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Introduction 1.Motivations

In order to compute accurately the small eigenvalues (i.e. of order O(e -C h ) with C > 0) of a self adjoint Witten Laplacian acting on 0-forms,

∆ (0) f,h = -h 2 ∆ + |∇f (x)| 2 -h∆f (x) ,
as the small parameter h > 0 goes to 0 (where the function f is assumed to be a Morse function on some bounded domain Ω with or without boundary), we need WKB approximations of the 1-eigenforms associated with the small eigenvalues of ∆

(1) f,h , the Witten Laplacian acting on 1-forms. In the article of B. Helffer, M. Klein and F. Nier [HKN], the authors worked and constructed local WKB approximations of 1-eigenforms in the case of a manifold without boundary. and d * its formal adjoint with respect to the L 2 -scalar product inherited from the Riemannian structure,

d (p), * : C ∞ 0 (Ω; Λ p+1 T * Ω) → C ∞ 0 (Ω; Λ p T * Ω) .
Remark 1.2.1. Note that d and d * are both well defined on C ∞ (Ω; ΛT * Ω) .

Set, for a function f ∈ C ∞ (Ω; R) and h > 0, the distorted operators defined on C ∞ (Ω; ΛT * Ω):

d f,h = e -f (x)/h (hd) e f (x)/h and d * f,h = e f (x)/h (hd * ) e -f (x)/h .

The Witten Laplacian is the differential operator defined on C ∞ (Ω; ΛT * Ω) by: ∆

f,h = d * f,h d f,h + d f,h d * f,h = (d f,h + d * f,h ) 2 .
(1.2.1)

Remark 1.2.2. The last equality becomes from the property dd = d * d * = 0 which implies: (1.2.4)

d f,h d f,h = d * f,h d * f,h = 0. ( 1 
We end up this section by a few relations with exterior and interior products (respectively denoted by ∧ and i), gradients (denoted by ∇) and Lie derivatives (denoted by L) which will be very useful:

(df ∧) * = i ∇f (in L 2 (Ω; Λ p T * Ω )) , (1.2.5) d f,h = hd + df ∧ , (1.2.6) d * f,h = hd * + i ∇f , (1.2.7) d • i X + i X • d = L X , (1.2.8) ∆ f,h = h 2 (d + d * ) 2 + |∇f | 2 + h L ∇f + L * ∇f , (1.2.9)
where X denotes a vector field on Ω or Ω.

Remark 1.2.3. The operators introduced depend on the Riemannian metric g 0 but we omit this dependence for conciseness. Definition 1.2.4. We denote by n σ the outgoing normal at σ ∈ ∂Ω and by n * σ the 1-form dual to n σ for the Riemannian scalar product. For any ω ∈ C ∞ (Ω; Λ p T * Ω), the form tω is the element of C ∞ (∂Ω; Λ p T * Ω) defined by: (tω) σ (X 1 , . . . , X p ) = ω σ (X T 1 , . . . , X T p ) , ∀σ ∈ ∂Ω , with the decomposition into the tangential and normal components to ∂Ω at σ: X i = X T i ⊕ x ⊥ i n σ . Moreover, (tω) σ = i nσ ( n * σ ∧ ω σ ) . The projected form tω, which depends on the choice of n σ (i.e. on g 0 ), can be compared with the canonical pull-back j * ω associated with the embedding j : ∂Ω → Ω. Actually the exact relationship is j * ω = j * (tω). The normal part of ω on ∂Ω is defined by: nω = ω| ∂Ω -tω ∈ C ∞ (∂Ω; Λ p T * Ω).

Definition 1.2.5. We denote by ∂f ∂n (σ) or ∂ n f (σ) the normal derivative of f at σ: ∂f ∂n (σ) = ∂ n f (σ) := ∇f (σ) | n σ .

Assumption 1.2.6. The functions f ∈ C ∞ (Ω, R) and f ∂Ω ∈ C ∞ (∂Ω, R) are Morse functions. Moreover, the function f has no critical points on ∂Ω.

According to [ChLi], [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF], and [Lep], the Neumann realization (resp. the Dirichlet realization) of the Witten Laplacian, denoted by ∆ N f,h (resp. ∆ N f,h ), is the self adjoint realization of ∆ f,h whose domain is

D(∆ N f,h ) = {ω ∈ ΛH 2 (Ω) , nω = 0 , nd f,h ω = 0} (resp. D(∆ D f,h ) = ω ∈ ΛH 2 (Ω) , tω = 0 , td * f,h ω = 0 ) .
Definition 1.2.7. A point U ∈ Ω is called a generalized critical point of f with index p in the Neumann case (resp. in the Dirichlet case) if:

• either U ∈ Ω and U is a critical point of f with index p ,

• or U ∈ ∂Ω and U is a critical point with index p of f | ∂Ω such that ∂f ∂n (U ) < 0 (resp. U ∈ ∂Ω and U is a critical point with index p -1 of f | ∂Ω such that ∂f ∂n (U ) > 0) .

Remark 1.2.8. This convention implies, in the Neumann case (resp. in the Dirichlet case), that for a generalized critical point U with index p, p ∈ {0, . . . , n -1} (resp. p ∈ {1, . . . , n}) .

Moreover, according to these references extending to the boundary case the analysis by Witten in [Wit], we know that the dimension of the spectral subspace associated with the small eigenvalues (i.e. smaller than h) of ∆

(p),N f,h (resp. ∆ (p),D f,h ) is m p (f )
, the number of generalized critical points of f with index p, and that the corresponding eigenvectors concentrate around these generalized critical points. The construction of WKB approximations of these eigenvectors already exists in the case of a manifold without boundary (see [Wit][HeSj4][HKN][Hel2]). We want here to obtain similar results around the generalized critical points on the boundary for the Neumann and Dirichlet cases.

A few preliminary results

In the sequel, we will work with different coordinate systems and we will often refer to the next definition.

Definition 1.3.1. Let σ be a point on the boundary ∂Ω. A local adapted coordinate system around σ is a local coordinate system (x 1 , . . . , x n ) = (x , x n ) centered at σ satisfying the following properties: i) dx 1 , . . . , dx n is an orthonormal basis of T * U (Ω) positively oriented.

ii) The boundary ∂Ω corresponds locally to x n = 0 and the interior Ω to x n < 0.

iii) ∂ ∂x n | ∂Ω = n, the outgoing normal at the boundary. Moreover, ∂ ∂x n is unitary and normal to {x n = Constant}. Such a coordinate system is more specific that the one provided by the collar theorem in [Sch], [Duf], and [DuSp]. Moreover, the analysis done in [Pet] pp. 117-122 leads to the next proposition: Proposition 1.3.2. A local coordinate system satisfying Definition 1.3.1 always exists.

Proof. Consider indeed (see [Pet] pp. 119-120)

T ∂Ω ⊥ = v ∈ T σ Ω : σ ∈ ∂Ω, v ∈ (T σ ∂Ω) ⊥ ⊂ T σ Ω ,
where (T σ ∂Ω) ⊥ is the orthogonal complement of T ∂Ω in T σ Ω (so for each σ ∈ ∂Ω, T σ Ω = T σ ∂Ω ⊕ ⊥ (T σ ∂Ω) ⊥ ). Then, the map exp ⊥ introduced in [Pet] is a diffeomorphism from an open neighborhood of the zero section in T ∂Ω ⊥ onto its image in Ω. It means, choosing a point σ near the boundary ∂Ω, that there exists an unique geodesic ν joining σ to a point σ b on the boundary which satisfies ν(σ b ) ∈ T ∂Ω ⊥ . It is equivalent to say that there exists an unique geodesic ν joining σ to σ b with ν(σ b ) = n σ b . Set now -x n the geodesic distance to ∂Ω and take x such that x ∂Ω is a coordinate system on the boundary and x is constant along the geodesics parametrized by x n . The second point of the definition is then satisfied and ∂ ∂x n is unitary. Moreover, the choice of x ∂Ω is arbitrary and we can choose it centered at U such that dx 1 , . . . , dx n is an orthonormal basis of T * U (Ω) positively oriented. Then the first point of the definition is also satisfied. Verify now that the third point of the definition is fulfilled. Write

∂ ∂x n ∂ ∂x n | ∂ ∂x i σ = ∇ ∂ ∂x n ∂ ∂x n | ∂ ∂x i σ + ∂ ∂x n | ∇ ∂ ∂x n ∂ ∂x i σ = 0 + ∂ ∂x n | ∇ ∂ ∂x n ∂ ∂x i σ = ∂ ∂x n | ∇ ∂ ∂x i ∂ ∂x n σ = 1 2 ∂ ∂x i ∂ ∂x n | ∂ ∂x n σ = 0 ,
where we used the fact that ∇ is the Levi-Civita connexion and

∇ ∂ ∂x n ∂ ∂x n = 0 since x n is a geodesic curve. Hence, ∂ ∂x n | ∂ ∂x i σ = ∂ ∂x n | ∂ ∂x i σ b = n σ b | ∂ ∂x i σ b = 0 ,
which gives the third point of the definition.

Remark 1.3.3. In a local adapted coordinate system (x , x n ) around σ, remark that the metric g 0 writes

g 0 (x) = d(x n ) 2 + 1≤i,j<n g ij (x)dx i dx j .
Moreover, it can be convenient to work with matrices and we note

G 0 (x) = (g ij (x)) ij , G -1 0 (x) = (g ij (x)) ij (remember that g ij = ∂ ∂x i | ∂ ∂x j , g ij = dx i | dx j , and dx i ( ∂ ∂x j ) = δ ij ). Hence, G ±1 0 (x)
has the form, in the coordinate system (x , x n ):

G ±1 0 (x) =      0 G ±1 0 (x) . . . 0 0 • • • 0 1      , with G ±1 0 (0) = In . Lemma 1.3.4. 1) Let be f 1 ∈ C ∞ (Ω, R) and U ∈ ∂Ω a critical point of f 1 | ∂Ω with ∂f 1 ∂n (U ) = 0 . Assume furthermore α ∈ C ∞ (∂Ω, R) be a local solution to |∇ T α| 2 = |∇ T f 1 | 2 around U .
Then there exists a neighborhood V of U in Ω such that the eikonal equation

|∇Φ ± | 2 = |∇f 1 | 2 (1.3.1) (on the boundary, it means |∇Φ ± | 2 = |∂ n Φ ± | 2 + |∇ T Φ ± | 2 ; see the details in the proof )
with the boundary conditions

Φ ± | ∂Ω∩V = α , ∂ n Φ ± | ∂Ω∩V = ± ∂f 1 ∂n | ∂Ω∩V
admits a unique local smooth real-valued solution.

2) There exist local coordinates (x 1 , . . . , x n ) = (x , x n ) in a neighborhood of U in Ω with (x , x n )(U ) = 0 where the function Φ ± and the metric g 0 have the form:

Φ ± = ∓x n + α(x ) and g 0 = g nn (x) d (x n ) 2 + n-1 i,j=1 g ij (x)dx i dx j .
Moreover, the boundary ∂Ω is locally defined by {x n = 0} and Ω corresponds to sgn ∂f 1 ∂n (U )) x n > 0 .

Proof. 1) Take a local adapted coordinate system (x , x n ) around U in order to write (1.3.1):

|∂ x n Φ ± | 2 + |∇ T Φ ± | 2 = |∂ x n f 1 | 2 + |∇ T f 1 | 2
(see Appendix A.1 for the exact meaning of ∇ T in the interior). We obtain in particular on the boundary,

|∂ n Φ ± | 2 + |∇ T Φ ± | 2 = |∂ n f 1 | 2 + |∇ T α| 2 .
The first point is then a direct consequence of the Hamilton-Jacobi theorem, due to the condition ∂f 1 ∂n (U ) = 0 . 2) Like in [START_REF] Helffer | Puits multiples en limite semi-classique IV -Etude du complexe de Witten[END_REF], set:

f + = Φ + -Φ - and f -= Φ + + Φ -,
and note the relations:

Φ -= - 1 2 f + + 1 2 f -, Φ + = 1 2 f + + 1 2 f -, (1.3.2) ∇f + • ∇f -= 0 , (1.3.3) f + | ∂Ω∩V = 0 , ∂f + ∂n | ∂Ω∩V = 2 ∂f 1 ∂n | ∂Ω∩V = 0 , (1.3.4) and f -| ∂Ω∩V = 2α , ∂f - ∂n | ∂Ω∩V = 0 . (1.3.5)
Let (x 1 , . . . , x n-1 ) = x denote a set of coordinates on ∂Ω in a neighborhood of U (then contained in V) and such that x j (U ) = 0 . We extend them in a neighborhood of U in Ω as constant along the integral curve of the vector field ∇f + . Then we take x n = -1 2 f + (x) for the last coordinate. In these coordinates, the functions Φ ± and the metric g 0 have the forms announced in the lemma. We remark furthermore, by (1.3.4) and ∂f 1 ∂n (U ) = 0 , that the boundary ∂Ω is locally defined by {x n = 0} and Ω corresponds to sgn ∂f 1 ∂n (U ) x n > 0 .

In the sequel, we will apply the first result of this lemma in the Neumann case (resp. in the Dirichlet case) in order to introduce the Agmon distance (associated with the function f ) to a generalized critical point U with index p on the boundary. Then, using the second result of this lemma and Proposition 3.2.11 of [Lep] (resp. Proposition 3.3.9 of [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF]), ∆ Let ϕ be the Agmon distance to U on the boundary (i.e. associated with the metric |∇ x f (x , 0)| 2 dx 2 ). We recall that, on the boundary,

(p),N f,h (resp. ∆ (p),D f,h ) can be viewed locally in V around U ∈ ∂Ω as A (p) N V (resp. as A (p) D V ) where A (p) N (resp. A (p) D ) is a self adjoint Witten Laplacian on R n -= R n-1 × (-∞, 0) (ever if it means choosing -x n instead of x n ) whose domain is D(A N ) = ω ∈ ΛH 2 (R n -) , nω = nd f,h ω = 0 (resp. D(A D ) = ω ∈ ΛH 2 (R n -) , tω = td * f,h ω = 0 ) ,
|∇ T f | 2 = |∇ϕ| 2
and that ϕ is smooth near U (see [START_REF] Helffer | Multiple wells in the semi-classical limit I[END_REF]). We now use the first result of Lemma 1.3.4 with f 1 = f and α = ϕ and we denote by Φ the function Φ + of the lemma (Φ is consequently the Agmon distance to U i.e. associated with the metric |∇f (x)| 2 dx 2 ). Hence we have locally:

|∂ n Φ| 2 + |∇ T Φ| 2 = |∇Φ| 2 = |∇f | 2 , (2.1.1) Φ| ∂Ω = ϕ , (2.1.2) ∂ n Φ| ∂Ω = ∂f ∂n | ∂Ω .
(2.1.3) Moreover, the next relation is valid:

∂ 2 x n x n (f -Φ)(0) = ∂ 2 nn (f -Φ)(0) = 0 . (2.1.4)
Write indeed in the coordinates (x , x n ), for the metric g 0 :

|∂ x n Φ| 2 + |∇ T Φ| 2 g 0 = |∂ x n f | 2 + |∇ T f | 2 g 0 where |∇ T Φ| 2 g 0 = O(|x| 2 ) and |∇ T f | 2 g 0 = O(|x| 2
) because 0 is a critical point of f ∂Ω in the coordinates (x , x n ) (see indeed for example Appendix A.1). Apply then ∂ x n to the last equation:

∂ x n |∂ x n Φ| 2 + O(|x|) = ∂ x n |∂ x n f | 2 + O(|x|) i.e., using (2.1.3), 2∂ 2 x n x n (f -Φ)∂ x n f = O(|x|) which yields the result.
According to [START_REF] Helffer | Puits multiples en limite semi-classique IV -Etude du complexe de Witten[END_REF] pp. 279-280, there exist local coordinates (x , x n ) centered at U , where x = (x 1 , . . . , x n-1 ) are Morse coordinates for f ∂Ω around U , such that dx 1 , . . . , dx n-1 , dx n is orthonormal at U , and

f (x , 0) = λ 1 2 (x 1 ) 2 + • • • + λ n-1 2 (x n-1 ) 2 + f (U ) (2.1.5) and ϕ(x ) = |λ 1 | 2 (x 1 ) 2 + • • • + |λ n-1 | 2 (x n-1 ) 2 .
(2.1.6) with λ i < 0 for i ∈ {1, . . . , p} and λ i > 0 for i ∈ {p + 1, . . . , n -1}. Furthermore, the coordinates (x , x n ) can be chosen such that dx 1 , . . . , dx n-1 and dx 1 , . . . , dx n-1 coincide at U , and even such that x ∂Ω = x ∂Ω since x ∂Ω can be chosen freely.

Theorem 2.1.1. Consider around U a local adapted coordinate system x = (x , x n ) such that dx i = dx i at U (for i in {1, . . . , n -1}). There exists locally, in a neighborhood of x = 0, a C ∞ solution u wkb p to ∆ (p) f,h u wkb p = e -Φ h O(h ∞ ) (2.1.7) nu wkb p = 0 on ∂Ω (2.1.8) nd f,h u wkb p = 0 on ∂Ω , (2.1.9)
where u wkb p has the form:

u wkb p = a(x, h)e -Φ h , with a(x, h) ∼ k a k (x)h k and a 0 (0) = dx 1 ∧ • • • ∧ dx p .

First boundary conditions in the Neumann case

Let us first write, in our coordinate system,

a(x, h) = a I (x, h) dx I = a I (x, h)dx I + a In (x, h)dx In , (2.2.1)
where

I ∈ I := {(i 1 , . . . , i p ) ∈ {1, . . . , n} p , i 1 < • • • < i p }, I ∈ I := {(i 1 , . . . , i p ) ∈ {1, . . . , n} p , i 1 < • • • < i p < n}, I n ∈ I n := {(i 1 , . . . , i p ) ∈ {1, . . . , n} p , i 1 < • • • < i p = n}, and 
dx (i 1 ,...,ip) = dx i 1 ∧ • • • ∧ dx ip .
Remark that the Einstein summation convention where repeated indices implies addition has been employed in formula (2.2.1) and, in the sequel, we shall adhere to this notation. The first boundary condition says only that:

∀I n ∈ I n , a In ((x , 0), h) ∼ k a k In (x , 0)h k ≡ 0 (2.2.2) which is equivalent to ∀k ∈ N, ∀I n ∈ I n , a k In (x , 0) ≡ 0 . (2.2.3)
This paragraph specifies some consequences of these conditions.

Proposition 2.2.1. Using the notations of Appendices A.1 and A.2, the next relations are satisfied for k in N, when (2.2.3) is fulfilled:

t (2L ∇Φ + R 1 )a k = (2L ∇ Φ ⊗ Id +R T Neu )a k I dx I + 2 ∂Φ ∂x n i ∂ ∂x n da k n (2L ∇Φ + R 1 )a k = 2 ∂a k In ∂x n ∂Φ ∂x n + In (x , 0) dx In ,
where the In 's are algebraically C ∞ (∂Ω)-linear combinations of the a k I 's (for I in I ) which do not depend on the a k

In 's (for I n in I n ) and R T Neu is a 0-th order differential operator given on the boundary by the next matrix, in the coordinates (x , x n ):

R T Neu (x , 0) =      0 R T Neu (x ) . . . 0 0 • • • 0 β(x )      (p) -γ(x ) Id ,
where

β(0) = 0, γ(0) = T r Hess (f ∂Ω -ϕ)(0) , and R T Neu (0) = 2 Hess (f ∂Ω )(0) . Proposition 2.2.2. Assume (2.2.3) for k in N. The p-form ∂Φ ∂x n i ∂
∂x n da k is then tangential and the next equivalence is locally valid on the boundary

∂Ω: ∂Φ ∂x n i ∂ ∂x n da k = 0 ⇔ nda k = 0 . Proof. Write indeed on the boundary ∂Ω: ∂Φ ∂x n i ∂ ∂x n da k = ∂Φ ∂x n i ∂ ∂x n nda k + ∂Φ ∂x n i ∂ ∂x n tda k = 0 + ∂Φ ∂x n i ∂ ∂x n nda k = ∂Φ ∂x n i ∂ ∂x n (da k ) In dx In = (-1) p ∂Φ ∂x n (da k ) In dx In\{n} .
Moreover, using

∂f ∂n (U ) = ∂Φ ∂n (U ) < 0 , ∂Φ
∂x n is locally negative on the boundary which leads to the result.

Lemma 2.2.3. Under (2.2.3), the next relations are satisfied for k in N:

t (L ∇Φ -L ∇ Φ)a k = t (L ∇ T Φ -L ∇ Φ)a k = ∂Φ ∂x n i ∂ ∂x n da k , n (L ∇Φ -L ∇ Φ)a k = ∂a k In ∂x n ∂Φ ∂x n + ˜ In (x , 0) dx In ,
where the ˜ In 's are algebraically C ∞ (∂Ω)-linear combinations of the a k I 's (for I in I ) which do not depend on the a k

In 's (for I n in I n ). Proof. On the boundary ∂Ω, write the next decomposition:

(L ∇Φ -L ∇ Φ) a k = L ( ∂Φ ∂x n ) ∂ ∂x n a k + (L ∇ T Φ -L ∇ Φ) a k . (2.2.4)
Owing to the Cartan formula (1.2.8), rewrite (2.2.4):

(L ∇Φ -L ∇ Φ) a k = i ( ∂Φ ∂x n ) ∂ ∂x n da k + d(i ( ∂Φ ∂x n ) ∂ ∂x n a k ) + i (∇ T Φ-∇ Φ) da k + d(i (∇ T Φ-∇ Φ) a k ) .
(2.2.5) Using Proposition 2.2.2, the first term

i ( ∂Φ ∂x n ) ∂ ∂x n da k = ∂Φ ∂x n i ∂ ∂x n da k of the r.h.s. of (2.2.5) is tangential.
Moreover, since ∇ T Φ = ∇ Φ on the boundary (see Appendix A.1), the term i (∇ T Φ-∇ Φ) da k of the r.h.s. equals 0 on ∂Ω. Hence, write on ∂Ω:

(L ∇Φ -L ∇ Φ) a k = i ( ∂Φ ∂x n ) ∂ ∂x n da k + d(i ( ∂Φ ∂x n ) ∂ ∂x n a k ) + d(i (∇ T Φ-∇ Φ) a k ) . (2.2.6) Study in a first time the term d(i ( ∂Φ ∂x n ) ∂ ∂x n a k ). Writing a k = a k I dx I = a k I dx I + a k In dx In ,
we deduce (in Ω):

i ( ∂Φ ∂x n ) ∂ ∂x n a k = a k In i ( ∂Φ ∂x n ) ∂ ∂x n dx In = (-1) p-1 a k In ∂Φ ∂x n dx In\{n} ,
and, applying d to this last relation, we obtain on ∂Ω (remember that a k In = 0 on ∂Ω)

d(i ( ∂Φ ∂x n ) ∂ ∂x n a k ) = (-1) p-1 n i=1 ∂ ∂x i (a k In ∂Φ ∂x n )dx i ∧ dx In\{n} = (-1) p-1 ∂a k In ∂x n ∂Φ ∂x n dx n ∧ dx In\{n} + 0 = ∂a k In ∂x n ∂Φ ∂x n dx In .
(2.2.7)

Look now at the third term of the r.h.s. of (2.2.6) and write (remember that

I I = (i 1 , . . . , i p ) with 1 ≤ i 1 ≤ • • • ≤ i p ≤ n and denote by ind(i k ) the integer k): i (∇ T Φ-∇ Φ) a k I dx I = a k I dx I (∇ T Φ -∇ Φ) = a k I j∈I (-1) ind(j)+1 ∇ T Φ -∇ Φ j dx I\{j} = a k I j∈I (-1) ind(j)+1 α j dx I\{j} ,
where, due to (A.1.2)(A.1.3), for all j in {1, . . . , n},

α j = ∇ T Φ -∇ Φ j = n i=1 g ij ∂Φ ∂x i (x) - ∂Φ ∂x i (x , 0) .
Moreover, due to the block diagonal form of G -1 0 , for all j in {1, . . . , n}, α j satisfies (again by (A.1.2)(A.1.3)):

α n (x) ≡ 0 and ∀j ∈ {1, . . . , n -1} , α j (x , 0) ≡ 0 .

Hence, we obtain on ∂Ω,

d(i (∇ T Φ-∇ Φ) a k I dx I )(x , 0) = n l=1 j∈I (-1) ind(j)+1 ∂ ∂x l (a k I α j )(x , 0)dx l ∧ dx I\{j} = 0 + j∈I (-1) ind(j)+1 ∂ ∂x n (a k I α j )(x , 0)dx n ∧ dx I\{j} = j∈I (-1) ind(j)+1 ∂ ∂x n (a k I α j )(x , 0)dx n ∧ dx I \{j} + j∈In\{n} (-1) ind(j)+1 ∂ ∂x n (a k In α j )(x , 0)dx n ∧ dx In\{j} = j∈I (-1) ind(j)+1 ∂ ∂x n (a k I α j )(x , 0)dx n ∧ dx I \{j} ,
where we used α j (x , 0) ≡ 0 at the second line and α n (x) ≡ 0 at the second to last line.

Using again α j (x , 0) ≡ 0 allows us to write on ∂Ω: 

d(i (∇ T Φ-∇ Φ) a k I dx I )(x , 0) = a k I j∈I (-1) ind(j)+1 ∂α j ∂x n (x , 0)dx n ∧ dx I \{j} = a k I j∈I (-1) ind(j)+p ∂α j ∂x n (x , 0)dx I \{j} ∧ dx n = : ˜ In (x , 0)dx In , ( 2 
L ∇Φ -L * ∇Φ + L ∇f + L * ∇f = 2L ∇Φ + R 1 , where R 1 is a 0-th order differential operator. Writing R 1 = R T 1 + R N 1 , we deduce from Remark A.2.1 (since a k I dx I = a k I dx I on the boundary), t R 1 (a k I dx I ) = a k I (x , 0)R T 1 (dx I ) n R 1 (a k I dx I ) = a k I (x , 0)R N 1 (dx I ) = ˜ In (x , 0)dx In , where the ˜
In 's are algebraically C ∞ (∂Ω)-linear combinations of the a k I 's (for I in I ) which do not depend on the a k In 's (for

I n in I n ).
Moreover, f -Φ satisfies the assumptions of Corollary A.2.5 (from (2.1.1)-(2.1.4)), then R T 1 is given on the boundary, in the coordinates (x , x n ), by:

R T 1 (x , 0) =      0 R T 1 (x ) . . . 0 0 • • • 0 β(x )      (p) -γ(x ) Id ,
where β, γ are C ∞ functions which satisfy β(0) = 0, γ(0) = T r Hess (f ∂Ω -ϕ)(0) , and

R T 1 (0) = 2 Hess (f ∂Ω -ϕ)(0) .
Having in mind Lemma 2.2.3, look now at the term 2L ∇ Φ + R 1 . From Proposition A.2.3, write:

2L ∇ Φ = 2L ∇ Φ ⊗ Id +R 3 where R 3 = R T 3 + R N
3 is a 0-th order differential operator such that (since Φ satisfies the assumptions of Corollary A.2.5),

t R 3 (a k I dx I ) = a k I (x , 0)R T 3 (dx I ) n R 3 (a k I dx I ) = a k I (x , 0)R N 3 (dx I ) = ˜ In (x , 0)dx In ,
(where the ˜ In 's are algebraically C ∞ (∂Ω)-linear combinations of the a k I 's (for I in I ) which do not depend on the a k In 's) and R T 3 is given on the boundary, in the coordinates (x , x n ), by:

R T 3 (x , 0) =      0 R T 3 (x ) . . . 0 0 • • • 0 0      (p) , with R T 3 (0) = 2 Hess ( Φ ∂Ω )(0) = 2 (Hess (ϕ)(0)) (note, according to Remark A.2.4, that the term of index (n, n) of the matrix is indeed 0 since ∂ 2 Φ ∂(x n ) 2 ≡ 0). Set R Neu = R 1 + R 3 and ˜ (3) In = ˜ In + ˜ In for I n in I n . R Neu is a 0-th order differential operator which satisfies 2L ∇ Φ + R 1 = 2L ∇ Φ ⊗ Id +R Neu , (2.2.9) and t R Neu (a k I dx I ) = a k I (x , 0)R T Neu (dx I ) n R Neu (a k I dx I ) = a k I (x , 0)R N Neu (dx I ) = ˜ (3) In (x , 0)dx In , (2.2.10)
where the ˜ (3) In 's are algebraically C ∞ (∂Ω)-linear combinations of the a k I 's (for I in I ) which do not depend on the a k In 's (for

I n in I n ). Moreover, R T
Neu is given on the boundary, in the coordinates (x , x n ), by:

R T Neu (x , 0) =      0 R T 1 (x , 0) + R T 3 (x , 0) . . . 0 0 • • • 0 β(x )      (p) -γ(x ) Id ,
where β(0) = 0,

γ(0) = T r Hess (f ∂Ω -ϕ)(0) , and R T 1 (0) + R T 3 (0) = 2 Hess (f ∂Ω )(0)
. Look now at the term 2L ∇ Φ ⊗ Id. By the Cartan formula (1.2.8),

(2L ∇ Φ ⊗ Id)a k = da k I (∇ Φ)dx I + da k In (∇ Φ)dx In ,
and, using the boundary condition satisfied by the a k In 's (for I n in I n ) and the fact that ∇ Φ is a tangential vector field, we obtain:

(2L ∇ Φ ⊗ Id)a k = n-1 i=1 ∂a k I ∂x i (∇ Φ) i dx I = (2L ∇ Φ ⊗ Id)a k I dx I .
(2.2.11)

Set In = ˜ In + 1 2 ˜ (3) In for I n in I n . Writing (2L ∇Φ + R 1 ) a k = 2 (L ∇Φ -L ∇ Φ) a k + (2L ∇ Φ + R 1 ) a k ,
and using (2.2.9), (2.2.10), and (2.2.11), we obtain Proposition 2.2.1 after the application of Lemma 2.2.3.

Proof of Theorem 2.1.1

We shall first consider a WKB-approximation for (∆

(p) f,h -E(h))u wkb p = e -Φ h O(h ∞ ) (2.3.1) with E(h) = O(h 2
) and the boundary conditions (2.1.8)(2.1.9) and then check

E(h) = O(h ∞ ). Writing ∀k ∈ N , d f,h (e -Φ h a k ) = e -Φ h hda k + d(f -Φ) ∧ a k ,
where a k and d(f -Φ) are tangential forms (due to (2.1.8) and (2.1.3)), the second boundary condition corresponds to

n(da k ) = 0 (2.3.2)
(and more precisely it says:

∀k ∈ N , a k (x) = a k I (x) dx I + a k In (x) dx In satisfies : ∀I ∈ I , ∂a k I ∂x n (x , 0) ≡ 0 ).
Let us now recall the following relation which will be very useful (see [START_REF] Helffer | Puits multiples en limite semi-classique IV -Etude du complexe de Witten[END_REF] for a complete proof:

e Φ h ∆ f,h e -Φ h = h 2 (d + d * ) 2 + h(L ∇Φ -L * ∇Φ + L ∇f + L * ∇f ) , (2.3.3)
and write, with the notations of Appendix A.2.2,

L ∇Φ -L * ∇Φ + L ∇f + L * ∇f = 2L ∇Φ + R 1 = 2L ∇Φ ⊗ Id +R ,
where R and R 1 are 0-th differential operators defined in Appendix A.2.2. By looking for

E(h) ∼ ∞ k=1 h k+1 E k , the interior equation (2.3.1) reads e Φ h (∆ f,h -E(h))e -Φ h = h 2 [(d + d * ) 2 -h -2 E(h)] + h [2L ∇Φ ⊗ Id +R]
We now verify that it is possible to construct a solution u wkb p to (2.3.1) in Ω which can be extended to Ω and satisfying the boundary conditions (2.1.8) and (2.1.9). The construction of an interior WKB solution in Ω is standard as an inductive Cauchy problem, once the a k 's are known on ∂Ω (see [DiSj], [START_REF] Helffer | Introduction to the semi-classical Analysis for the Schrödinger operator and applications[END_REF]). Actually the non characteristic Cauchy problems

[2L ∇Φ ⊗ Id +R]a k = -(d + d * ) 2 a k-1 + k =1 E a k-in Ω .
(2.3.4) are solved by induction with the convention a -1 = 0.

Hence the problem is reduced to the solving of the system made of the boundary conditions (2.2.3), (2.3.2) and of the compatibility equation on the boundary (see Appendix A.2.2 for the meaning of the notations):

[2L ∇Φ + R 1 ] a k = -(d + d * ) 2 a k-1 + k =1 E a k-on ∂Ω .
(2.3.5)

Owing to Propositions 2.2.1 and 2.2.2 (with the notations of Section 2.2) and to (2.1.3), the system (2.3.5), (2.2.3), (2.3.2) is equivalent to the differential system on ∂Ω:

             -t(d + d * ) 2 a k-1 + k =1 E a k-= (2L ∇ Φ ⊗ Id +R T Neu )a k I dx I (2.3.6) -n(d + d * ) 2 a k-1 -2 In (x , 0)dx In = 2 ∂f ∂n ∂a k In ∂x n dx In (2.3.7) (2.2.3) + (2.3.2) ,
where the In 's are algebraically C ∞ (∂Ω)-linear combinations of the a k I 's (for I in I ) which do not depend on the a k

In 's (for I n in I n ). Moreover, since dx i = dx i (for i ∈ {1, . . . , n -1}) at the point U , thanks to Corollary A.2.5, (2.1.5)-(2.1.6), and according to [START_REF] Helffer | Puits multiples en limite semi-classique IV -Etude du complexe de Witten[END_REF] pp. 271-274, R T Neu (0) restricted to tangential forms is symmetric with the one dimensional kernel

Rdx 1 ∧ • • • ∧ dx p . Since a k I dx I is tangential and 2L ∇ Φ ⊗ Id only differentiates tangentially the a k I 's ( since (2L ∇ Φ ⊗ Id)a k I dx I = n-1 i=1 ∂a k I ∂x i (∇ Φ) i dx I ) ,
(2.3.6) can be rewritten as a tangential system which can be solved according to the analysis of the boundaryless case done in [START_REF] Helffer | Puits multiples en limite semi-classique IV -Etude du complexe de Witten[END_REF].

Here are the details: Owing to Proposition 2.2.2, the complete system becomes equivalent to

   (2L ∇ Φ ⊗ Id +R T Neu )a k I dx I = -t(d + d * ) 2 a k-1 + k-1 =1 E a k-+ E k a 0 on ∂Ω (2L ∇Φ ⊗ Id +R)a k = -(d + d * ) 2 a k-1 on Ω ∀I n ∈ I n , a In | ∂Ω ≡ 0 .
Note that the first line is a degenerate matricial transport equation which can be solved according to [HeSj4][Hel2]:

For k = 0, take a 0 (0) = dx 1 ∧ • • • ∧ dx p ∈ Ker (R T Neu (0)
) and for k > 0 choose E k so that the compatibility condition

-t(d + d * ) 2 a k-1 (0) + k-1 =1 E a k-(0) + E k a 0 (0) ∈ Ker (R T Neu (0))
⊥ is satisfied. Thus, at every step k ∈ N, the first and the third line of the previous system fully determine the Cauchy data a k (x , 0) and the number E k . The second line solves the interior problem with these Cauchy data and contains, with the two other lines, thanks to Proposition 2.2.2, the second trace condition (2.3.2).

Let us check now E(h) = O(h ∞ ). We prove this by comparing with the halfspace problem, for which we know by (1.3.6) that the first eigenvalue is 0 with multiplicity one and that the second one is larger than Ch 6/5 . Take a cut-off function χ ∈ C ∞ 0 (Ω), χ = 1 in a neighborhood of U such that ∂χ ∂n ∂Ω = 0 and set

u K p = χe -Φ h K k=0 a k h k = χe -Φ h A K h .
From ∂χ ∂n ∂Ω ≡ 0 and

d f,h (χA K h ) = (hd + df ∧)χA K h = hdχ ∧ A K h + χd f,h A K h , the form u K p ∈ Λ 1 H 2 (R n -) belongs to the domain of A (p)
N and the approxima-

tions u K p and E K (h) = K k=1 E k h k+1 satisfy    [A (p) N -E K (h)]u K p = h K+2 ρ K e -Φ h -h 2 [∆, χ] u K p = O(h K+2 ) in R n - nu K p = 0 on R n-1 × {0} nd f,h u K p = 0 on R n-1 × {0} ,
for some C ∞ 1-form ρ K defined in a neighborhood of U and independent of h. From u wkb p ∼ ch n+1 4

(from a direct Laplace method),

u K p ∼ ch n+1 4
and the spectral theorem then implies that there exists an eigenvalue λ(h) of A

N such that:

|E K (h) -λ(h)| = O(h K+2-n+1 4 ) .
Choosing the integer number K large enough, the inclusion

σ(A (p) N ) \ {0} ⊂ [Ch 6/5 , +∞) combined with the estimate E K (h) = O(h 2 ) implies λ(h) = 0 .
The number K being arbitrary, the construction of the previous quasimode is then possible only if ∀k ∈ N * , E k = 0 .

Local WKB construction in the Dirichlet case

Let here U be a critical point with index p -1 ∈ {0, . . . , n -1} (i.e. p ∈ {1, . . . , n}) of f | ∂Ω satisfying ∂f ∂n (U ) > 0 and take again a local adapted coordinate system (x , x n ) around U like in Section 2.1. Let ϕ be the Agmon distance to U on the boundary and use the first result of Lemma 1.3.4 with f 1 = f and α = ϕ. Denoting by Φ the function Φ -of the lemma (Φ is the Agmon distance to U i.e. associated with the metric |∇f (x)| 2 dx 2 ), we have locally:

|∂ n Φ| 2 + |∇ T Φ| 2 = |∇Φ| 2 = |∇f | 2 , (2.4.1) Φ| ∂Ω = ϕ ,
(2.4.2)

∂ n Φ| ∂Ω = - ∂f ∂n | ∂Ω . (2.4.3)
Moreover, the next relation is satisfied (see indeed the proof of (2.1.4) and replace

∂ n Φ| ∂Ω = ∂ n f | ∂Ω by ∂ n Φ| ∂Ω = -∂ n f | ∂Ω ): ∂ 2 x n x n (f + Φ)(0) = ∂ 2 nn (f + Φ)(0) = 0 . (2.4.4)
Like in Section 2.1, there exist other local coordinates (x , x n ) centered at U , with x = (x 1 , . . . , x n-1 ) and dx 1 , . . . , dx n-1 , dx n is orthonormal at U , such that (2.1.5) and (2.1.6) are satisfied with λ i < 0 for i ∈ {1, . . . , p -1} and λ i > 0 for i ∈ {p, . . . , n -1}. Furthermore, the coordinates (x , x n ) can be chosen such that dx 1 , . . . , dx n-1 and dx 1 , . . . , dx n-1 coincide at U and even such that x ∂Ω = x ∂Ω .

Theorem 2.4.1. Consider around U a local adapted coordinate system x = (x , x n ) such that dx i = dx i at U (for i in {1, . . . , n -1}). There exists locally, in a neighborhood of x = 0, a C ∞ solution u wkb p to

∆ (p) f,h u wkb p = e -Φ h O(h ∞ ) (2.4.5) tu wkb p = 0 on ∂Ω (2.4.6) td * f,h u wkb p = 0 on ∂Ω , (2.4.7)
where u wkb p has the form:

u wkb p = a(x, h)e -Φ h , with a(x, h) ∼ k a k (x)h k and a 0 (0) = dx 1 ∧ • • • ∧ dx p-1 ∧ dx n .

First boundary conditions in the Dirichlet case

Writing a(x, h) = a I (x, h) dx I = a I (x, h)dx I + a In (x, h)dx In , the first boundary condition is equivalent to:

∀k ∈ N, ∀I ∈ I , a k I (x , 0) ≡ 0 . (2.5.1)
This paragraph specifies some consequences of these conditions.

About L + L *

The next relation is obviously satisfied

L ∇Φ -L * ∇Φ + L ∇f + L * ∇f = -2L * ∇Φ + L ∇(f +Φ) + L * ∇(f +Φ)
, and using again Proposition A.2.3, write:

L * ∇(f +Φ) + L ∇(f +Φ) = R 4 ,
where R 4 is a 0-th order differential operator.

Writing R 4 = R T 4 +R N 4 , we deduce from Remark A.2.2 (since a k I dx I = a k In dx In on the boundary),

t R 4 (a k I dx I ) = a k In (x , 0)R N 4 (dx In ) = ˜ I (x , 0)dx I n R 4 (a k I dx I ) = a k In (x , 0)R T 4 (dx In ) ,
where the ˜ I 's are algebraically C ∞ (∂Ω)-linear combinations of the a k In 's (for I n in I n ) which do not depend on the a k I 's (for I in I ).

Moreover, f +Φ satisfies here the assumptions of Corollary A.2.5 (from (2.4.1)-(2.4.4)), then R T 4 is given on the boundary, in the coordinates (x , x n ), by:

R T 4 (x , 0) =      0 R T 4 (x ) . . . 0 0 • • • 0 δ(x )      (p) -κ(x ) Id ,
where δ, κ are C ∞ functions which satisfy δ(0) = 0, κ(0) = T r Hess (f ∂Ω + ϕ)(0) , and

R T 4 (0) = 2 Hess (f ∂Ω + ϕ)(0) .

Expression of the codifferential d *

In order to make a study similar to the one done in Section 2.2 for the Neumann case, we need to work with d * and then, to have a handy expression of this operator.

Set, for a differential form ω, in the coordinate system (x , x n )

∇ i = ∇ x i , a * i ω = dx i ∧ ω , and 
a i ω = i ∇x i ω .
Then d and d * write (see [CFKS] pp. 238-247):

d = n i=1 a * i ∇ i = - n i=1 (∇ i ) * a * i , (2.5.2) d * = - n i=1 a i ∇ i .
(2.5.3)

Recall the characteristic relations:

∀i, j ∈ {1, . . . , n} , a * i a * j + a * j a * i = 0 , (2.5.4) a i a j + a j a i = 0 , (2.5.5) a * i a j + a j a * i = g ij .
(2.5.6)

Denoting by ∂ i the operator defined by components with differentiation in a fixed coordinate system,

∂ i (ω I dx I ) = ∂ω I ∂x i dx I ,
∇ i writes (see [CFKS] pp. 238-247) (2.5.7) where the Γ j il are the Christoffel symbols. Then d * writes:

∇ i = ∂ i - j,l,m Γ j il g jm a * l a m ,
d * = - i a i ∂ i + i,j,l,m Γ j il g jm a i a * l a m = - i a i ∂ i + i,j,l,m Γ j il g jm (a i a * l + a * l a i ) a m - i,j,l,m Γ j il g jm a * l a i a m = - i a i ∂ i + i,j,l,m Γ j il g jm g il a m - i,j,l,m Γ j il g jm a * l a i a m .
(2.5.8)

Results

Proposition 2.5.1. Using the notations of Appendix A.1 and Section 2.5.1, the next relations are satisfied for all k in N, when (2.5.1) is fulfilled:

t (-2L * ∇Φ + R 4 )a k = 2 ∂a k I ∂x n ∂Φ ∂x n + I (x , 0) dx I n (-2L * ∇Φ + R 4 )a k = (2L ∇ Φ ⊗ Id +R T Dir )a k In dx In -2 ∂Φ ∂x n dx n ∧ d * a k ,
where the I 's are algebraically C ∞ (∂Ω)-linear combinations of the a k In 's (for I n in I n ) which do not depend on the a k I 's (for I in I ) and R T Dir is a 0-th order differential operator given on the boundary by the next matrix, in the coordinates (x , x n ): is then normal and the next equivalence is locally valid on the boundary ∂Ω:

R T Dir (x , 0) =      0 R T Dir (x ) . . . 0 0 • • • 0 δ(x )      (p) -κ 2 (x ) Id , where δ(0) = 0, κ 2 (0) = T r Hess (f ∂Ω -ϕ)(0) ,
∂Φ ∂x n dx n ∧ d * a k = 0 ⇔ td * a k = 0 .
Proof. Write indeed on the boundary ∂Ω:

∂Φ ∂x n dx n ∧ d * a k = ∂Φ ∂x n dx n ∧ nd * a k + ∂Φ ∂x n dx n ∧ td * a k = 0 + ∂Φ ∂x n dx n ∧ td * a k = ∂Φ ∂x n dx n ∧ (d * a k ) I dx I = (-1) p-1 ∂Φ ∂x n (d * a k ) I dx I ∧ dx n .
Moreover, using

∂f ∂n (U ) = - ∂Φ ∂n (U ) > 0 ,
∂Φ ∂x n is locally negative on the boundary which leads to the result.

Lemma 2.5.3. Under (2.5.1), the next relations are satisfied for k in N:

n (L * ∇Φ -L * ∇ Φ)a k = ∂Φ ∂x n dx n ∧ d * a k , t (L * ∇Φ -L * ∇ Φ)a k = - ∂a k I ∂x n ∂Φ ∂x n + ˜ I (x , 0) dx I ,
where the ˜ I 's are algebraically C ∞ (∂Ω)-linear combinations of the a k In 's (for I n in I n ) which do not depend on the a k I 's (for

I in I n ).
Proof. Owing to (1.2.5) and to the Cartan formula (1.2.8), write in the coordinates (x , x n ) (the function Φ is defined in Appendix A.1):

L * ∇Φ -L * ∇ Φ a k = d * (dΦ ∧ a k ) + dΦ ∧ d * a k + d * (d Φ ∧ a k ) + d Φ ∧ d * a k = d * ( ∂Φ ∂x n dx n ∧ a k ) + ∂Φ ∂x n dx n ∧ d * a k + d * ((d T Φ -d Φ) ∧ a k ) + (d T Φ -d Φ) ∧ d * a k . (2.5.9)
The second term ∂Φ ∂x n dx n ∧ d * a k of the r.h.s. of (2.5.9) is normal according to Proposition 2.5.2. Moreover, since d T Φ = d Φ on the boundary, the term (d T Φ -d Φ) ∧ d * a k of the r.h.s. also equals 0 on ∂Ω. Hence, write on ∂Ω:

L * ∇Φ -L * ∇ Φ a k = ∂Φ ∂x n dx n ∧ d * a k + d * ( ∂Φ ∂x n dx n ∧ a k ) + d * ((d T Φ -d Φ) ∧ a k ) . (2.5.10) Study in a first time the term d * ( ∂Φ ∂x n dx n ∧ a k ). Writing a k = a k I dx I = a k I dx I + a k In dx In ,
we deduce (in Ω):

∂Φ ∂x n dx n ∧ a k = ∂Φ ∂x n a k I dx n ∧ dx I ,
and, applying d * to this last relation (see (2.5.8)), we obtain on ∂Ω (remember that a k I = 0 on ∂Ω)

d * ( ∂Φ ∂x n dx n ∧ a k ) = - i a i ∂ i ( ∂Φ ∂x n a k I dx n ∧ dx I ) + i,j,l,m Γ j il g jm g il a m ( ∂Φ ∂x n a k I dx n ∧dx I )- i,j,l,m Γ j il g jm a * l a i a m ( ∂Φ ∂x n a k I dx n ∧ dx I ) = - i a i ∂ i ( ∂Φ ∂x n a k I dx n ∧ dx I ) + 0 = -i ∇x n ∂Φ ∂x n ∂a k I ∂x n dx n ∧ dx I = - ∂Φ ∂x n ∂a k I ∂x n dx I (2.5.11)
(we used at the last line the fact that G -1 0 is block diagonal with g nn ≡ 1). Look now at the third term of the r.h.s. of (2.5.10) and write:

(d T Φ -d Φ) ∧ a k I dx I = n-1 i=1 ∂Φ ∂x i (x) - ∂Φ ∂x i (x , 0) a k I dx i ∧ dx I = : n-1 i=1 α i a k I dx i ∧ dx I
where, for i in {1, . . . , n -1},

α i = ∂Φ ∂x i (x) - ∂Φ ∂x i (x , 0) .
Hence, for j in {1, . . . , n -1}, α j satisfies (see (A.1.5)):

∀j ∈ {1, . . . , n -1} , α j (x , 0) ≡ 0 .
We obtain consequently on ∂Ω(see again (2.5.8)),

d * ((d T Φ -d Φ) ∧ a k I dx I )(x , 0) = - i a i ∂ i n-1 j=1 α j a k I dx j ∧ dx I + i,j,l,m Γ j il g jm g il a m - i,j,l,m Γ j il g jm a * l a i a m n-1 j=1 α j a k I dx j ∧ dx I = - i a i ∂ i n-1 j=1 α j a k I dx j ∧ dx I = -a n n-1 j=1 ∂ ∂x n (α j a k I )dx j ∧ dx I
where we used α j (x , 0) ≡ 0 at the two last lines. Now, since g ni = g in = 0 for i in {1, . . . , n -1}, write for all I ∈ I :

a n dx I = i ∇x n dx I = 0 .
It implies:

d * ((d T Φ -d Φ) ∧ a k I dx I )(x , 0) = -a n n-1 j=1 ∂ ∂x n (α j a k I )dx j ∧ dx I = -a n n-1 j=1 ∂ ∂x n (α j a k In )dx j ∧ dx In = (-1) p+1 n-1 j=1 ∂ ∂x n (α j a k In )dx j ∧ dx In\{n} = (-1) p+1 n-1 j=1 a k In ∂α j ∂x n (x , 0)dx j ∧ dx In\{n} = : ˜ I (x , 0)dx I , (2.5.12)
where the ˜ I 's are algebraically C ∞ (∂Ω)-linear combinations of the a k In 's (for I n in I n ) which do not depend on the a k I 's (for I in I ). Combining (2.5.10), (2.5.11), and (2.5.12) leads to the result announced in Lemma 2.5.3.

Proof of Proposition 2.5.1. Having in mind Lemma 2.5.3, look at the term -2L * ∇ Φ + R 4 . Again by Proposition A.2.3, write:

-2L * ∇ Φ = 2L ∇ Φ + R 5 = 2L ∇ Φ ⊗ Id +R 5 + R 6
where R 5 = R T 5 +R N 5 and R 6 = R T 6 +R N 6 are 0-th order differential operators which satisfy, for i ∈ {5, 6} (since a k I dx I = a k In dx In on the boundary):

t R i (a k I dx I ) = a k In (x , 0)R N i (dx In ) = ˜ i I (x , 0)dx I n R i (a k I dx I ) = a k In (x , 0)R T i (dx In ) ,
where the ˜ i I (x , 0)'s are algebraically C ∞ (∂Ω)-linear combinations of the a k In 's (for I n in I n ) which do not depend on the a k I 's (for I in I ). Moreover, since Φ satisfies the assumptions of Corollary A.2.5, R T 5 and R T 6 are given on the boundary, in the coordinates (x , x n ), by:

R T 5 =      0 R T 5 . . . 0 0 • • • 0 0      (p) -ζ(x ) Id and R T 6 =      0 R T 6 . . . 0 0 • • • 0 0      (p)
, where ζ(0) = -2 T r Hess ( Φ ∂Ω )(0) = -2 T r (Hess (ϕ)(0)) , and R T 5 , R T 6 write at 0: 2.5.14) where the ˜ (3) I 's are algebraically C ∞ (∂Ω)-linear combinations of the a k In 's (for I n in I n ) which do not depend on the a k I 's (for I in I ). Moreover, R T Dir is given on the boundary, in the coordinates (x , x n ), by:

R T 5 (0) = -4 (Hess (ϕ)(0)) and R T 6 (0) = 2 (Hess (ϕ)(0)) Set R Dir = R 4 + R 5 + R 6 and ˜ (3) I = ˜ I + ˜ 5 I + ˜ 6 I for I in I . R Dir is a 0-th order differential operator which satisfies -2L ∇ Φ + R 4 = 2L ∇ Φ ⊗ Id +R Dir (2.5.13) and t R Dir (a k I dx I ) = a k In (x , 0)R N Dir (dx In ) = ˜ (3) I (x , 0)dx I n R Dir (a k I dx I ) = a k In (x , 0)R T Dir (dx In ) , ( 
R T Dir (x , 0) =      0 R T Dir (x , 0) . . . 0 0 • • • 0 δ(x )      (p) -κ 2 (x )Id ,
where δ(0) = 0,

κ 2 (0) = κ(0) + ζ(0) = T r Hess (f ∂Ω + ϕ)(0) -2 T r (Hess (ϕ)(0)) = T r Hess (f ∂Ω -ϕ)(0) , and 
R T Dir (0) = R T 4 (0) + R T 5 (0) + R T 6 (0) = 2 Hess (f ∂Ω + ϕ)(0) -2 (Hess (ϕ)(0)) = 2 Hess (f ∂Ω )(0) . Look now at the term 2L ∇ Φ ⊗ Id. By the Cartan formula (1.2.8), (2L ∇ Φ ⊗ Id)a k = da k I (∇ Φ)dx I + da k In (∇ Φ)dx In ,
and, using the boundary conditions satisfied by the a k I 's (for I in I) and the fact that ∇ Φ is a tangential vector field, we obtain:

(2L ∇ Φ ⊗ Id)a k = n-1 i=1 ∂a k In ∂x i (∇ Φ) i dx In = 2L ∇ Φ ⊗ Id a k
In dx In .

(2.5.15)

Set I = -˜ I + 1 2 ˜ (3) I and write (-2L * ∇Φ + R 3 ) a k = -2 L * ∇Φ -L * ∇ Φ a k + -2L * ∇ Φ + R 3 a k .
Using (2.5.13), (2.5.14), (2.5.15), Proposition 2.5.1 is then a direct consequence of Lemma 2.5.3.

Proof of Theorem 2.4.1

Although the calculations are different, the scheme of the proof is the same as for Theorem 2.1.1. Consider first a WKB-approximation for (∆

(p) f,h -E(h))u wkb p = e -Φ h O(h ∞ ) (2.6.1)
with E(h) = O(h 2 ) and the boundary conditions (2.4.6)(2.4.7).

From ∀k ∈ N , d * f,h (e -Φ h a k ) = e -Φ h hd * a k + i ∇(f +Φ) a k ,
where a k is a normal form and ∇(f + Φ) is a tangential vectorfield (due to (2.4.6) and (2.4.3)), the second boundary condition corresponds to t(d * a k ) = 0 .

(2.6.2)

Recall now, using the notations of Appendix A.2.2 and Section 2.5.1, the next relation,

e Φ h ∆ f,h e -Φ h = h 2 (d + d * ) 2 + h(2L ∇Φ ⊗ Id +R) = h 2 (d + d * ) 2 + h(-2L * ∇Φ + R 4 ) .
By looking for E(h) ∼ ∞ k=1 h k+1 E k , the interior equation (2.6.1) reads, like in Section 2.3,

e Φ h (∆ f,h -E(h))e -Φ h = h 2 [(d + d * ) 2 -h -2 E(h)] + h [2L ∇Φ ⊗ Id +R] .
Hence, like in Section 2.3, the construction of an interior WKB solution in Ω is standard as an inductive Cauchy problem, once the a k 's are known on ∂Ω (since the non characteristic Cauchy problems

[2L ∇Φ ⊗ Id +R]a k = -(d + d * ) 2 a k-1 + k =1 E a k-in Ω .
(2.6.3) are solved by induction with the convention a -1 = 0) and the problem is reduced to the solving of the system made of the boundary conditions (2.5.1), (2.6.2) and of the compatibility equation (see Section 2.5.1 for the meaning of the notations):

[-2L * ∇Φ + R 4 ] a k = -(d + d * ) 2 a k-1 + k =1 E a k-on ∂Ω .
(2.6.4)

Owing to Propositions 2.5.1 and 2.5.2 (with the notations of Section 2.5.3) and to (2.4.3), the system (2.6.4), (2.5.1), (2.6.2) is equivalent to the differential system on ∂Ω:

             -n(d + d * ) 2 a k-1 + k =1 E a k-= (2L ∇ Φ ⊗ Id +R T Dir )a k
In dx In (2.6.5)

-t(d + d * ) 2 a k-1 -2 I (x , 0)dx I = -2 ∂f ∂n ∂a k I ∂x n dx I (2.6.6) (2.5.1) + (2.6.2) ,
where the I 's are algebraically C ∞ (∂Ω)-linear combinations of the a k In 's (for I n in I n ) which do not depend on the a k I 's (for I in I ). Moreover, since dx i = dx i (for i ∈ {1, . . . , n -1}) at the point U , thanks to Corollary A.2.5, (2.1.5)-(2.1.6), and according to [START_REF] Helffer | Puits multiples en limite semi-classique IV -Etude du complexe de Witten[END_REF] pp. 271-274, R T Dir (0) restricted to normal forms is symmetric with the one dimensional kernel Rdx

1 ∧ • • • ∧ dx p-1 ∧ dx n .

Since a k

In dx In is normal and 2L ∇ Φ ⊗ Id only differentiates tangentially the a k

In 's

( since (2L ∇ Φ ⊗ Id)a k In dx In = n-1 i=1 ∂a k In ∂x i (∇ Φ) i dx In ) ,
(2.6.5) can be rewritten as a tangential system which can be solved according to the analysis of the boundaryless case done in [START_REF] Helffer | Puits multiples en limite semi-classique IV -Etude du complexe de Witten[END_REF].

Here are the details: Owing to Proposition 2.5.2, the complete system becomes equivalent to

   (2L ∇ Φ ⊗ Id +R T Dir )a k In dx In = -n(d + d * ) 2 a k-1 + k-1 =1 E a k-+ E k a 0 on ∂Ω (2L ∇Φ ⊗ Id +R)a k = -(d + d * ) 2 a k-1 on Ω ∀I ∈ I , a I | ∂Ω ≡ 0 .
The first line is again a degenerate matricial transport equation which can be solved according to [HeSj4][Hel2]:

For k = 0, take a 0 (0) = dx 1 ∧ • • • ∧ dx p-1 ∧ dx n ∈ Ker (R T
Dir (0)) and for k > 0 choose E k so that the compatibility condition

-n(d + d * ) 2 a k-1 (0) + k-1 =1 E a k-(0) + E k a 0 (0) ∈ Ker (R T Dir (0))
⊥ is satisfied. Thus, at every step k ∈ N, the first and the third line of the previous system fully determine the Cauchy data a k (x , 0) and the number E k . The second line solves the interior problem with these Cauchy data and contains, with the two other lines, thanks to Proposition 2.5.2, the second trace condition (2.6.2). Checking E(h) = O(h ∞ ) is then identical to the end of the proof of Theorem 2.1.1 done in Section 2.3 after choosing a cut-off function χ which satisfies ∇χ = ∇ T χ on the boundary ∂Ω.

A Computations in local adapted coordinate systems

We work here in a local adapted coordinate system (x , x n ) around U ∈ ∂Ω in order to apply indifferently the results of this section to the Neumann and Dirichlet cases.

A.1 A modified Agmon distance

Define Φ around U in the coordinates (x , x n ) by

∀x = (x , x n ) , Φ(x , x n ) = Φ(x , 0) , (A.1.1)
and note the next relation satisfied for all x around U , in the coordinates (x , x n ), due to the form of G ±1 0 (see Remark 1.3.3):

d Φ(x) = d T Φ(x) + ∂ Φ ∂x n (x)dx n = d T Φ(x) ∇ Φ(x) = ∇ T Φ(x) + ∂ Φ ∂x n (x) ∂ ∂x n = ∇ T Φ(x)
.

For a vector (or a vector field)

X = n i=1 X i ∂ ∂x i , making the identification X =    X 1 . . . X n    ,
the tangential part X T (resp. the normal part X N ) of X is defined as:

X T =      X 1 . . . X n-1 0      (resp. X N =      0 . . . 0 X n      ) .
Similarly, for a (n, n)-matrix A(x) = (a ij (x)) i,j , define A T (x) and A N (x) by:

A T =      0 A . . . 0 0 • • • 0 a nn      and A N =      a 1n [0] . . . a n-1 n a n1 • • • a n n-1 0      .
Recall moreover that, for a vector (or a vector field) X and a C ∞ function ψ, the identification ∇ψ | X g 0 = dψ(X) leads to:

∇ψ = G -1 0    ∂ψ ∂x 1 . . . ∂ψ ∂x n    .
Hence, due to the form of G -1 0 (see Remark 1.3.3), the next relations are indeed satisfied:

(∇ψ) T = ∇ T ψ = G -1 0      ∂ψ ∂x 1 . . . ∂ψ ∂x n-1 0      and (∇ψ) N = ∂ψ ∂x n ∂ ∂x n = G -1 0      0 . . . 0 ∂ψ ∂x n      .
In the Neumann case, we are going to compare L ∇Φ and L ∇ Φ and the next relations could be convenient:

∇Φ -∇ Φ = G -1 0      ∂Φ ∂x 1 (x) -∂Φ ∂x 1 (x , 0) . . . ∂Φ ∂x n-1 (x) -∂Φ ∂x n-1 (x , 0) ∂Φ ∂x n (x)      (A.1.2) and ∇ T Φ -∇ Φ = G -1 0      ∂Φ ∂x 1 (x) -∂Φ ∂x 1 (x , 0) . . . ∂Φ ∂x n-1 (x) -∂Φ ∂x n-1 (x , 0) 0      . (A.1.3)
At least, we are going to compare L * ∇Φ and L * ∇ Φ in the Dirichlet case and the next relations could also be convenient:

dΦ -d Φ = n-1 i=1 ∂Φ ∂x i (x) - ∂Φ ∂x i (x , 0) dx i + ∂Φ ∂x n (x)dx n (A.1.4) and d T Φ -d Φ = n-1 i=1 ∂Φ ∂x i (x) - ∂Φ ∂x i (x , 0) dx i . (A.1.5) A.2 About L + L * A.2.1 For a general C ∞ function h
In this subsection, we give similar results to those done in [START_REF] Helffer | Puits multiples en limite semi-classique IV -Etude du complexe de Witten[END_REF] Appendix A.

Take h a C ∞ function from Ω on R and write:

∇h = n i=1 (∇h) i ∂ ∂x i .
According to [START_REF] Helffer | Puits multiples en limite semi-classique IV -Etude du complexe de Witten[END_REF], give the next algebraic definition:

Definition A.2.1. For a Euclidean space (E, • | • ) and A ∈ L(E), A (p) and Γ (p) (A) denote respectively the linear application A (p) ∈ L(Λ p E) and the application

Γ (p) (A) = A ⊗ • • • ⊗ A: A (p) (ω 1 ∧ • • • ∧ ω p ) = (Aω 1 ∧ • • • ∧ ω p ) + • • • + (ω 1 ∧ • • • ∧ Aω p ) and Γ (p) (A)(ω 1 ∧ • • • ∧ ω p ) = (Aω 1 ) ∧ • • • ∧ (Aω p ) .
(with the obvious convention A (0) = 0 and Γ (0) (A) = 1).

Remark A.2.2. Under the canonical identification Λ 1 E = E, note that A (1) = A. Moreover, if A * denotes the adjoint of A according to the scalar product on E, the adjoint of

A (p) is simply (A (p) ) * = (A * ) (p) =: A (p), * (recall that Λ p E is a Euclidean space with the scalar product • | • p : ω 1 ∧ • • • ∧ ω p | µ 1 ∧ • • • ∧ µ p p = det ( ω i | µ j ) i,j
) .

Remark that for a p-form a k I dx I = a k I dx I + a k In dx In , with the notations of Appendix A.1,

A (p) = A (p) T + A (p)
N and:

t A (p) (a k I dx I ) = a k I (x , 0)A (p) T (dx I ) + a k In (x , 0)A (p) N (dx In ) n A (p) (a k I dx I ) = a k In (x , 0)A (p) T (dx In ) + a k I (x , 0)A (p) N (dx I ) .
Moreover, for any 0-th order differential operator A on the form A = A (p) + ψ Id, where ψ is a C ∞ function, we will denote by A T and A N the next 0-th order differential operators: 

A T = A (p) T + ψ Id and A N = A (p) N (notice that A T (resp. A N ) coincides with A (p) T (resp. A (p) N ) if ψ ≡ 0). Furthermore,
       t A(a k I dx I ) = a k I (x , 0)A (p) T (dx I ) + ψ(x , 0)a k I (x , 0)dx I = t A T (a k I dx I ) n A(a k I dx I ) = a k I (x , 0)A (p) N (dx I ) = n A N (a k I dx I ) (A.2.1) (resp.        t A(a k I dx I ) = a k In (x , 0)A (p) N (dx I ) = t A N (a k I dx I ) n A(a k I dx I ) = a k In (x , 0)A (p) 
T (dx In ) + ψ(x , 0)a k In (x , 0)dx In = n A T (a k I dx I )

).(A.2.2)

The end of this section is devoted to the proof of the next proposition:

Proposition A.2.3. In the coordinates (x , x n ), the next equalities are satisfied: p) , where (L ∇h ⊗ Id)a k I dx I = (L ∇h (a k I ))dx I , R h is the 0-th differential operator given by the matrix: x Ω. Moreover, R * h is given by the matrix:

     L ∇h = L ∇h ⊗ Id +R h L ∇h + L * ∇h = R h + R * h - n i=1 ∂(∇h) i ∂x i + 1 2 (∇h) i ∂[det G 0 ] ∂x i Id -n i=1 (∇h) i (G 0 ∂[G -1 0 ] ∂x i ) (
R * h := A (p), * h = (G 0 t A h G -1 0 ) (p) .
Remark A.2.4. From the computations done in Appendix A.1, write (∇h) n = ∂h ∂x n . Moreover, due to the form of G ±1 0 , note that

R h + R * h - n i=1 (∇h) i (G 0 ∂[G -1 0 ] ∂x i ) (p)
is given by the matrix:

   A h + G 0 t A h G -1 0 -n i=1 (∇h) i G 0 ∂[G -1 0 ] ∂x i ∂ 2 h ∂x n ∂x i i,1 + G 0 ∂(∇h) i ∂x n i,1 ∂(∇h) j ∂x n 1,j + ∂ 2 h ∂x n ∂x j 1,j G -1 0 ∂ 2 h ∂(x n ) 2    (p)
. Corollary A.2.5. In the coordinates (x , x n ), assume that the function h admits a critical point at 0, that ∂h ∂x n ≡ 0 on the boundary ∂Ω, and that .

Moreover, we deduce from G ±1 0 (0) = In and the symmetry of Hess (h ∂Ω )(0),

R * h (0) = R h (0) .
At least, we obtain from ∂ 2 h ∂(x n ) 2 (0) = 0,

- n i=1
∂(∇h) i ∂x i Id = -T r Hess (h ∂Ω )(0) at 0 , which leads to the end of the proof, using that for all i in {1, . . . , n}, (∇h) i (0) = ∂h ∂x i (0) = 0.

Proof of Proposition A.2.3. The first equality is proved in [START_REF] Helffer | Puits multiples en limite semi-classique IV -Etude du complexe de Witten[END_REF] pp. 334-336. There is also a proof of the second equality in [START_REF] Helffer | Puits multiples en limite semi-classique IV -Etude du complexe de Witten[END_REF] but we need to be more precise here.

From the first equality, deduce:

L * ∇h = (L ∇h ⊗ Id) * + R * h .
Remarking that the scalar product of two p-forms ω and η is given by

ω | η g 0 = ω | Γ (p) (G -1 0 )η ge ,
where g e is the Euclidean metric n i=1 d(x i ) 2 , we obtain p) .

R * h = Γ (p) (G 0 )( t A h ) (p) Γ (p) (G -1 0 ) = (G 0 t A h G -1 0 ) (
Look now at the term (L ∇h ⊗ Id) * . Take first two p-forms αω and βη where α, β are C ∞ 0 (Ω, R) functions, and ω, η are two p-forms dx I and dx J . Denoting by V g 0 (dx) the normalized volume form, V g 0 (dx) satisfies:

V g 0 (dx) = (det G 0 (x)) Noting that for all i in {1, . . . , n},

∂ ∂x i Γ (p) (G -1 0 ) = ( ∂G -1 0 ∂x i ⊗ G -1 0 ⊗ • • • ⊗ G -1 0 )+ • • • +(G -1 0 ⊗ • • • ⊗ G -1 0 ⊗ ∂G -1 0 ∂x i ) = Γ (p) (G -1 0 )(G 0 ∂[G -1 0 ] ∂x i ) (p) ,
we deduce for all i in {1, . . . , n},

∂ ∂x i ω | η g 0 (x) = ω | (G 0 ∂[G -1 0 ] ∂x i ) (p) η g 0 (x) .

.

  .2.2)It means, by restriction to the p-forms in C ∞ (Ω; Λ p T * ΩNote that (1.2.2) implies that, for all u in C ∞ (Ω; Λ p T * Ω

  (f ∂Ω )(0) . Proposition 2.5.2. Assume (2.5.1) for k in N. The p-form ∂Φ ∂x n dx n ∧ d * a k

  endomorphisms of T *

  + L * ∇h ) (0) = 2R h (0) -T r Hess (h ∂Ω )(0) Id .Proof. Since (x , x n ) are local adapted coordinates around U ∼ = 0 and 0 is a critical point of h, note first that for all i in {1, . . . , n}, (h)) (p) + O(|x|)and in particular at 0, since ∂h ∂x n ≡ 0 on the boundary and ∂ 2 h ∂(x n ) 2 (0
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  dx 1 ∧ • • • ∧ dx n =: ν(x)dx 1 ∧ • • • ∧ dx n .36Hence we deduce:αω | (L ∇h ⊗ Id) * βη g 0 = L ∇h (α)ω | η g 0 = (L ∇h (α))β ω | η g 0 (x) (det G 0 (x)) 1 2 dx .Using now the Cartan formula (1.2.8), L ∇h (α) = dα(∇h) = n i=1 ∂α ∂x i (∇h) i and we obtain:(L ∇h (α))β ω | η g 0 (x) (det G 0 (x)) ∇h) i β ω | η g 0 (x) ν dx = -α n i=1 ∂ ∂x i (∇h) i β ω | η g 0 (x) ν dxMoreover, write:α n i=1 ∂ ∂x i (∇h) i β ω | η g 0 (x) ν dx = -α n i=1 ∂(∇h) i ∂x i β ω | η g 0 (x) ) i ∂x i β ω | η g 0 (x) ν dx -α(L ∇h (β)) ω | η g 0 (x) νdx -α n i=1 (∇h) i β ∂ ∂x i ( ω | η g 0 (x) )ν dx -α n i=1(∇h) i β ω | η g 0 (x) ∂ν ∂x i dx .

  .2.8)where the ˜ In 's are algebraically C ∞ (∂Ω)-linear combinations of the a k I 's (for I in I ) which do not depend on the a k In 's (for I n in I n ).

	Combining (2.2.6), (2.2.7), and (2.2.8) leads to the result announced in
	Lemma 2.2.3.
	Proof of Proposition 2.2.1.
	Remember first the next relation (see indeed Subsection A.2.2):

  our aim is to work with tangential forms in the Neumann case (i.e. a k I dx I = a k I dx I on ∂Ω) and with normal forms in the Dirichlet case (i.e. a k I dx I = a k In dx In on ∂Ω). Hence, for any tangential form in the Neumann case (resp. for any normal form in the Dirichlet case), write:
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Consequently,

which leads to the second result of Proposition A.2.3.

By Proposition A.2.3, we deduce the next relation:

where R 1 is a 0-th order differential operator.

Furthermore, using now the first equality of Proposition A.2.3,

where R 2 is a 0-th differential operator too.

Consequently, setting R = R 1 + R 2 , we obtain the following relation:

where R is a 0-th order differential operator.