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A micro–macro approach of multiaxial fatigue in unlimited endurance is presented in this

study, as an extension of a previous model recently proposed by the authors [Monchiet, V.,

Charkaluk, E., Kondo, D., 2006. A plasticity–damage based micromechanical modelling in

high cycle fatigue. C.R. Mécanique 334 (2), 129–136]. It allows to take into account cou-

pling between polycrystalline plasticity and damage mechanisms which occur at the scale

of persistent slip bands (PSB) during cyclic deformation. The plasticity–damage coupled

model is obtained by adapting the Gurson [Gurson, A.L., 1977. Continuum theory of ductile

rupture by void nucleation and growth: part I – yield criteria and flow rules for porous duc-

tile media. J. Eng. Mater. Technol. 99, 2–15] limit analysis to polycrystalline materials to

take into account microvoids growth along PSBs. The macroscopic fatigue criterion corre-

sponds to microcracks nucleation at the PSB–matrix interface. It is shown that this criterion

accounts for the effect of the mean stress and of the hydrostatic pressure in high cycle fati-

gue. Such features of HCF are related to the damage micro-mechanisms. Finally, some illus-

trations concerning the particular case of cyclic affine loadings are presented and

comparisons of the predictions of the fatigue criterion with experimental data show the

relevance of this new approach.

1. Introduction

It is now generally admitted that fatigue failure of metallic components is the result of complex microscopic phenomena

which occur at the grain scale under cyclic loadings. In particular, a major role is assigned to the microplasticity due to the

dislocations motion and to the damage by microcracks growth (Dang Van, 1999; Essmann and Mughrabi, 1979). The objec-

tive of this study is to propose a high cycle fatigue (HCF) criterion founded on the physical microscopic mechanisms leading

to damage and cracks nucleation.

In HCF context, many multiaxial fatigue criteria already exist. Among the first attempts dealing with purely phenomeno-

logical approach, mention can be made of Sines (1959) or Crossland (1956) macroscopic criteria. The first real studies based

on microscopic observations for the expression of a macroscopic criterion are those of Orowan (1939) then of Dang Van

(1973), who benefited of a lot of experimental results and observations obtained between the 30s and the 60s. This multi-

scale approach was thereafter enriched and formalized by Papadopoulos (1987). The theoretical framework proposed by

Dang Van and Papadopoulos is based on the modeling of the plasticity at the grain scale and on the use of elastic shakedown

theorems in order to establish a crack nucleation criterion. It is worth noticing that in this type of modeling, despite the clear

physical reference to damage phenomena, no explicit introduction of the local damage mechanisms is done.
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In a recent work (Monchiet et al., 2006), we have proposed a multiscale approach of HCF based on the Dang Van and

Papadopoulos theoretical background and on the consideration of plasticity and damage mechanisms at the scale of the

grains. The damage mechanisms, which occur along highly deformed slip bands, named persistent slip bands (PSB) in the

fatigue case, are assumed of two types: on the one hand, microvoids nucleation by accumulation of point defects of vacancies

type, generated by annihilation of dislocations (Essmann and Mughrabi, 1979), and, on the other hand, the growth of these

microvoids under the combined effect of the slip-like plastic activity and of the pressure. In the case of von Mises matrix

material, this defect growth is generally described in the ductile damage framework, classically defined under monotonic

loadings (Rice and Tracey, 1969; Gurson, 1977). The model proposed in Monchiet et al. (2006) was based on a simple adap-

tation of the Rice and Tracey’s voids growth approach (Rice and Tracey, 1969) and led to the expression of a fatigue criterion

exhibiting the crucial role of the hydrostatic pressure in high cycle fatigue. The essential feature of this first model is that

damage and plasticity are uncoupled, which facilitates the numerical implementation of the criterion. However, it is conve-

nient to note that with such a model the role of an alternated part of the hydrostatic pressure is not satisfactorily represented

in view of available data.

In order to properly describe the growth of the microcavities along PSBs as well as the role of the alternated part of the

hydrostatic pressure, it is proposed in this paper to adapt the limit analysis of Gurson (1977) which has the interest of cou-

pling plasticity and damage in the constitutive law. An hollow sphere representing an elementary cell of the monocrystal

containing microcavities is therefore considered and serves as the geometrical model for the analysis of a porous material

governed by an equivalent von Mises criterion corresponding to the monocrystal.

Since an essential step in the treatment of fatigue type cyclic loadings is the consideration of plastic hardening, it is pro-

posed to incorporate the hardening effects by following the previous study of Leblond et al. (1995), extended here to crys-

talline plasticity. The adopted crack initiation criterion corresponds to a critical value of damage at the PSB’s scale. In order to

upscale this criterion to the macroscopic scale, a micro–macro transition based on the Kröner’s self-consistent scheme (Krö-

ner, 1961) is used. This micromechanical reasoning leads to a closed form expression of the fatigue criterion in the case of

affine loading paths. In order to evaluate the relevance of this approach, comparisons with available experimental data are

proposed in a last part of this article.

2. Basic principle of the modeling

2.1. Plastic behavior at the grain scale

In this section, plastic micromechanisms at the grain scale, corresponding to an activation of slip systems are described. In

the case of HCF, for FCC structures, a simple slip system assumption is commonly adopted (Dang Van, 1973; Papadopoulos,

1987). This assumption is mainly justified for low stress amplitudes, below the macroscopic yield stress. Let r and e be,

respectively, the stress and strain tensors at the local scale, i.e. at the grain scale. An additive partition of the total strain

e in an elastic part ee and a plastic part ep is adopted: e = e
e + e

p. The plastic slip, on the activated slip system, is defined by

cp = 2ep: D, where D is the orientation tensor, defined by: D ¼ n�
s
m ¼ 1

2
ðn�mþm� nÞ. The vector n is the normal to the

activated slip plane while m is the slip direction. The plastic behavior of this monocrystal gives relation between the shear

stress s = r:D and the plastic slip strain cp; as classically, a Schmid’s law is considered

js� Xj � s0 � R ¼ 0 ð1Þ

X and R are, respectively, the kinematic and isotropic hardening variables. A linear law is adopted for both hardenings: X = ccp

and R = R0p. The positive scalars c and R0 are the hardening moduli and p ¼
R t

0 j _cpjdt0 is the cumulated plastic slip.

2.2. Damage modeling

2.2.1. Voids nucleation and growth mechanisms

According to previous assumptions, the proposed multiscale modeling is based on irreversible mechanisms which dete-

riorate definitively the microstructure. In the case of FCC crystals and cyclic loadings, the plastic strain localization induces

dislocations annihilation mechanism which is at the origin of point defects accumulation of vacancies type along PSBs. Dis-

locations annihilation is not an irreversible mechanism: point defects could be mutually annihilated. A phenomenological

model for the production of defects by dislocations annihilation was previously proposed by Essmann and Mughrabi

(1979). For low values of p, which correspond to the HCF situation (Monchiet et al., 2006), the porosity induced by this mech-

anism, denoted ga, is given by

gaðpÞ ¼ A0½kap� 1þ expð�kapÞ� ð2Þ

where A0 and ka are two parameters. This annihilation mechanism depends only on the plastic slip; as a consequence, it is

not able to predict the important role of the hydrostatic pressure observed in fatigue. A possible way to overcome such lim-

itation is to consider a second damage mechanism in addition to the annihilation’s one and which may depend on the hydro-

static pressure. As microcavities nucleation is induced by vacancies production, they are supposed to grow under the

combined effect of the plastic strains of the matrix and of the pressure, as underlined by Rice and Tracey (1969) under mono-

tonic loadings. Therefore, the porosity gg, corresponding to the microcavities growth, is introduced. The total porosity g is



then the sum of the porosities g = ga + gg. The growth of the cavities induces plastic volume variations which result in a plas-

tic deformation by cavities expansion; this implies that the plastic strain at the grain scale is partitioned as follows:

e
p ¼ cpDþ e

p
h1 ð3Þ

where the hydrostatic part of the plastic strain e
p
h due to voids growth can be related to gg by considering mass balance, in the

case of limited porosities

_gg ¼ ð1� gÞ3dh _e
p
h ’ 3_eph ð4Þ

and in the case where the elastic strain of the matrix has been neglected. Moreover, one supposes that a no crack initiation

criterion is obtained by considering that no crack can be observed at the grain size; this can be related to a critical value of

the total porosity, denoted gc. The fatigue criterion reads then

g ¼ gaðpÞ þ ggðephÞ ¼ gc ð5Þ

It is interesting to note that this criterion depends on p and on e
p
h and generalize the approaches considering a critical value of

the cumulated plastic strain p (Papadopoulos criterion for example (Papadopoulos, 1996)). As exhibited by Eq. (5), one can

underline that the general basis of this approach consists in the definition of a defect nucleation law, corresponding here to

ga, associated to a damage evolution, conducting here to gg. Then, in many cases, PSBs are not systematically observed at the

microstructure scale. Particularly, in a lot of engineering cases, it is well known that initial defects, as inclusions, precipitates,

are the origin of the fatigue crack initiation. The proposed criterion corresponding to Eq. (5) is, however, still acceptable, but

the definition of ga has to be adapted, for example by taking into account an initial porosity due to the process. Then, the

initial defect’s evolution is still governed by the combined effect of local plastic strains of the matrix and of hydrostatic

pressure.

Now, as previously mentioned, the first step of modeling proposed in Monchiet et al. (2006) provided a Rice and Tracey

type (Rice and Tracey, 1969) evolution law for eph. The next step consists now in the definition of the constitutive law coupling

plasticity and damage in order to link the strains defined at the grain scale and the associated stresses.

2.2.2. Coupled plasticity–damage at the grain scale

We aim now at considering microvoids growth coupled with the plasticity in a PSB. To this end, we will adapt the limit

analysis framework derived by Gurson (1977). Due to the difficulties introduced by the anisotropic character of the crystal-

line plasticity, a first step of the modeling consists in the replacement of the monocrystal obeying the Schmid’s law by an

equivalent material governed by the von Mises criterion. An elementary cell consisting in an hollow sphere of radius b con-

taining a spherical cavity of radius a is then considered (see Fig. 1); the porosity is g = (a/b)3. The hollow sphere is submitted

to a uniform strain rate on its external boundary: v(r = b) = D � x; v is the velocity field in the matrix. D contains a simple slip

whose orientation is given by D and an hydrostatic strain rate, i.e.

D ¼ _cpDþ Dh1 ð6Þ

Following then the limit analysis approach of Gurson for the above particular boundary conditions (6), an explicit expression

of the yield condition is obtained (for more details, see Monchiet, 2006)

F ¼ ðr : DÞ2

s20
þ 2g cosh

ffiffiffi

3
p

2

rh

s0

( )

� 1� g2 ð7Þ

As for the Gurson’s criterion, Eq. (7) indicates that the porosity g affects the macroscopic plasticity of the matrix. Moreover, it

shows a dependence on the hydrostatic pressure. In the case of an equally null porosity (g = 0), the plastic criterion reduces

as it should be to the Schmid’s law, in perfect plasticity, for the activated slip system.

b

a

PSB

Plastic grains

D

Fig. 1. Elementary cell.



We need now to extend (7), established in the case of the perfect plasticity, to the context of plasticity with hardening.

Indeed, despite the fact that perfect plasticity generally allows first approximations of mechanical response, it is not adapted

to cyclic loadings. As shown by Papadopoulos (1987), hardening laws has to be considered as monocrystals submitted to

cyclic loadings exhibit isotropic and kinematic hardening characters. Such an extension of the original criterion of Gurson

was previously proposed by Leblond et al. (1995), by using a micromechanical reasoning. Adapting then this extension, it

is assumed here that the expression of the macroscopic yield function with isotropic and kinematic hardening has the fol-

lowing form:

F ¼ B : D

sd

� �2

þ 2g cosh

ffiffiffi

3
p

2

Bh

sh

( )

� 1� g2 ð8Þ

where B = r � X, X is the kinematic hardening variable, defining the center of the elastic domain. X is partitioned in an hydro-

static part Xh (Xh = tr (X)/3) and a deviatoric part Xd, defined by Xd = 2X:D. To take into account the isotropic part of the hard-

ening, the yield stress s0 is replaced by two parameters sd and sh, defined by: sd = s0 + Rd et sh = s0 + Rh. The quantities Rd and

Rh are the two variables of the isotropic hardening. The problem to solve consists then in the determination of the param-

eters Xd, Xh, Rd and Rh.

The expressions of the hardening parameters are determined by considering particular loading paths for which an exact

solution of the limit analysis problem can be identified. This method, developed in Monchiet (2006) in the context of crys-

talline plasticity, leads to the following expressions for the hardening parameters involved in (8):

Rd ¼ R0p; Xd ¼ ð1� gÞccp; Xh ¼ 2c
ffiffiffi

3
p a; Rh ¼ � R0

lnðgÞ acum ð9Þ

in which has been introduced

a ¼ 2
ffiffiffi

3
p dilog

ga
g

� �

� gg

� �

ð10Þ

and acum ¼
R t

0
j _ajdt0 which is the cumulated value of the variable a.

2.2.3. Evolution laws

The evolution laws of the variables p and e
p
h, which appear explicitly in the expression of the fatigue criterion (5), are ob-

tained via the normality rule1 associated to F Eq. (8)

_ep ¼ _k
oF

or
)

_p ¼ 2 _k

�

�B : D
�

�

s2d

_e
p
h ¼ _k g

ffiffi

3
p

sh
sinh

ffiffiffi

3
p
2

Bh
sh

� 	

8

>

>

>

<

>

>

>

:

ð11Þ

_k corresponds to the plastic multiplier. Eq. (11) of p and e
p
h depend on the local stress tensor, i.e. on s and rh.

We need now to formulate the fatigue criterion at the macroscopic scale, i.e. as a function of the macroscopic stress ten-

sor, R. For this purpose, a micro–macro transition is due.

3. Micro–macro transition

In the context of HCF, one must remember that plasticity remains confined in a few grains, favorably oriented with re-

spect to the loading axes, i.e. on which plastic slip is more easier. The macroscopic behavior is not affected by this plasticity

and remains elastic. Let us denote by R the macroscopic stress tensor and by E the macroscopic strain tensor. These tensors

are related by the Hooke’s law: R ¼ C : E, where C is the stiffness tensor of the aggregate, which is considered isotropic for

sake of simplicity. The elastic behavior of the inclusion (i.e. the unfavorably oriented grain) is defined by r ¼ C
I
: ee. The gen-

eral case corresponds to C
I 6¼ C, as the elastic behavior of the grain is classically characterized by a cubic elastic law; nev-

ertheless, for sake of simplicity, this anisotropy is neglected and C
I ¼ C.2 It is emphasized that the context of metals HCF

corresponds to the beginning of monotonic plasticity (confined plasticity) for which the Eshelby–Kröner’s approach is com-

pletely justified (see (Bornert et al., 2006)). Then, applying the Kröner’s self-consistent scheme (Kröner, 1961), the interaction

law is given by

r ¼ R� C
�
: ep ð12Þ

where C
� ¼ C : ðI� P : CÞ, P is the Hill’s fourth order tensor which depends on the elastic properties of the matrix and of the

inclusion geometry. The expressions of the hydrostatic pressure, rh, and of the shear stress, s, involved in (7) and (11) and

required for the determination of the macroscopic criterion (5) are readily obtained as

1 As classically, it is demonstrated that this is the consequence of the normality rule at the local scale.
2 From the theoretical point of view, taking into account the cubic symmetry of the grain does not introduce major difficulties. This has been done in

Monchiet (2006).



s ¼ R : D� l�c; rh ¼ Rh � 3k
�
e
p
h ð13Þ

with: k
� ¼ 2k

3
1� 2m
1� m

and l� ¼ l
15

7� 5m
1� m

. The upscaling of the local constitutive law, defined by (8) and (11), at the macro-

scopic scale is obtained from (13) and leads to an apparent hardening, denoted X�
d ¼ Xd þ l�c and X�

h ¼ Xh þ 3k
�
e
p
h. The yield

function (8) can then be written

F ¼ R : D� X�
d

sh

� �2

þ 2g cosh

ffiffiffi

3
p

2

Rh � X�
h

sh

( )

� 1� g2 ð14Þ

and the plastic strain evolution laws

_ccum ¼ 2 _k
jR : D� X�

dj
s2d

_e
p
h ¼ _k

g
ffiffiffi

3
p

sh
sinh

ffiffiffi

3
p

2

Rh � X�
h

sh

( ) ð15Þ

It must be emphasized that the numerical integration of such a model at the macroscopic scale is quite not modified by this

apparent hardening. More generally, the macroscopic stress is a function of time, describing a closed curve which corre-

sponds to the cyclic loading path, in the stress space. The determination of the fatigue criterion is possible by means of

the integration on the loading path of the constitutive law defined by (14). The no crack nucleation condition defined by

(5) has then to be verified. As an example, an application of this criterion is now proposed in the case of affine macroscopic

loading paths.

4. The case of affine loading paths

4.1. Application of the model to affine loading paths

When the cyclic loading path is affine, the macroscopic stress tensor has the following form: R(t) = Rasin(xt) + Rm, where

Ra and Rm are, respectively, the alternated and mean parts of the macroscopic stress tensor whose shear components are

denoted Ta = Ra:D and Tm = Rm:D, and the hydrostatic parts, Rh,a and Rh,m. It is well known that, in this particular case, the

multiaxial loading path reduces as a straight line in the stress space.

In case of macroscopic affine loading paths, the asymptotic behavior of plastic structures is characterized by elastic shake-

down, plastic shakedown or ratcheting. In both last cases, the failure is the result of the accumulation of plastic strains and

damage along PSBs. A necessary condition of no crack initiation is to ensure elastic shakedown at the local scale. This first

subsection presents numerical results obtained with the coupled plasticity–damage model presented in the previous sec-

tions, in the case of affine loadings. For the different applications, the assumed parameters of the model are given in Table

1. The order of magnitude of these parameters is deduced from the literature on monocrystals cyclic behavior (such as (Win-

ter, 1974; Essmann and Mughrabi, 1979), a general review of this literature can be founded in Suresh (1998)) and these val-

ues simply give general evolutions of the model. As it will be underlined in the next part, for a given material, these

parameters are not determined individually but globally, as a combination, from macroscopic fatigue limit.

The plastic criterion at the shakedown state in the macroscopic stress space (R: D, Rh) is represented in Fig. 2 for the fol-

lowing particular values: Ta = 200 MPa, Tm = 0, Rh,a = 600 MPa and Rh,m = 200 MPa. As only the shear component on the slip

plane and the hydrostatic pressure are considered, the macroscopic stress space can be reduced to this 2D representation. It

can be noted that the obtained surface is symmetric, centered on the macroscopic stress path (represented by the segment

AB), i.e. around Tm = 0 and rh,m = 200 MPa. This feature has been verified more generally: in fact, at the local scale of the grain,

at the shakedown state, the stress cycle is defined by r = Rasin(xt); the residual stress tensor balances with the macroscopic

mean stress tensor, i.e. q = Rm. The three following relations are deduced from these observations:

Tm ¼ X�
d ¼ ðð1� gcÞc þ l�Þcp

Rh;m ¼ X�
h

T2
a

s2d
þ 2gc cosh

ffiffiffi

3
p

2

Rh;a

sh

( )

� 1� g2c ¼ 0

ð16Þ

Table 1

Assumed model’s parameter

s0 R0 c A0 ka k l

60 MPa 20 MPa 1000 MPa 0.0008 2 200 GPa 75 GPa

The order of magnitude of these parameters is deduced from the literature on monocrystals cyclic behavior (Winter, 1974; Essmann and Mughrabi, 1979;

Suresh, 1998).



These new results, obtained in the case of a plasticity depending on the hydrostatic pressure, extend those of Papadopoulos

(1987) in classical plasticity. In Monchiet et al. (2006), the role of the mean stress, and, in particular, of the mean part of the

hydrostatic pressure, on the fatigue criterion was clearly demonstrated in the case of an uncoupling between plasticity and

damage. This effect of the mean stress is recovered here, as shown in Fig. 3. In fact, the amount of total porosity, which rep-

resents fatigue damage in the present model, obtained at the shakedown state, depends clearly on the shear stress amplitude

and also on the mean part of the hydrostatic pressure. One of the important contribution of the present study is to provide a

physical explanation of the crucial role of the alternated part of the hydrostatic pressure. In Fig. 4, the cumulated plastic slip

p is represented as a function of the hydrostatic pressure amplitude Rh,a, for a shear amplitude of Ta = 200 MPa. The variation

of p with this component of the hydrostatic pressure illustrates the dependence of the plastic behavior on Rh and then, the

importance of the plasticity–damage coupling. Indeed, the dotted line in Fig. 4 corresponds to the uncoupled model pre-

sented in Monchiet et al. (2006) and which shows the independence of p with respects to Rh,a in this case. The dependence

of the porosity value gwith the hydrostatic pressure amplitude, Rh,a, is besides observed in Fig. 5, where the variations of the

porosity g are presented as a function of Rh,a for different values of the shear amplitudes Ta. Once again, this dependence

illustrates the coupling between loading surface, damage and hydrostatic pressure and the particularity of the proposed

HCF model.
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Fig. 2. Loading surface in the plane (R: D, Rh), obtained by numerical simulation using the equations of the coupled plasticity–damage model proposed in

the previous parts associated to the parameters coming from Table 1.
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Fig. 3. Variation of the porosity g with the mean hydrostatic pressure Rh,m for different values of the shear amplitude Ta.



4.2. Illustration on macroscopic affine loadings

In the previous section, the symmetrization of themicroscopic loading cycle at the shakedown state has been verified in the

case of macroscopic affine loading paths. This observation leads to three relations given by (16). One can then first remark that

the fatigue criterion is only a functionofp and e
p
h butnot of theplastic slip cp at the shakedownstate. Taking into account thefirst

relation in (16), this implies that the criterion is independent of themacroscopicmean shear stresswhich is in accordancewith

many experimental results already reported in literature (Sines, 1959). From the two last relations of (16), the local variables p

and eph canbededuced fromthemacroscopic variables Ta,Rh,a,Rh,m. Therefore, in a generalway, it canbe stated that theproposed

criterion is based on the same variables as the Dang Van’s criterion (Dang Van, 1999). However, in the present approach, the

dependence on the alternated and mean components of the hydrostatic pressure, Rh,a et Rh,m, results clearly from the explicit

incorporation of the damagemechanisms along the PSBs in themultiscalemodeling. As a first illustration, results of Ros (1950)

corresponding to reversed torsion tests with mean tension on En25T steel are considered. The Fig. 6 shows a good agreement

between the differentmodels and experimental results and illustrates the influence of themean stress, representedhere by the

meanpart of the hydrostatic pressure. It is interesting to note that in this case, the uncoupledmodel proposed inMonchiet et al.

(2006) corresponds exactly to the Dang Van’s criterion, as demonstrated inMonchiet, 2006. In this illustration, aswell as in the

following, the combinations of the parameters of themodel are globally identified in thesemore simple loading cases, directly

from twoexperimental points. In order to examine the particular role of the alternatedpart of the hydrostatic pressure, thewell

known experimental results of Gough and Pollard (1935) for reversed bending–torsion tests are considered. In Fig. 7, they are

represented in the plane (R12,a;R11,a) corresponding, respectively, to the torsion and bending parts of the loading. As
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6
1000800600400200
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p

Fig. 4. p at the shakedown state as a function of Rh,a, for Ta = 200 MPa. The dotted line corresponds to the uncoupled model presented in Monchiet et al.

(2006) and the plain line to the present coupled model.
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Fig. 5. Variation of the porosity g with the amplitude of the hydrostatic pressure Rh,a for different values of the shear amplitude Ta.



emphasized in the introduction, the uncoupled approach proposed in Monchiet et al. (2006) does not take into account the

alternated part of the hydrostatic pressure, which explains this gap between this model and the experimental data. The Dang

Van criterion is in a relative accordancewith the experimental data. Onemust recall in this particular case that a linear relation

is postulated between the local shear stress and the maximumhydrostatic pressure which includes its alternated part. At last,

the proposed fatigue criterion, directly deduced from a plasticity–damage based micromechanical approach, enables a more

physical representation of the role of the alternated part of the hydrostatic pressure, as well as of its mean part. Compared

to Dang Van’s approach, for which elastic shakedown corresponds to the fatigue criterion, one of the principal interest of this

micromechanical fatiguemodel is that fatigue criterion is definedas a critical damagevalue gc. Then, damage evolution lawsare

defined in the second part of this paper, depending on the plastic strains evolution laws described through the Eq. (11). There-

fore, this approach enables the treatment of any complex loadings, as variable amplitude ones. This particular case can not be

analyzed with Dang Van’s criterion without rough approximations and assumptions.

5. Conclusion

A multiscale approach of the determination of a High Cycle Fatigue criterion has been proposed. It allows to take into

account, not only plasticity activity in some grains, but also damage due to microvoids growth along PSB–matrix interface.

The proposed criterion is obtained by adapting the extension of Gurson analysis by Leblond et al., extended here to cyclic

loadings and hardening crystalline plasticity. It allows to demonstrate a significant effect of the mean pressure as well as

of its alternated part. This effect is clearly related to the considered damage mechanisms. It is believed that the proposed

approach and the obtained results open new perspectives in fatigue, as they can be extended to the treatment of unconfined

(macroscopic) plasticity and thermomechanical cyclic loadings which remain open engineering problems.
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