xn

+ `In(x′, 0)
)
dxIn ,

where the `In’s are algebraically C∞(∂Ω)-linear combinations of the akI′’s (for
I ′ in I ′) which do not depend on the akIn’s (for In in In) and RT

Neu is a 0-th
order differential operator given on the boundary by the next matrix, in the
coordinates (x′, xn):

RT
Neu(x′, 0) =


0

RT ′
Neu(x′)

...
0

0 · · · 0 β(x′)


(p)

− γ(x′) Id ,

where β(0) = 0,
γ(0) = Tr

(
Hess (f

∣∣
∂Ω
− ϕ)(0)

)
,

and
RT ′

Neu(0) = 2
(
Hess (f

∣∣
∂Ω

)(0)
)
.

Proposition 2.2.2. Assume (2.2.3) for k in N. The p-form

∂Φ

∂xn
i ∂
∂xn

dak

is then tangential and the next equivalence is locally valid on the boundary
∂Ω:

∂Φ

∂xn
i ∂
∂xn

dak = 0⇔ ndak = 0 .

Proof. Write indeed on the boundary ∂Ω:

∂Φ

∂xn
i ∂
∂xn

dak =
∂Φ

∂xn
i ∂
∂xn

ndak +
∂Φ

∂xn
i ∂
∂xn

tdak

= 0 +
∂Φ

∂xn
i ∂
∂xn

ndak

=
∂Φ

∂xn
i ∂
∂xn

(dak)Indx
In

= (−1)p
∂Φ

∂xn
(dak)Indx

In\{n} .
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Moreover, using
∂f

∂n
(U) =

∂Φ

∂n
(U) < 0 ,

∂Φ
∂xn

is locally negative on the boundary which leads to the result.

Lemma 2.2.3. Under (2.2.3), the next relations are satisfied for k in N:{
t
(
(L∇Φ − L∇Φ̃)ak

)
= t

(
(L∇TΦ − L∇Φ̃)ak

)
= ∂Φ

∂xn
i ∂
∂xn

dak ,

n
(
(L∇Φ − L∇Φ̃)ak

)
=

(
∂akIn
∂xn

∂Φ
∂xn

+ ˜̀
In(x′, 0)

)
dxIn ,

where the ˜̀
In’s are algebraically C∞(∂Ω)-linear combinations of the akI′’s (for

I ′ in I ′) which do not depend on the akIn’s (for In in In).

Proof. On the boundary ∂Ω, write the next decomposition:

(L∇Φ − L∇Φ̃) ak = L( ∂Φ
∂xn

) ∂
∂xn

ak + (L∇TΦ − L∇Φ̃) ak . (2.2.4)

Owing to the Cartan formula (1.2.8), rewrite (2.2.4):

(L∇Φ − L∇Φ̃) ak = i( ∂Φ
∂xn

) ∂
∂xn

dak + d(i( ∂Φ
∂xn

) ∂
∂xn

ak)

+ i(∇TΦ−∇Φ̃)da
k + d(i(∇TΦ−∇Φ̃)a

k) . (2.2.5)

Using Proposition 2.2.2, the first term

i( ∂Φ
∂xn

) ∂
∂xn

dak =
∂Φ

∂xn
i ∂
∂xn

dak

of the r.h.s. of (2.2.5) is tangential.
Moreover, since ∇TΦ = ∇Φ̃ on the boundary (see Appendix A.1), the term
i(∇TΦ−∇Φ̃)da

k of the r.h.s. equals 0 on ∂Ω.
Hence, write on ∂Ω:

(L∇Φ − L∇Φ̃) ak = i( ∂Φ
∂xn

) ∂
∂xn

dak + d(i( ∂Φ
∂xn

) ∂
∂xn

ak) + d(i(∇TΦ−∇Φ̃)a
k) . (2.2.6)

Study in a first time the term d(i( ∂Φ
∂xn

) ∂
∂xn

ak). Writing

ak = akIdx
I = akI′dx

I′ + akIndx
In ,

we deduce (in Ω):

i( ∂Φ
∂xn

) ∂
∂xn

ak = akIni( ∂Φ
∂xn

) ∂
∂xn

dxIn

= (−1)p−1akIn
∂Φ

∂xn
dxIn\{n} ,
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and, applying d to this last relation, we obtain on ∂Ω (remember that akIn = 0
on ∂Ω)

d(i( ∂Φ
∂xn

) ∂
∂xn

ak) = (−1)p−1

n∑
i=1

∂

∂xi
(akIn

∂Φ

∂xn
)dxi ∧ dxIn\{n}

= (−1)p−1∂a
k
In

∂xn
∂Φ

∂xn
dxn ∧ dxIn\{n} + 0

=
∂akIn
∂xn

∂Φ

∂xn
dxIn . (2.2.7)

Look now at the third term of the r.h.s. of (2.2.6) and write (remember that
I 3 I = (i1, . . . , ip) with 1 ≤ i1 ≤ · · · ≤ ip ≤ n and denote by ind(ik) the
integer k):

i(∇TΦ−∇Φ̃)a
k
Idx

I = akIdx
I(∇TΦ−∇Φ̃)

= akI
∑
j∈I

(−1) ind(j)+1
(
∇TΦ−∇Φ̃

)
j
dxI\{j}

= akI
∑
j∈I

(−1) ind(j)+1αjdx
I\{j} ,

where, due to (A.1.2)(A.1.3), for all j in {1, . . . , n},

αj =
(
∇TΦ−∇Φ̃

)
j

=
n∑
i=1

gij
(
∂Φ

∂xi
(x)− ∂Φ

∂xi
(x′, 0)

)
.

Moreover, due to the block diagonal form of G−1
0 , for all j in {1, . . . , n}, αj

satisfies (again by (A.1.2)(A.1.3)):

αn(x) ≡ 0 and ∀j ∈ {1, . . . , n− 1} , αj(x′, 0) ≡ 0 .

Hence, we obtain on ∂Ω,

d(i(∇TΦ−∇Φ̃)a
k
Idx

I)(x′, 0) =
n∑
l=1

∑
j∈I

(−1) ind(j)+1 ∂

∂xl
(akIαj)(x

′, 0)dxl ∧ dxI\{j}

= 0 +
∑
j∈I

(−1) ind(j)+1 ∂

∂xn
(akIαj)(x

′, 0)dxn ∧ dxI\{j}

=
∑
j∈I′

(−1) ind(j)+1 ∂

∂xn
(akI′αj)(x

′, 0)dxn ∧ dxI′\{j}

+
∑

j∈In\{n}

(−1) ind(j)+1 ∂

∂xn
(akInαj)(x

′, 0)dxn ∧ dxIn\{j}

=
∑
j∈I′

(−1) ind(j)+1 ∂

∂xn
(akI′αj)(x

′, 0)dxn ∧ dxI′\{j} ,
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where we used αj(x
′, 0) ≡ 0 at the second line and αn(x) ≡ 0 at the second

to last line.
Using again αj(x

′, 0) ≡ 0 allows us to write on ∂Ω:

d(i(∇TΦ−∇Φ̃)a
k
Idx

I)(x′, 0) = akI′
∑
j∈I′

(−1) ind(j)+1 ∂αj
∂xn

(x′, 0)dxn ∧ dxI′\{j}

= akI′
∑
j∈I′

(−1) ind(j)+p ∂αj
∂xn

(x′, 0)dxI
′\{j} ∧ dxn

= : ˜̀
In(x′, 0)dxIn , (2.2.8)

where the ˜̀
In ’s are algebraically C∞(∂Ω)-linear combinations of the akI′ ’s (for

I ′ in I ′) which do not depend on the akIn ’s (for In in In).
Combining (2.2.6), (2.2.7), and (2.2.8) leads to the result announced in
Lemma 2.2.3.

Proof of Proposition 2.2.1.
Remember first the next relation (see indeed Subsection A.2.2):

L∇Φ − L∗∇Φ + L∇f + L∗∇f = 2L∇Φ +R1 ,

where R1 is a 0-th order differential operator. Writing R1 = RT
1 +RN

1 , we
deduce from Remark A.2.1 (since akIdx

I = akI′dx
I′ on the boundary),{

t
(
R1(akIdx

I)
)

= akI′(x
′, 0)RT

1 (dxI
′
)

n
(
R1(akIdx

I)
)

= akI′(x
′, 0)RN

1 (dxI
′
) = ˜̀′

In
(x′, 0)dxIn ,

where the ˜̀′
In

’s are algebraically C∞(∂Ω)-linear combinations of the akI′ ’s (for
I ′ in I ′) which do not depend on the akIn ’s (for In in In).

Moreover, f − Φ satisfies the assumptions of Corollary A.2.5 (from (2.1.1)-
(2.1.4)), then RT

1 is given on the boundary, in the coordinates (x′, xn), by:

RT
1 (x′, 0) =


0

RT ′
1 (x′)

...
0

0 · · · 0 β(x′)


(p)

− γ(x′) Id ,

where β, γ are C∞ functions which satisfy β(0) = 0,
γ(0) = Tr

(
Hess (f

∣∣
∂Ω
− ϕ)(0)

)
, and

RT ′

1 (0) = 2
(
Hess (f

∣∣
∂Ω
− ϕ)(0)

)
.
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Having in mind Lemma 2.2.3, look now at the term 2L∇Φ̃ +R1.
From Proposition A.2.3, write:

2L∇Φ̃ = 2L∇Φ̃ ⊗ Id+R3

where R3 = RT
3 +RN

3 is a 0-th order differential operator such that (since Φ̃
satisfies the assumptions of Corollary A.2.5),{

t
(
R3(akIdx

I)
)

= akI′(x
′, 0)RT

3 (dxI
′
)

n
(
R3(akIdx

I)
)

= akI′(x
′, 0)RN

3 (dxI
′
) = ˜̀′′

In
(x′, 0)dxIn ,

(where the ˜̀′′
In

’s are algebraically C∞(∂Ω)-linear combinations of the akI′ ’s (for
I ′ in I ′) which do not depend on the akIn ’s)
and RT

3 is given on the boundary, in the coordinates (x′, xn), by:

RT
3 (x′, 0) =


0

RT ′
3 (x′)

...
0

0 · · · 0 0


(p)

,

with
RT ′

3 (0) = 2
(

Hess (Φ̃
∣∣
∂Ω

)(0)
)

= 2 (Hess (ϕ)(0))

(note, according to Remark A.2.4, that the term of index (n, n) of the matrix

is indeed 0 since ∂2Φ̃
∂(xn)2 ≡ 0).

Set RNeu = R1 +R3 and ˜̀(3)
In

= ˜̀′
In

+ ˜̀′′
In

for In in In. RNeu is a 0-th order
differential operator which satisfies

2L∇Φ̃ +R1 = 2L∇Φ̃ ⊗ Id+RNeu , (2.2.9)

and{
t
(
RNeu(akIdx

I)
)

= akI′(x
′, 0)RT

Neu(dxI
′
)

n
(
RNeu(akIdx

I)
)

= akI′(x
′, 0)RN

Neu(dxI
′
) = ˜̀(3)

In
(x′, 0)dxIn ,

(2.2.10)

where the ˜̀(3)
In

’s are algebraically C∞(∂Ω)-linear combinations of the akI′ ’s (for
I ′ in I ′) which do not depend on the akIn ’s (for In in In).
Moreover, RT

Neu is given on the boundary, in the coordinates (x′, xn), by:

RT
Neu(x′, 0) =


0

RT ′
1 (x′, 0) +RT ′

3 (x′, 0)
...
0

0 · · · 0 β(x′)


(p)

− γ(x′) Id ,
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where β(0) = 0,
γ(0) = Tr

(
Hess (f

∣∣
∂Ω
− ϕ)(0)

)
,

and
RT ′

1 (0) +RT ′

3 (0) = 2
(
Hess (f

∣∣
∂Ω

)(0)
)
.

Look now at the term 2L∇Φ̃ ⊗ Id. By the Cartan formula (1.2.8),

(2L∇Φ̃ ⊗ Id)ak = dakI′(∇Φ̃)dxI
′
+ dakIn(∇Φ̃)dxIn ,

and, using the boundary condition satisfied by the akIn ’s (for In in In) and

the fact that ∇Φ̃ is a tangential vector field, we obtain:

(2L∇Φ̃ ⊗ Id)ak =
n−1∑
i=1

∂akI′

∂xi
(∇Φ̃)idx

I′

= (2L∇Φ̃ ⊗ Id)akI′dx
I′ . (2.2.11)

Set `In = ˜̀
In + 1

2
˜̀(3)
In

for In in In. Writing

(2L∇Φ +R1) ak = 2 (L∇Φ − L∇Φ̃) ak + (2L∇Φ̃ +R1) ak ,

and using (2.2.9), (2.2.10), and (2.2.11), we obtain Proposition 2.2.1 after
the application of Lemma 2.2.3.

2.3 Proof of Theorem 2.1.1

We shall first consider a WKB-approximation for

(∆
(p)
f,h − E(h))uwkbp = e−

Φ
hO(h∞) (2.3.1)

with E(h) = O(h2) and the boundary conditions (2.1.8)(2.1.9) and then
check E(h) = O(h∞).
Writing

∀k ∈ N , df,h(e
−Φ
h ak) = e−

Φ
h

[
hdak + d(f − Φ) ∧ ak

]
,

where ak and d(f − Φ) are tangential forms (due to (2.1.8) and (2.1.3)), the
second boundary condition corresponds to

n(dak) = 0 (2.3.2)
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(and more precisely it says:

∀k ∈ N , ak(x) = akI′(x) dxI
′
+ akIn(x) dxIn

satisfies : ∀I ′ ∈ I ′ , ∂a
k
I′

∂xn
(x′, 0) ≡ 0 ).

Let us now recall the following relation which will be very useful (see [HeSj4]
for a complete proof:

e
Φ
h ∆f,he

−Φ
h = h2(d+ d∗)2 + h(L∇Φ − L∗∇Φ + L∇f + L∗∇f ) , (2.3.3)

and write, with the notations of Appendix A.2.2,

L∇Φ − L∗∇Φ + L∇f + L∗∇f = 2L∇Φ +R1 = 2L∇Φ ⊗ Id+R ,

where R and R1 are 0-th differential operators defined in Appendix A.2.2.
By looking for E(h) ∼

∑∞
k=1 h

k+1Ek, the interior equation (2.3.1) reads

e
Φ
h (∆f,h − E(h))e−

Φ
h = h2[(d+ d∗)2 − h−2E(h)] + h [2L∇Φ ⊗ Id+R]

We now verify that it is possible to construct a solution uwkbp to (2.3.1) in Ω

which can be extended to Ω and satisfying the boundary conditions (2.1.8)
and (2.1.9).
The construction of an interior WKB solution in Ω is standard as an inductive
Cauchy problem, once the ak’s are known on ∂Ω (see [DiSj],[Hel2]). Actually
the non characteristic Cauchy problems

[2L∇Φ ⊗ Id+R]ak = −(d+ d∗)2ak−1 +
k∑
`=1

E`a
k−` in Ω . (2.3.4)

are solved by induction with the convention a−1 = 0.
Hence the problem is reduced to the solving of the system made of the
boundary conditions (2.2.3), (2.3.2) and of the compatibility equation on
the boundary (see Appendix A.2.2 for the meaning of the notations):

[2L∇Φ +R1] ak = −(d+ d∗)2ak−1 +
k∑
`=1

E`a
k−` on ∂Ω . (2.3.5)

Owing to Propositions 2.2.1 and 2.2.2 (with the notations of Section 2.2) and
to (2.1.3), the system (2.3.5), (2.2.3), (2.3.2) is equivalent to the differential

17



system on ∂Ω:
−t(d+ d∗)2ak−1 +

k∑
`=1

E`a
k−` = (2L∇Φ̃ ⊗ Id+RT

Neu)akI′dx
I′ (2.3.6)

−n(d+ d∗)2ak−1 − 2`In(x′, 0)dxIn = 2
∂f

∂n

∂akIn
∂xn

dxIn (2.3.7)

(2.2.3) + (2.3.2) ,

where the `In ’s are algebraically C∞(∂Ω)-linear combinations of the akI′ ’s (for
I ′ in I ′) which do not depend on the akIn ’s (for In in In).
Moreover, since dxi = dxi (for i ∈ {1, . . . , n− 1}) at the point U , thanks
to Corollary A.2.5, (2.1.5)-(2.1.6), and according to [HeSj4] pp. 271-274,
RT

Neu(0) restricted to tangential forms is symmetric with the one dimensional
kernel Rdx1 ∧ · · · ∧ dxp.

Since akI′dx
I′ is tangential and 2L∇Φ̃ ⊗ Id only differentiates tangentially

the akI′ ’s

( since (2L∇Φ̃ ⊗ Id)akI′dx
I′ =

n−1∑
i=1

∂akI′

∂xi
(∇Φ̃)idx

I′ ) ,

(2.3.6) can be rewritten as a tangential system which can be solved according
to the analysis of the boundaryless case done in [HeSj4].
Here are the details:
Owing to Proposition 2.2.2, the complete system becomes equivalent to(2L∇Φ̃ ⊗ Id+RT

Neu)akI′dx
I′=−t(d+ d∗)2ak−1+

∑k−1
`=1E`a

k−`+ Eka
0 on ∂Ω

(2L∇Φ ⊗ Id+R)ak = −(d+ d∗)2ak−1 on Ω
∀In ∈ In , aIn|∂Ω ≡ 0 .

Note that the first line is a degenerate matricial transport equation which
can be solved according to [HeSj4][Hel2]:
For k = 0, take a0(0) = dx1∧· · ·∧dxp ∈ Ker (RT

Neu(0)) and for k > 0 choose
Ek so that the compatibility condition

−t(d+ d∗)2ak−1(0) +
k−1∑
`=1

E`a
k−`(0) + Eka

0(0) ∈
(

Ker (RT
Neu(0))

)⊥
is satisfied. Thus, at every step k ∈ N, the first and the third line of the
previous system fully determine the Cauchy data ak(x′, 0) and the number
Ek. The second line solves the interior problem with these Cauchy data and
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contains, with the two other lines, thanks to Proposition 2.2.2, the second
trace condition (2.3.2).

Let us check now E(h) = O(h∞). We prove this by comparing with the half-
space problem, for which we know by (1.3.6) that the first eigenvalue is 0 with
multiplicity one and that the second one is larger than Ch6/5. Take a cut-off
function χ ∈ C∞0 (Ω), χ = 1 in a neighborhood of U such that ∂χ

∂n

∣∣
∂Ω

= 0 and
set

uKp = χe−
Φ
h

K∑
k=0

akhk = χe−
Φ
hAKh .

From ∂χ
∂n

∣∣
∂Ω
≡ 0 and

df,h(χA
K
h ) = (hd+ df∧)χAKh = hdχ ∧ AKh + χdf,hA

K
h ,

the form uKp ∈ Λ1H2(Rn
−) belongs to the domain of A(p)

N and the approxima-

tions uKp and EK(h) =
∑K

k=1Ekh
k+1 satisfy [A(p)

N − EK(h)]uKp = hK+2ρKe−
Φ
h − h2 [∆, χ]uKp = O(hK+2) in Rn

−
nuKp = 0 on Rn−1 × {0}
ndf,hu

K
p = 0 on Rn−1 × {0} ,

for some C∞ 1-form ρK defined in a neighborhood of U and independent of
h.
From

∥∥uwkbp

∥∥ ∼ ch
n+1

4 (from a direct Laplace method),∥∥uKp ∥∥ ∼ ch
n+1

4

and the spectral theorem then implies that there exists an eigenvalue λ(h) of

A(p)
N such that:

|EK(h)− λ(h)| = O(hK+2−n+1
4 ) .

Choosing the integer number K large enough, the inclusion

σ(A(p)
N ) \ {0} ⊂ [Ch6/5,+∞)

combined with the estimate EK(h) = O(h2) implies λ(h) = 0 . The number
K being arbitrary, the construction of the previous quasimode is then possible
only if

∀k ∈ N∗ , Ek = 0 .
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2.4 Local WKB construction in the Dirichlet case

Let here U be a critical point with index p − 1 ∈ {0, . . . , n− 1} (i.e. p ∈
{1, . . . , n}) of f |∂Ω satisfying ∂f

∂n
(U) > 0 and take again a local adapted

coordinate system (x′, xn) around U like in Section 2.1.
Let ϕ be the Agmon distance to U on the boundary and use the first result
of Lemma 1.3.4 with f1 = f and α = ϕ. Denoting by Φ the function Φ− of
the lemma (Φ is the Agmon distance to U i.e. associated with the metric
|∇f(x)|2 dx2), we have locally:

|∂nΦ|2 + |∇TΦ|2 = |∇Φ|2 = |∇f |2 , (2.4.1)

Φ|∂Ω = ϕ , (2.4.2)

∂nΦ|∂Ω = −∂f
∂n
|∂Ω . (2.4.3)

Moreover, the next relation is satisfied (see indeed the proof of (2.1.4) and
replace ∂nΦ|∂Ω = ∂nf |∂Ω by ∂nΦ|∂Ω = −∂nf |∂Ω):

∂2
xnxn(f + Φ)(0) = ∂2

nn(f + Φ)(0) = 0 . (2.4.4)

Like in Section 2.1, there exist other local coordinates (x′, xn) centered at U ,
with x′ = (x1, . . . , xn−1) and dx1, . . . , dxn−1, dxn is orthonormal at U , such
that (2.1.5) and (2.1.6) are satisfied with λi < 0 for i ∈ {1, . . . , p− 1} and
λi > 0 for i ∈ {p, . . . , n− 1}.
Furthermore, the coordinates (x′, xn) can be chosen such that dx1, . . . , dxn−1

and dx1, . . . , dxn−1 coincide at U and even such that x′
∣∣
∂Ω

= x′
∣∣
∂Ω

.

Theorem 2.4.1. Consider around U a local adapted coordinate system x =
(x′, xn) such that dxi = dxi at U (for i in {1, . . . , n− 1}). There exists
locally, in a neighborhood of x = 0, a C∞ solution uwkbp to

∆
(p)
f,hu

wkb
p = e−

Φ
hO(h∞) (2.4.5)

tuwkbp = 0 on ∂Ω (2.4.6)

td∗f,hu
wkb
p = 0 on ∂Ω , (2.4.7)

where uwkbp has the form:

uwkbp = a(x, h)e−
Φ
h ,

with a(x, h) ∼
∑
k

ak(x)hk and a0(0) = dx1 ∧ · · · ∧ dxp−1 ∧ dxn .

20



2.5 First boundary conditions in the Dirichlet case

Writing

a(x, h) = aI(x, h) dxI = aI′(x, h)dxI
′
+ aIn(x, h)dxIn ,

the first boundary condition is equivalent to:

∀k ∈ N, ∀I ′ ∈ I ′ , akI′(x′, 0) ≡ 0 . (2.5.1)

This paragraph specifies some consequences of these conditions.

2.5.1 About L+ L∗

The next relation is obviously satisfied

L∇Φ − L∗∇Φ + L∇f + L∗∇f = −2L∗∇Φ + L∇(f+Φ) + L∗∇(f+Φ) ,

and using again Proposition A.2.3, write:

L∗∇(f+Φ) + L∇(f+Φ) = R4 ,

where R4 is a 0-th order differential operator.

WritingR4 = RT
4 +RN

4 , we deduce from Remark A.2.2 (since akIdx
I = akIndx

In

on the boundary),{
t
(
R4(akIdx

I)
)

= akIn(x′, 0)RN
4 (dxIn) = ˜̀′

I′(x
′, 0)dxI

′

n
(
R4(akIdx

I)
)

= akIn(x′, 0)RT
4 (dxIn) ,

where the ˜̀′
I′ ’s are algebraically C∞(∂Ω)-linear combinations of the akIn ’s (for

In in In) which do not depend on the akI′ ’s (for I ′ in I ′).

Moreover, f+Φ satisfies here the assumptions of Corollary A.2.5 (from (2.4.1)-
(2.4.4)), then RT

4 is given on the boundary, in the coordinates (x′, xn), by:

RT
4 (x′, 0) =


0

RT ′
4 (x′)

...
0

0 · · · 0 δ(x′)


(p)

− κ(x′) Id ,

where δ, κ are C∞ functions which satisfy δ(0) = 0,
κ(0) = Tr

(
Hess (f

∣∣
∂Ω

+ ϕ)(0)
)
, and

RT ′

4 (0) = 2
(
Hess (f

∣∣
∂Ω

+ ϕ)(0)
)
.
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2.5.2 Expression of the codifferential d∗

In order to make a study similar to the one done in Section 2.2 for the Neu-
mann case, we need to work with d∗ and then, to have a handy expression of
this operator.

Set, for a differential form ω, in the coordinate system (x′, xn)

∇i = ∇xi , a∗iω = dxi ∧ ω , and aiω = i∇xiω .

Then d and d∗ write (see [CFKS] pp. 238-247):

d =
n∑
i=1

a∗i∇i = −
n∑
i=1

(∇i)
∗a∗i , (2.5.2)

d∗ = −
n∑
i=1

ai∇i . (2.5.3)

Recall the characteristic relations:

∀i, j ∈ {1, . . . , n} , a∗ia
∗
j + a∗ja

∗
i = 0 , (2.5.4)

aiaj + ajai = 0 , (2.5.5)

a∗iaj + aja
∗
i = gij . (2.5.6)

Denoting by ∂i the operator defined by components with differentiation in a
fixed coordinate system,

∂i(ωIdx
I) =

∂ωI
∂xi

dxI ,

∇i writes (see [CFKS] pp. 238-247)

∇i = ∂i −
∑
j,l,m

Γjilgjma∗l am , (2.5.7)

where the Γjil are the Christoffel symbols.
Then d∗ writes:

d∗ = −
∑
i

ai∂i +
∑
i,j,l,m

Γjilgjmaia
∗
l am

= −
∑
i

ai∂i +
∑
i,j,l,m

Γjilgjm (aia
∗
l + a∗l ai) am −

∑
i,j,l,m

Γjilgjma∗l aiam

= −
∑
i

ai∂i +
∑
i,j,l,m

Γjilgjmg
ilam −

∑
i,j,l,m

Γjilgjma∗l aiam . (2.5.8)

22



2.5.3 Results

Proposition 2.5.1. Using the notations of Appendix A.1 and Section 2.5.1,
the next relations are satisfied for all k in N, when (2.5.1) is fulfilled:{

t
(
(−2L∗∇Φ +R4)ak

)
= 2

(
∂ak
I′

∂xn
∂Φ
∂xn

+ `I′(x
′, 0)
)
dxI

′

n
(
(−2L∗∇Φ +R4)ak

)
= (2L∇Φ̃ ⊗ Id+RT

Dir)a
k
In
dxIn − 2 ∂Φ

∂xn
dxn ∧ d∗ak ,

where the `I′’s are algebraically C∞(∂Ω)-linear combinations of the akIn’s (for
In in In) which do not depend on the akI′’s (for I ′ in I ′) and RT

Dir is a 0-th
order differential operator given on the boundary by the next matrix, in the
coordinates (x′, xn):

RT
Dir(x

′, 0) =


0

RT ′
Dir(x

′)
...
0

0 · · · 0 δ(x′)


(p)

− κ2(x′) Id ,

where δ(0) = 0,
κ2(0) = Tr

(
Hess (f

∣∣
∂Ω
− ϕ)(0)

)
,

and
RT ′

Dir(0) = 2
(
Hess (f

∣∣
∂Ω

)(0)
)
.

Proposition 2.5.2. Assume (2.5.1) for k in N. The p-form

∂Φ

∂xn
dxn ∧ d∗ak

is then normal and the next equivalence is locally valid on the boundary ∂Ω:

∂Φ

∂xn
dxn ∧ d∗ak = 0⇔ td∗ak = 0 .

Proof. Write indeed on the boundary ∂Ω:

∂Φ

∂xn
dxn ∧ d∗ak =

∂Φ

∂xn
dxn ∧ nd∗ak +

∂Φ

∂xn
dxn ∧ td∗ak

= 0 +
∂Φ

∂xn
dxn ∧ td∗ak

=
∂Φ

∂xn
dxn ∧ (d∗ak)I′dx

I′

= (−1)p−1 ∂Φ

∂xn
(d∗ak)I′dx

I′ ∧ dxn .
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Moreover, using
∂f

∂n
(U) = −∂Φ

∂n
(U) > 0 ,

∂Φ
∂xn

is locally negative on the boundary which leads to the result.

Lemma 2.5.3. Under (2.5.1), the next relations are satisfied for k in N:{
n
(
(L∗∇Φ − L∗∇Φ̃

)ak
)

= ∂Φ
∂xn

dxn ∧ d∗ak ,
t
(
(L∗∇Φ − L∗∇Φ̃

)ak
)

=
(
−∂ak

I′
∂xn

∂Φ
∂xn

+ ˜̀
I′(x

′, 0)
)
dxI

′
,

where the ˜̀
I′’s are algebraically C∞(∂Ω)-linear combinations of the akIn’s (for

In in In) which do not depend on the akI′’s (for I ′ in In).

Proof. Owing to (1.2.5) and to the Cartan formula (1.2.8), write in the co-
ordinates (x′, xn) (the function Φ̃ is defined in Appendix A.1):(
L∗∇Φ − L∗∇Φ̃

)
ak = d∗(dΦ ∧ ak) + dΦ ∧ d∗ak + d∗(dΦ̃ ∧ ak) + dΦ̃ ∧ d∗ak

= d∗(
∂Φ

∂xn
dxn ∧ ak) +

∂Φ

∂xn
dxn ∧ d∗ak

+ d∗((dTΦ− dΦ̃) ∧ ak) + (dTΦ− dΦ̃) ∧ d∗ak . (2.5.9)

The second term ∂Φ
∂xn

dxn ∧ d∗ak of the r.h.s. of (2.5.9) is normal according to
Proposition 2.5.2.
Moreover, since dTΦ = dΦ̃ on the boundary, the term (dTΦ− dΦ̃) ∧ d∗ak of
the r.h.s. also equals 0 on ∂Ω.
Hence, write on ∂Ω:(

L∗∇Φ − L∗∇Φ̃

)
ak =

∂Φ

∂xn
dxn ∧ d∗ak

+ d∗(
∂Φ

∂xn
dxn ∧ ak) + d∗((dTΦ− dΦ̃) ∧ ak) .(2.5.10)

Study in a first time the term d∗( ∂Φ
∂xn

dxn ∧ ak). Writing

ak = akIdx
I = akI′dx

I′ + akIndx
In ,

we deduce (in Ω):

∂Φ

∂xn
dxn ∧ ak =

∂Φ

∂xn
akI′dx

n ∧ dxI′ ,
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and, applying d∗ to this last relation (see (2.5.8)), we obtain on ∂Ω (remember
that akI′ = 0 on ∂Ω)

d∗(
∂Φ

∂xn
dxn ∧ ak) = −

∑
i

ai∂i(
∂Φ

∂xn
akI′dx

n ∧ dxI′)

+
∑
i,j,l,m

Γjilgjmg
ilam(

∂Φ

∂xn
akI′ dx

n ∧dxI′)−
∑
i,j,l,m

Γjilgjma∗l aiam(
∂Φ

∂xn
akI′dx

n ∧ dxI′)

= −
∑
i

ai∂i(
∂Φ

∂xn
akI′dx

n ∧ dxI′) + 0

= −i∇xn
∂Φ

∂xn
∂akI′

∂xn
dxn ∧ dxI′

= − ∂Φ

∂xn
∂akI′

∂xn
dxI

′
(2.5.11)

(we used at the last line the fact that G−1
0 is block diagonal with gnn ≡ 1).

Look now at the third term of the r.h.s. of (2.5.10) and write:

(dTΦ− dΦ̃) ∧ akIdxI =
n−1∑
i=1

(
∂Φ

∂xi
(x)− ∂Φ

∂xi
(x′, 0)

)
akIdx

i ∧ dxI

= :
n−1∑
i=1

αia
k
Idx

i ∧ dxI

where, for i in {1, . . . , n− 1},

αi =
∂Φ

∂xi
(x)− ∂Φ

∂xi
(x′, 0) .

Hence, for j in {1, . . . , n− 1}, αj satisfies (see (A.1.5)):

∀j ∈ {1, . . . , n− 1} , αj(x′, 0) ≡ 0 .

We obtain consequently on ∂Ω(see again (2.5.8)),
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d∗((dTΦ− dΦ̃) ∧ akIdxI)(x′, 0) = −
∑
i

ai∂i

n−1∑
j=1

αja
k
Idx

j ∧ dxI

+

(∑
i,j,l,m

Γjilgjmg
ilam −

∑
i,j,l,m

Γjilgjma∗l aiam

)
n−1∑
j=1

αja
k
Idx

j ∧ dxI

= −
∑
i

ai∂i

n−1∑
j=1

αja
k
Idx

j ∧ dxI

= −an

n−1∑
j=1

∂

∂xn
(αja

k
I )dx

j ∧ dxI

where we used αj(x
′, 0) ≡ 0 at the two last lines.

Now, since gni = gin = 0 for i in {1, . . . , n− 1}, write for all I ′ ∈ I ′:

andx
I′ = i∇xndx

I′ = 0 .

It implies:

d∗((dTΦ− dΦ̃) ∧ akIdxI)(x′, 0) = −an

n−1∑
j=1

∂

∂xn
(αja

k
I )dx

j ∧ dxI

= −an

n−1∑
j=1

∂

∂xn
(αja

k
In)dxj ∧ dxIn

= (−1)p+1

n−1∑
j=1

∂

∂xn
(αja

k
In)dxj ∧ dxIn\{n}

= (−1)p+1

n−1∑
j=1

akIn
∂αj
∂xn

(x′, 0)dxj ∧ dxIn\{n}

= : ˜̀
I′(x

′, 0)dxI
′
, (2.5.12)

where the ˜̀
I′ ’s are algebraically C∞(∂Ω)-linear combinations of the akIn ’s (for

In in In) which do not depend on the akI′ ’s (for I ′ in I ′).
Combining (2.5.10), (2.5.11), and (2.5.12) leads to the result announced in
Lemma 2.5.3.
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Proof of Proposition 2.5.1.
Having in mind Lemma 2.5.3, look at the term −2L∗∇Φ̃

+R4.
Again by Proposition A.2.3, write:

−2L∗∇Φ̃
= 2L∇Φ̃ +R5

= 2L∇Φ̃ ⊗ Id+R5 +R6

whereR5 = RT
5 +RN

5 andR6 = RT
6 +RN

6 are 0-th order differential operators
which satisfy, for i ∈ {5, 6} (since akIdx

I = akIndx
In on the boundary):{

t
(
Ri(a

k
Idx

I)
)

= akIn(x′, 0)RN
i (dxIn) = ˜̀i′

I′(x
′, 0)dxI

′

n
(
Ri(a

k
Idx

I)
)

= akIn(x′, 0)RT
i (dxIn) ,

where the ˜̀i′
I′(x

′, 0)’s are algebraically C∞(∂Ω)-linear combinations of the akIn ’s
(for In in In) which do not depend on the akI′ ’s (for I ′ in I ′).
Moreover, since Φ̃ satisfies the assumptions of Corollary A.2.5, RT

5 and RT
6

are given on the boundary, in the coordinates (x′, xn), by:

RT
5 =


0

RT ′
5

...
0

0 · · · 0 0


(p)

− ζ(x′) Id and RT
6 =


0

RT ′
6

...
0

0 · · · 0 0


(p)

,

where
ζ(0) = −2Tr

(
Hess (Φ̃

∣∣
∂Ω

)(0)
)

= −2Tr (Hess (ϕ)(0)) ,

and RT ′
5 , RT ′

6 write at 0:

RT ′

5 (0) = −4 (Hess (ϕ)(0)) and RT ′

6 (0) = 2 (Hess (ϕ)(0))

Set RDir = R4 +R5 +R6 and ˜̀(3)
I′ = ˜̀′

I′ +
˜̀5′

I′ +
˜̀6′

I′ for I ′ in I ′. RDir is a 0-th
order differential operator which satisfies

−2L∇Φ̃ +R4 = 2L∇Φ̃ ⊗ Id+RDir (2.5.13)

and{
t
(
RDir(a

k
Idx

I)
)

= akIn(x′, 0)RN
Dir(dx

In) = ˜̀(3)
I′ (x′, 0)dxI

′

n
(
RDir(a

k
Idx

I)
)

= akIn(x′, 0)RT
Dir(dx

In) ,
(2.5.14)

where the ˜̀(3)
I′ ’s are algebraically C∞(∂Ω)-linear combinations of the akIn ’s (for

In in In) which do not depend on the akI′ ’s (for I ′ in I ′).
Moreover, RT

Dir is given on the boundary, in the coordinates (x′, xn), by:
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RT
Dir(x

′, 0) =


0

RT ′
Dir(x

′, 0)
...
0

0 · · · 0 δ(x′)


(p)

− κ2(x′)Id ,

where δ(0) = 0,

κ2(0) = κ(0) + ζ(0) = Tr
(
Hess (f

∣∣
∂Ω

+ ϕ)(0)
)
− 2Tr (Hess (ϕ)(0))

= Tr
(
Hess (f

∣∣
∂Ω
− ϕ)(0)

)
,

and

RT ′

Dir(0) = RT ′

4 (0) +RT ′

5 (0) +RT ′

6 (0)

= 2
(
Hess (f

∣∣
∂Ω

+ ϕ)(0)
)
− 2 (Hess (ϕ)(0))

= 2
(
Hess (f

∣∣
∂Ω

)(0)
)
.

Look now at the term 2L∇Φ̃ ⊗ Id. By the Cartan formula (1.2.8),

(2L∇Φ̃ ⊗ Id)ak = dakI′(∇Φ̃)dxI
′
+ dakIn(∇Φ̃)dxIn ,

and, using the boundary conditions satisfied by the akI ’s (for I in I) and the
fact that ∇Φ̃ is a tangential vector field, we obtain:

(2L∇Φ̃ ⊗ Id)ak =
n−1∑
i=1

∂akIn
∂xi

(∇Φ̃)idx
In

= 2L∇Φ̃ ⊗ Id a
k
Indx

In . (2.5.15)

Set `I′ = −˜̀
I′ +

1
2
˜̀(3)
I′ and write

(−2L∗∇Φ +R3) ak = −2
(
L∗∇Φ − L∗∇Φ̃

)
ak +

(
−2L∗∇Φ̃

+R3

)
ak .

Using (2.5.13), (2.5.14), (2.5.15), Proposition 2.5.1 is then a direct conse-
quence of Lemma 2.5.3.
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2.6 Proof of Theorem 2.4.1

Although the calculations are different, the scheme of the proof is the same
as for Theorem 2.1.1. Consider first a WKB-approximation for

(∆
(p)
f,h − E(h))uwkbp = e−

Φ
hO(h∞) (2.6.1)

with E(h) = O(h2) and the boundary conditions (2.4.6)(2.4.7).

From
∀k ∈ N , d∗f,h(e

−Φ
h ak) = e−

Φ
h

[
hd∗ak + i∇(f+Φ)a

k
]
,

where ak is a normal form and ∇(f + Φ) is a tangential vectorfield (due to
(2.4.6) and (2.4.3)), the second boundary condition corresponds to

t(d∗ak) = 0 . (2.6.2)

Recall now, using the notations of Appendix A.2.2 and Section 2.5.1, the
next relation,

e
Φ
h ∆f,he

−Φ
h = h2(d+ d∗)2 + h(2L∇Φ ⊗ Id+R)

= h2(d+ d∗)2 + h(−2L∗∇Φ +R4) .

By looking for E(h) ∼
∑∞

k=1 h
k+1Ek, the interior equation (2.6.1) reads, like

in Section 2.3,

e
Φ
h (∆f,h − E(h))e−

Φ
h = h2[(d+ d∗)2 − h−2E(h)] + h [2L∇Φ ⊗ Id+R] .

Hence, like in Section 2.3, the construction of an interior WKB solution in Ω
is standard as an inductive Cauchy problem, once the ak’s are known on ∂Ω
(since the non characteristic Cauchy problems

[2L∇Φ ⊗ Id+R]ak = −(d+ d∗)2ak−1 +
k∑
`=1

E`a
k−` in Ω . (2.6.3)

are solved by induction with the convention a−1 = 0)
and the problem is reduced to the solving of the system made of the boundary
conditions (2.5.1), (2.6.2) and of the compatibility equation (see Section 2.5.1
for the meaning of the notations):

[−2L∗∇Φ +R4] ak = −(d+ d∗)2ak−1 +
k∑
`=1

E`a
k−` on ∂Ω . (2.6.4)
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Owing to Propositions 2.5.1 and 2.5.2 (with the notations of Section 2.5.3)
and to (2.4.3), the system (2.6.4), (2.5.1), (2.6.2) is equivalent to the differ-
ential system on ∂Ω:


−n(d+ d∗)2ak−1 +

k∑
`=1

E`a
k−` = (2L∇Φ̃ ⊗ Id+RT

Dir)a
k
Indx

In (2.6.5)

−t(d+ d∗)2ak−1 − 2`I′(x
′, 0)dxI

′
= −2

∂f

∂n

∂akI′

∂xn
dxI

′
(2.6.6)

(2.5.1) + (2.6.2) ,

where the `I′ ’s are algebraically C∞(∂Ω)-linear combinations of the akIn ’s (for
In in In) which do not depend on the akI′ ’s (for I ′ in I ′).
Moreover, since dxi = dxi (for i ∈ {1, . . . , n− 1}) at the point U , thanks
to Corollary A.2.5, (2.1.5)-(2.1.6), and according to [HeSj4] pp. 271-274,
RT

Dir(0) restricted to normal forms is symmetric with the one dimensional
kernel Rdx1 ∧ · · · ∧ dxp−1 ∧ dxn.

Since akIndx
In is normal and 2L∇Φ̃ ⊗ Id only differentiates tangentially the

akIn ’s

( since (2L∇Φ̃ ⊗ Id)akIndx
In =

n−1∑
i=1

∂akIn
∂xi

(∇Φ̃)idx
In ) ,

(2.6.5) can be rewritten as a tangential system which can be solved according
to the analysis of the boundaryless case done in [HeSj4].
Here are the details:
Owing to Proposition 2.5.2, the complete system becomes equivalent to(2L∇Φ̃ ⊗ Id+RT

Dir)a
k
In
dxIn=−n(d+ d∗)2ak−1+

∑k−1
`=1 E`a

k−`+ Eka
0 on ∂Ω

(2L∇Φ ⊗ Id+R)ak = −(d+ d∗)2ak−1 on Ω
∀I ′ ∈ I ′ , aI′|∂Ω ≡ 0 .

The first line is again a degenerate matricial transport equation which can
be solved according to [HeSj4][Hel2]:
For k = 0, take a0(0) = dx1∧· · ·∧dxp−1∧dxn ∈ Ker (RT

Dir(0)) and for k > 0
choose Ek so that the compatibility condition

−n(d+ d∗)2ak−1(0) +
k−1∑
`=1

E`a
k−`(0) + Eka

0(0) ∈
(

Ker (RT
Dir(0))

)⊥
is satisfied. Thus, at every step k ∈ N, the first and the third line of the
previous system fully determine the Cauchy data ak(x′, 0) and the number
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Ek. The second line solves the interior problem with these Cauchy data and
contains, with the two other lines, thanks to Proposition 2.5.2, the second
trace condition (2.6.2).
Checking E(h) = O(h∞) is then identical to the end of the proof of Theorem
2.1.1 done in Section 2.3 after choosing a cut-off function χ which satisfies
∇χ = ∇Tχ on the boundary ∂Ω.

A Computations in local adapted coordinate

systems

We work here in a local adapted coordinate system (x′, xn) around U ∈ ∂Ω
in order to apply indifferently the results of this section to the Neumann and
Dirichlet cases.

A.1 A modified Agmon distance

Define Φ̃ around U in the coordinates (x′, xn) by

∀x = (x′, xn) , Φ̃(x′, xn) = Φ(x′, 0) , (A.1.1)

and note the next relation satisfied for all x around U , in the coordinates
(x′, xn), due to the form of G±1

0 (see Remark 1.3.3):

{
dΦ̃(x) = dT Φ̃(x) + ∂Φ̃

∂xn
(x)dxn = dT Φ̃(x)

∇Φ̃(x) = ∇T Φ̃(x) + ∂Φ̃
∂xn

(x) ∂
∂xn

= ∇T Φ̃(x)
.

For a vector (or a vector field) X =
∑n

i=1 Xi
∂
∂xi

, making the identification

X =

 X1
...
Xn

 ,

the tangential part XT (resp. the normal part XN) of X is defined as:

XT =


X1
...

Xn−1

0

 (resp. XN =


0
...
0
Xn

) .
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Similarly, for a (n, n)-matrix A(x) = (aij(x))i,j, define AT (x) and AN(x) by:

AT =


0

A′
...
0

0 · · · 0 ann

 andAN =


a1n

[0]
...

an−1n

an1 · · · ann−1 0

 .

Recall moreover that, for a vector (or a vector field) X and a C∞ function ψ,
the identification 〈∇ψ |X〉g0

= dψ(X) leads to:

∇ψ = G−1
0


∂ψ
∂x1

...
∂ψ
∂xn

 .

Hence, due to the form of G−1
0 (see Remark 1.3.3), the next relations are

indeed satisfied:

(∇ψ)T = ∇Tψ = G−1
0


∂ψ
∂x1

...
∂ψ

∂xn−1

0


and

(∇ψ)N =
∂ψ

∂xn
∂

∂xn
= G−1

0


0
...
0
∂ψ
∂xn

 .

In the Neumann case, we are going to compare L∇Φ and L∇Φ̃ and the next
relations could be convenient:

∇Φ−∇Φ̃ = G−1
0


∂Φ
∂x1 (x)− ∂Φ

∂x1 (x′, 0)
...

∂Φ
∂xn−1 (x)− ∂Φ

∂xn−1 (x′, 0)
∂Φ
∂xn

(x)

 (A.1.2)

and

∇TΦ−∇Φ̃ = G−1
0


∂Φ
∂x1 (x)− ∂Φ

∂x1 (x′, 0)
...

∂Φ
∂xn−1 (x)− ∂Φ

∂xn−1 (x′, 0)
0

 . (A.1.3)
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At least, we are going to compare L∗∇Φ and L∗∇Φ̃
in the Dirichlet case and the

next relations could also be convenient:

dΦ− dΦ̃ =
n−1∑
i=1

(
∂Φ

∂xi
(x)− ∂Φ

∂xi
(x′, 0)

)
dxi +

∂Φ

∂xn
(x)dxn (A.1.4)

and

dTΦ− dΦ̃ =
n−1∑
i=1

(
∂Φ

∂xi
(x)− ∂Φ

∂xi
(x′, 0)

)
dxi . (A.1.5)

A.2 About L+ L∗

A.2.1 For a general C∞ function h

In this subsection, we give similar results to those done in [HeSj4] Ap-
pendix A.

Take h a C∞ function from Ω on R and write:

∇h =
n∑
i=1

(∇h)i
∂

∂xi
.

According to [HeSj4], give the next algebraic definition:

Definition A.2.1. For a Euclidean space (E, 〈· | ·〉) and A ∈ L(E), A(p)

and Γ(p)(A) denote respectively the linear application A(p) ∈ L(ΛpE) and the
application Γ(p)(A) = A⊗ · · · ⊗ A:

A(p)(ω1 ∧ · · · ∧ ωp) = (Aω1 ∧ · · · ∧ ωp) + · · ·+ (ω1 ∧ · · · ∧ Aωp)
and

Γ(p)(A)(ω1 ∧ · · · ∧ ωp) = (Aω1) ∧ · · · ∧ (Aωp) .

(with the obvious convention A(0) = 0 and Γ(0)(A) = 1).

Remark A.2.2. Under the canonical identification Λ1E = E, note that
A(1) = A. Moreover, if A∗ denotes the adjoint of A according to the scalar
product on E, the adjoint of A(p) is simply (A(p))∗ = (A∗)(p) =: A(p),∗ (recall
that ΛpE is a Euclidean space with the scalar product 〈· | ·〉p:

〈ω1 ∧ · · · ∧ ωp |µ1 ∧ · · · ∧ µp〉p = det (〈ωi |µj〉)i,j ) .
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Remark that for a p-form akIdx
I = akI′dx

I′ + akIndx
In , with the notations of

Appendix A.1, A(p) = A
(p)
T + A

(p)
N and:{

t
(
A(p)(akIdx

I)
)

= akI′(x
′, 0)A

(p)
T (dxI

′
) + akIn(x′, 0)A

(p)
N (dxIn)

n
(
A(p)(akIdx

I)
)

= akIn(x′, 0)A
(p)
T (dxIn) + akI′(x

′, 0)A
(p)
N (dxI

′
) .

Moreover, for any 0-th order differential operator A on the form A = A(p) +
ψ Id, where ψ is a C∞ function, we will denote by AT and AN the next 0-th
order differential operators:

AT = A
(p)
T + ψ Id and AN = A

(p)
N

(notice that AT (resp. AN) coincides with A
(p)
T (resp. A

(p)
N ) if ψ ≡ 0).

Furthermore, our aim is to work with tangential forms in the Neumann case
(i.e. akIdx

I = akI′dx
I′ on ∂Ω) and with normal forms in the Dirichlet case (i.e.

akIdx
I = akIndx

In on ∂Ω). Hence, for any tangential form in the Neumann
case (resp. for any normal form in the Dirichlet case), write:

t
(
A(akIdx

I)
)

= akI′(x
′, 0)A

(p)
T (dxI

′
) + ψ(x′, 0)akI′(x

′, 0)dxI
′

= t
(
AT (akIdx

I)
)

n
(
A(akIdx

I)
)

= akI′(x
′, 0)A

(p)
N (dxI

′
) = n

(
AN(akIdx

I)
) (A.2.1)

(resp.
t
(
A(akIdx

I)
)

= akIn(x′, 0)A
(p)
N (dxI

′
) = t

(
AN(akIdx

I)
)

n
(
A(akIdx

I)
)

= akIn(x′, 0)A
(p)
T (dxIn) + ψ(x′, 0)akIn(x′, 0)dxIn

= n
(
AT (akIdx

I)
) ).(A.2.2)

The end of this section is devoted to the proof of the next proposition:

Proposition A.2.3. In the coordinates (x′, xn), the next equalities are sat-
isfied:

L∇h = L∇h ⊗ Id+Rh

L∇h + L∗∇h = Rh +R∗h −
(∑n

i=1

(
∂(∇h)i
∂xi

+ 1
2
(∇h)i

∂[detG0]
∂xi

))
Id

−
∑n

i=1(∇h)i(G0
∂[G−1

0 ]

∂xi
)(p) ,

where (L∇h ⊗ Id)akIdx
I = (L∇h(akI ))dxI , Rh is the 0-th differential operator

given by the matrix:

Rh(x) =

(
∂(∇h)j
∂xi

)(p)

i,j

=: A
(p)
h ,
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and
(
∂(∇h)j
∂xi

)
i,j

, G0
∂[G−1

0 ]

∂xi
are viewed as endomorphisms of T ∗xΩ. Moreover,

R∗h is given by the matrix:

R∗h := A
(p),∗
h = (G0

tAhG
−1
0 )(p) .

Remark A.2.4. From the computations done in Appendix A.1, write
(∇h)n = ∂h

∂xn
. Moreover, due to the form of G±1

0 , note that

Rh +R∗h −
n∑
i=1

(∇h)i(G0
∂[G−1

0 ]

∂xi
)(p)

is given by the matrix: A′h +G′0
tA′hG

−1′

0 −
∑n

i=1(∇h)iG
′
0
∂[G−1′

0 ]

∂xi

(
∂2h

∂xn∂xi

)
i,1

+G′0

(
∂(∇h)i
∂xn

)
i,1(

∂(∇h)j
∂xn

)
1,j

+
(

∂2h
∂xn∂xj

)
1,j
G−1′

0
∂2h

∂(xn)2


(p)

.

Corollary A.2.5. In the coordinates (x′, xn), assume that the function h
admits a critical point at 0, that ∂h

∂xn
≡ 0 on the boundary ∂Ω, and that

∂2h
∂(xn)2 (0) = 0. Then the next relations are true:

Rh(0) = R∗h(0) =


0

Hess (h
∣∣
∂Ω

)(0)
...

0 · · · 0


(p)

and
(L∇h + L∗∇h) (0) = 2Rh(0)− Tr

(
Hess (h

∣∣
∂Ω

)(0)
)
Id .

Proof. Since (x′, xn) are local adapted coordinates around U ∼= 0 and 0 is a
critical point of h, note first that for all i in {1, . . . , n},

(∇h)i =
n∑
j=1

gij
∂h

∂xj
=

∂h

∂xi
+O(|x|2) .

This implies

Rh(x) =

(
∂(∇h)j
∂xi

)(p)

i,j

= (Hess (h))(p) +O(|x|)
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and in particular at 0, since ∂h
∂xn
≡ 0 on the boundary and ∂2h

∂(xn)2 (0) = 0:

Rh(0) =


0

Hess (h
∣∣
∂Ω

)(0)
...

0 · · · 0


(p)

.

Moreover, we deduce from G±1
0 (0) = In and the symmetry of Hess (h

∣∣
∂Ω

)(0),

R∗h(0) = Rh(0) .

At least, we obtain from ∂2h
∂(xn)2 (0) = 0,

−

(
n∑
i=1

∂(∇h)i
∂xi

)
Id = −Tr

(
Hess (h

∣∣
∂Ω

)(0)
)

at 0 ,

which leads to the end of the proof, using that for all i in {1, . . . , n},
(∇h)i(0) = ∂h

∂xi
(0) = 0.

Proof of Proposition A.2.3.
The first equality is proved in [HeSj4] pp. 334-336. There is also a proof of
the second equality in [HeSj4] but we need to be more precise here.
From the first equality, deduce:

L∗∇h = (L∇h ⊗ Id)∗ +R∗h .

Remarking that the scalar product of two p-forms ω and η is given by

〈ω | η〉g0 = 〈ω |Γ(p)(G−1
0 )η〉ge ,

where ge is the Euclidean metric
∑n

i=1 d(xi)2, we obtain

R∗h = Γ(p)(G0)(tAh)
(p)Γ(p)(G−1

0 ) = (G0
tAhG

−1
0 )(p) .

Look now at the term (L∇h ⊗ Id)∗.
Take first two p-forms αω and βη where α, β are C∞0 (Ω,R) functions, and ω,
η are two p-forms dxI and dxJ . Denoting by Vg0(dx) the normalized volume
form, Vg0(dx) satisfies:

Vg0(dx) = (detG0(x))
1
2dx1 ∧ · · · ∧ dxn =: ν(x)dx1 ∧ · · · ∧ dxn .
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Hence we deduce:

〈αω | (L∇h ⊗ Id)∗βη〉g0 = 〈L∇h(α)ω | η〉g0

=

∫
(L∇h(α))β〈ω | η〉g0(x)(detG0(x))

1
2dx .

Using now the Cartan formula (1.2.8), L∇h(α) = dα(∇h) =
∑n

i=1
∂α
∂xi

(∇h)i
and we obtain:∫

(L∇h(α))β〈ω | η〉g0(x)(detG0(x))
1
2dx =

∫ ( n∑
i=1

∂α

∂xi
(∇h)iβ

)
〈ω | η〉g0(x)ν dx

=−
∫
α

n∑
i=1

∂

∂xi
(
(∇h)iβ〈ω | η〉g0(x)ν

)
dx

Moreover, write:∫
α

n∑
i=1

∂

∂xi
(
(∇h)iβ〈ω | η〉g0(x)ν

)
dx =−

∫
α

n∑
i=1

(
∂(∇h)i
∂xi

β〈ω | η〉g0(x)ν

)
dx

−
∫
α

n∑
i=1

(
(∇h)i

∂β

∂xi
〈ω | η〉g0(x)ν

)
dx −

∫
α

n∑
i=1

(
(∇h)iβ

∂

∂xi
(〈ω | η〉g0(x))ν

)
dx

−
∫
α

n∑
i=1

(
(∇h)iβ〈ω | η〉g0(x)

∂ν

∂xi

)
dx

= −
∫
α

n∑
i=1

(
∂(∇h)i
∂xi

β〈ω | η〉g0(x)ν

)
dx

−
∫
α(L∇h(β))〈ω | η〉g0(x)νdx −

∫
α

n∑
i=1

(
(∇h)iβ

∂

∂xi
(〈ω | η〉g0(x))ν

)
dx

−
∫
α

n∑
i=1

(
(∇h)iβ〈ω | η〉g0(x)

∂ν

∂xi

)
dx .

Noting that for all i in {1, . . . , n},

∂

∂xi
Γ(p)(G−1

0 ) = (
∂G−1

0

∂xi
⊗G−1

0 ⊗ · · · ⊗G−1
0 )+ · · ·+(G−1

0 ⊗ · · · ⊗G−1
0 ⊗

∂G−1
0

∂xi
)

= Γ(p)(G−1
0 )(G0

∂[G−1
0 ]

∂xi
)(p),

we deduce for all i in {1, . . . , n},

∂

∂xi
〈ω | η〉g0(x) = 〈ω | (G0

∂[G−1
0 ]

∂xi
)(p)η〉g0(x) .
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Consequently,

(L∇h ⊗ Id)∗ = −L∇h ⊗ Id−

(
n∑
i=1

(
∂(∇h)i
∂xi

+
(∇h)i
ν

∂ν

∂xi

))
Id

−
n∑
i=1

(∇h)i(G0
∂[G−1

0 ]

∂xi
)(p) ,

which leads to the second result of Proposition A.2.3.

A.2.2 Application to L∇Φ − L∗∇Φ + L∇f + L∗∇f
Write first

L∇Φ − L∗∇Φ + L∇f + L∗∇f = 2L∇Φ + L∇(f−Φ) + L∗∇(f−Φ) .

By Proposition A.2.3, we deduce the next relation:

L∗∇(f−Φ) + L∇(f−Φ) = R1 ,

where R1 is a 0-th order differential operator.

Furthermore, using now the first equality of Proposition A.2.3,

2L∇Φ = 2L∇Φ ⊗ Id+R2 ,

where R2 is a 0-th differential operator too.

Consequently, setting R = R1 +R2, we obtain the following relation:

L∇Φ − L∗∇Φ + L∇f + L∗∇f = 2L∇Φ ⊗ Id+R ,

where R is a 0-th order differential operator.
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