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Clifford algebras bundles to multidimensional
image segmentation

Thomas Batard and Michel Berthier

Abstract. We present a new theoretical framework for multidimensional image
processing using Clifford algebras. The aim of the paper is to detect edges by
computing the first fundamental form of a surface associated to an image.
We propose to construct this metric in the Clifford bundles setting. A nD
image, i.e. an image of dimension n, is considered as a section of a trivial
Clifford bundle (CT (D), eπ, D) over the domain D of the image and with fiber
Cl(Rn, ‖‖2). Due to the triviality, any connection ∇1 on the given bundle is

the sum of the trivial connection e∇0 with ω, a 1-form on D with values in
End(CT (D)). We show that varying ω and derivating well-chosen sections
with respect to ∇1 provides all the information needed to perform various
kind of segmentation. We present several illustrations of our results, dealing
with color (n=3) and color/infrared (n=4) images. As an example, let us
mention the problem of detecting regions of a given color with constraints
on temperature; the segmentation results from the computation of ∇1(I) =
e∇0(I)+ (dx+dy)⊗µI , where I is the image section and µ is a vector section
coding the given color.

Mathematics Subject Classification (2000). 68U10, 55R10, 15A66, 53C05.

Keywords. Image processing, Clifford bundles, Covariant derivatives, Geomet-
ric algebra.

1. Introduction

Clifford (Kähler-Atiyah [6]) algebras are widely used in computer sciences for sev-
eral reasons (see [13] for examples of applications). In this paper, we will take
advantage of the following two facts:

1. As it is well known, Clifford algebras provide a particulary efficient framework
to make computations without coordinates [7]. We use in the sequel inner, wedge
and geometric products as well as the related geometric interpretations of these
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operations. More precisely, the acquisition space of the image, i.e. the space where
the image gets its values, is embedded into a Clifford algebra. We measure the
local variations of the values of the pixels, seen as integer coordinates points of the
domain D of the image, using geometric information and transformations. We get
in this way the metric data of the image surface needed for the edge detection. It
appears to be an asset that we can take into account variations of the metric by
introducing Clifford bundles.
2. A Clifford algebra contains elements of different degrees (scalar, vectors, bivec-
tors, . . ., pseudoscalar). This allows to combine information of different nature
in a single multivector to have a global and concise treatment of the used data.
For example, when computing the covariant derivative ∇1(S), for S a section of
a Clifford bundle over D, we obtain a 1-form on D that may be decomposed as a
sum of 1-forms with values in the parts of degree k, for k = 1, · · · , n, of the total
space of the bundle, each part coding a particular information.

The aim of the paper is to generalize a method of edge detection based on the
definition of an image as 2-dimensional surface, in the Clifford bundles framework.
As we will see Section 2.1, edges detected by such a method depend completely
on the first fundamental form of the surface, i.e the metric induced by the metric
of the ambient space. Let us cite some works where images are defined as sur-
faces with the metric of the ambient space varying with the point. [8] and [1] both
propose application to color edge detection. The first deals with hyperbolic coordi-
nates and a corresponding metric, whereas we deal in the second with luminance,
saturation and hue components (see Section 2.2). In [8], edge detection arises from
a diffusion process whereas in [1], edge detection arises from a local definition of
edges [11]. Note that in [1], we already proposed to detect only specific edges,
and to construct first fundamental forms using Clifford bundles formalism with
applications to color and color/infrared images. We also mentioned extensions to
nD images, but did not propose there explicit methods.

All the applications we present in this paper follow the same schema: First, we
consider appropriate connection ∇1 and section S relative to a trivial Clifford
bundle over D. A metric generating a new Clifford bundle over D is constructed
using the parts of degree 6= 1 of ∇1(S). Roughly speaking, this metric corresponds
to the metric of the ambient space of the surface. Then, a 1-form with values in
this new bundle is built from the part of degree 1 of ∇1(S). At last, by a tensor
product over a well-chosen ring, we associate to this 1-form a symmetric tensor of
rank 2 with values in the scalar part of the bundle. It measures variations of S with
respect to the metric of the new bundle. Identifying the ring R and its injection
into Clifford algebras, this tensor can be assimilated as the first fundamental form
of a surface.

The paper is organized as follows. Section 2 is devoted to first, remind the method
of edge detection on color images we propose to extend, then to give some basic
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results on color and color/infrared spaces when embedded into Clifford algebras.
In Section 3, we detail the global framework we propose for nD image edge detec-
tion. It contains the construction of the trivial Clifford bundle wherein a multidi-
mensional image is represented as a section and the construction of a connection
compatible with the Clifford product. Moreover, we develop a general method to
construct first fundamental forms of 2-dimensional surfaces from the information
given by ∇1(S). In Section 4, we apply the method of Section 3 to color and
color/infrared images. We present several illustrations due to particular choices of
the connection ∇1 and the section S.

2. Preliminaries

2.1. Multidimensional image edge detection using metrics of surfaces

A usual method of edge detection on color images is to consider a color image, of
components (r, g, b) (see Section 2.2) defined on a subsetD of R

2 as a 2-dimensional
surface S parametrized by

ϕ : (x, y) 7→ (x, y, r(x, y), g(x, y), b(x, y))

embedded into (R5, ‖‖2). The euclidean metric of the embedding space R
5 induces

a metric on S called the first fundamental form of S, which takes the following
form

dS2 := dx2 + dy2 + dr2 + dg2 + db2 (1)

Then, color variations on the image are assimilated to tangent vectors of S and a
measure of these variations is given by dS2. The rest of the method is devoted to
select the strongest local variations, called edges.
More precisely, let I(q) be the matrix representation of the metric dS2 at q = ϕ(p)
in the coordinates system given by (dpϕ(1, 0), dpϕ(0, 1)). Let θ+(q) and θ−(q),
θ+(q) ≥ θ−(q), be the two eigenvalues of I(q) and Θ+(q), Θ−(q) the corresponding
eigenvectors. The edge measure is then given by

̟(q) =
√
θ+(q) − θ−(q) (2)

and we say that p ∈ D is an edge point if the function ̟ has a local maximum at
ϕ(p) in the direction given by Θ+(ϕ(p)).

We propose to generalize this method in two-folds. First, by considering images of
higher dimension, that are represented in this context by 2-dimensional surfaces
embedded in higher dimensional spaces. For example, a color/infrared image is
represented by a 2-dimensional surface embedded into R

6. Secondly, by consider-
ing embedding spaces equipped with metrics varying with the point, so that to
detect only specific edges on the image.
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2.2. Color and color/infrared spaces as subsets of Clifford algebras

There are many ways to represent the set of colors i.e. there are many color spaces.
The standard color space, based on the physical properties of the human vision is
RGB (red, green, blue). Each color is identified by its red, green and blue levels,
which are generally encoded by integers from 0 to 255. The RGB space is geomet-
rically represented by a cube.

In the seminal papers [9] and [10], Sangwine & al. propose to embed RGB into
the space of imaginary quaternions H0 by

(r, g, b) 7→ ri+ gj + bk

so that to compute geometric transformations on colors, as rotations, using only
the addition and product laws of the algebra of quaternions H. As a consequence,
applying such transformations on some pixels of a color image, seen as a H-valued
function

D −→ H

f : (x, y) 7−→ r(x, y)i+ g(x, y)j + b(x, y)k

the authors define new kinds of color image segmentation, as chrominance (see
later) edge detection.

Such results may be recovered by embedding RGB into the vector part of the
Clifford algebra Cl(R3, Q) associated to R

3 equipped with an euclidean quadratic
form Q.

(r, g, b) 7→ re1 + ge2 + be3

Using this last framework presents two assets comparing to quaternions. First,
as Cl(R3, Q) is of dimension 8 and H is of dimension 4, the former may carry
more information about colors. Moreover, as one can associate a Clifford algebra
to a vector space of any dimension, it is possible to deal with nD images: The
acquisition space of a nD image is embedded, as before, into the vector part of
Cl(Rn, Q) where Q is an euclidean quadratic form. In particular, for color/infrared
images, we embed RGBT into Cl(R4, Q), where T stands for temperature, by the
following map

(r, g, b, t) 7→ re1 + ge2 + be3 + te4

There exist other color spaces based on the perceptual properties of the human
vision and parametrized by luminance (or intensity), saturation and hue. Let us
mention the HSL color spaces represented by a double cone. Such color spaces are
called perceptual since effects of variations of each one of the components can be
interpreted. In particular, the hue corresponds to the usual notion of color, i.e. we
distinguish red, yellow, green, blue, purple...hues. We refer to [3] for more details.

Beside RGB color space we consider the HSL color space defined as follows.
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We set first 


Y
C1

C2


 =




1/3 1/3 1/3
1 −1/2 −1/2

0 −
√

3/2
√

3/2







r
g
b




Then the luminance l, the saturation s and the hue h are respectively given by

l = Y

s =
√
C2

1 + C2
2

h =

{
arccos(C2/s) if C2 > 0

2π − arccos(C2/s) otherwise

Note that the hue is an angular information. At the end of this part, we will see
another representation of hues.

We can compute h from r, g and b in the setting of the Clifford algebra R3,0

as follows. Let a = re1 + ge2 + be3 ∈ R3,0 be a color, and let h(a) denote its hue.
The vector a may be decomposed into its projection on the achromatic axis, gen-
erated by the unit vector (e1 +e2 +e3)/3 and its rejection v(a), which corresponds
obviously to the projection on the plane generated by the dual of (e1 + e2 + e3)/3,
called the chrominance plane. The vector v(a) is called the chrominance vector of
the color a. Simple computations show that

h(a) = 2π + sign(g(a) − b(a)) arccos
( v(a)

‖v(a)‖ · ρ(a)
)

with ρ(a) the unit chrominance vector corresponding to colors colinear to e1 and
h(a) defined modulo 2π. In other words, h(a) is the oriented angle from ρ(a) to
v(a). To conclude this part, let us explain how to define the hue using bivectors.

Proposition Let T be the set of bivectors

T = {(e1 + e2 + e3) ∧ α, α ∈ RGB}

with the following equivalence relation:

B ≃ C ⇐⇒ B = λC for λ > 0

Then, there is a bijection between T/ ≃ and the set of hues.

Proof. We have

(e1 + e2 + e3) ∧ α = (e1 + e2 + e3)vα

where vα is the projection of α on the chrominance. Then, there is a bijection
between T/ ≃ and the set (e1 + e2 + e3) v for v a unit vector in the chrominance
plane. This latter being in bijection with the set of different hues, we conclude
that there exists a bijection between T/ ≃ and the set of hues. �
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As complementary hues are given by opposite chrominance axis, they generate
opposite bivectors.

Figure 1.1 shows the representation of the set of colors having the same hue in
RGB color space, for h = 330◦, 0◦, 30◦.

Figure 1. (a) colors of hue 330◦- (b) colors of hue 0◦- (c) colors
of hue 30◦

3. A general method to multidimensional image edge detection

3.1. A family G = {Gn, n ∈ N} of Clifford bundles

The aim of this subsection is to describe the family of Clifford bundles we consider
to perform the edge detection. As before D denotes the domain of the image. To
each point p ∈ D, we associate a vector space Ep of dimension n endowed with a
definite positive quadratic form g(p) such that in the basis (e1(p), e2(p), . . . , en(p))

1This picture was found at the address http://gug.sunsite.dk.



Clifford algebras bundles to multidimensional image segmentation 7

of Ep, g(p) takes the following form

g(p) =




g1(p) 0 0 · · · · · · 0
0 g2(p) 0 · · · · · · 0

0 0
. . .

...
...

...
. . .

...
0 0 · · · · · · 0 gn(p)




Let E be the disjoint union of Ep for p in D, and π : E → D that maps v ∈ Ep to
p. We construct a trivial Riemannian vector bundle of rank n (E, π,D) as follows.
Let ϕ be the bijection

D× (Rn, ‖ ‖2) −→ E

(
p , (u1, u2, · · · , un)

)
7−→ u1

e1(p)√
g1(p)

+ u2
e2(p)√
g2(p)

+ . . .+ un
en(p)√
gn(p)

where for a fixed p, ϕ : (Rn, ‖ ‖2) → Ep is an isometry from the euclidean space
R

n to Ep. We define a topology on E by stating that U ∈ E is open iff ϕ−1(U) is
open in D× (Rn, ‖ ‖2). This topology makes ϕ an homeomorphism and E a man-
ifold with ϕ−1 as global chart. Consequently, ϕ is a diffeomorphism and therefore
(E, π,D) is a trivial Riemannian vector bundle of rank n having ϕ as global trivi-
alization. We denote Fn the family of bundles (E, π,D) of rank n obtained in this
way.

In the trivialization ϕ, any section S can be written:

S(p) = s1(p)
e1(p)√
g1(p)

+ s2(p)
e2(p)√
g2(p)

+ . . .+ sn(p)
en(p)√
gn(p)

Each fiber Ep endowed with the quadratic form g(p) generates a Clifford alge-
bra Cl(Ep, g(p)). In particular, the basis (e1(p), e2(p), . . . , en(p)) of Ep generates
a basis of Cl(Ep, g(p)):

{
1(p), e1(p), e2(p), . . . , en(p), e1(p)e2(p), . . . , e1(p)e2(p) . . . en(p)

}

Let us denote CT (D) the disjoint union of Cl(Ep, g(p)) for p ∈ D, and π̃ that
maps v ∈ Cl(Ep, g(p)) to p. Then, from (E, π,D), we construct a trivial Clifford
bundle (CT (D), π̃, D) as follows. Let ϕ̃ be the bijection

D×Cl(Rn, ‖ ‖2) −→ CT (D)

(
p , (u0, u1, · · · , u2n

−1
)
)

7−→ u0 1(p) + u1
e1(p)√
g1(p)

+ · · · + u
2n

−1

e1(p)...en(p)√
g1(p)...gn(p)

where for a fixed p, ϕ̃ : Cl(Rn, ‖ ‖2) → Cl(Ep, gp) is an algebra isomorphism. As
previously done, we endow CT (D) with a topology by stating that U ∈ CT (D) is
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open iff ϕ̃−1(U) is open in D×Cl(Rn, ‖ ‖2). Then, the bijection ϕ̃ is an homeomor-
phism, and CT (D) is a manifold having ϕ̃−1 as global chart. Consequently, ϕ̃ is a
diffeomorphism. We conclude that (CT (D), π̃, D) is a trivial Clifford bundle having
ϕ̃ as global trivialization. We denote Gn the family of those bundles (CT (D), π̃, D).

In the trivialization ϕ̃, any section S may be written:

S(p) = s0(p) 1(p) + s1(p)
e1(p)√
g1(p)

+ · · · + s
2n

−1
(p)

e1(p)e2(p) . . . en(p)√
g1(p)g2(p) . . . gn(p)

Let us mention that (CT (D), π̃, D) is, in particular, a trivial vector bundle.

3.2. Algebra connection on (CT (D), π̃, D)

In what follows, Γ(H) denotes the space of Ck sections, k ≥ 1, of a vector bundle
of total space H . Let us recall that any connection ∇ on a trivial vector bundle
(H,π1,M) takes the form

∇ = d+ ω (3)

for some ω ∈ Γ(T ∗M⊗End(H)) and d being the usual differentiation of functions.
More precisely, let f1, f2, · · · , fn be a basis of the fiber of (H,π1,M), and Φ be a
global trivialization. Then (Φ(., f1),Φ(., f2), · · · ,Φ(., fn)) defines a global frame,
i.e. for each p ∈M , (Φ(p, f1),Φ(p, f2), · · · ,Φ(p, fn)) is a basis of Hp.
Then, any section u ∈ Γ(H) may be written

u =
n∑

i=1

uiΦ(., fi)

and

∇u =

n∑

i=1

dui Φ(., fi) + ui ω(Φ(., fi))

On a vector bundle (E, π,D) ∈ Fn of metric g, we denote ∇0 the connection where
ω ≡ 0 in the trivialization ϕ. For s ∈ Γ(E), we have therefore

∇0(s) =

n∑

i=1

dsi

ei√
gi

Proposition
Let (CT (D), π̃, D) ∈ Gn generated by (E, π,D) ∈ Fn. The connection ∇0 induces

an algebra connection on (CT (D), π̃, D), i.e. a connection ∇̃0 satisfying

∇̃0(MN) = ∇̃0(M)N +M∇̃0(N)

for all M and N in Γ(CT (D)).
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Proof. First, let us remark that ∇0 is compatible with the fiber metric, i.e

d
X
g(s, s′) = g(∇0X

s, s′) + g(s,∇0X
s′)

for s, s′ ∈ Γ(E) and X ∈ Γ(TD).

Indeed, in the global frame
(

e1√
g1

, e2√
g2

, . . . , en√
gn

)
induced by ϕ, the metric g takes

the form

g =




1 0 0 · · · · · · 0
0 1 0 · · · · · · 0

0 0
. . .

...
...

...
. . .

...
0 0 · · · · · · 0 1




Then, if s =
∑n

i=1 si
ei√
gi

and s′ =
∑n

i=1 s
′
i

ei√
gi

, we have

d
X
g(s, s′) =

n∑

i=1

d
X
si s

′
i + si dX

s′i

and

g(∇0X
s, s′) =

n∑

i=1

d
X
si s

′
i g(s,∇0X

s′) =

n∑

i=1

si dX
s′i

Secondly, the condition for a connection ∇ on a vector bundle equipped with a
metric to be compatible with the fiber metric is in fact a sufficient condition to
construct an algebra connection on the induced Clifford bundle. Indeed, ∇ can be
extended in a unique way to the corresponding tensor algebra bundle by linearity
and Leibniz’s rule, and stating that ∇(f) = df for f ∈ Ck(M) where M is the base
manifold. Then, the compatibility with the fiber metric ensures that ∇ preserves

the ideal genenerated by
(
x⊗x−g(x, x)

)
[2]. Consequently, ∇ defines a connection

on the quotient that preserves the product in the quotient algebra bundle which

is a Clifford bundle. In our case, this means that ∇0 induces a connection ∇̃0 on
(CT (D), π̃, D) that satisfies

∇̃0X
(MN) = ∇̃0X

(M)N +M∇̃0X
(N)

for all M,N in Γ(CT (D)) and X ∈ Γ(TD).

At last, from the fact that Γ(T ∗D ⊗ CT (D)) may be endowed with a Γ(CT (D))-
bimodule structure by the two following maps

Γ(CT2(D))×Γ(T ∗D ⊗ CT2(D)) −→ Γ(T ∗D ⊗ CT2(D))

(b , ξ ⊗ c) 7−→ ξ ⊗ bc
(4)
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Γ(T ∗D ⊗ CT2(D))×Γ(CT2(D)) −→ Γ(T ∗D ⊗ CT2(D))

(ξ ⊗ c , b) 7−→ ξ ⊗ cb
(5)

we have

∇̃0(MN) = ∇̃0(M)N +M∇̃0(N) �

Let us verify that the algebra connection ∇̃0 we have defined on (CT (D), π̃, D)
corresponds to the connection on (CT (D), π̃, D) with ω ≡ 0. For this, we just need
to verify that

∇̃0

(
si1i2···ik

ei1√
gi1

ei2√
gi2

· · · eik√
gik

)
= d(si1i2···ik

)
( ei1√

gi1

ei2√
gi2

· · · eik√
gik

)

By compatibility of ∇̃0 with the Clifford product, the expression

∇̃0

(
si1i2···ik

ei1√
gi1

ei2√
gi2

· · · eik√
gik

)

can be decomposed into

∇̃0

(
si1i2···ik

ei1√
gi1

)( ei2√
gi2

· · · eik√
gik

)
+

(
si1i2···ik

ei1√
gi1

)
∇̃0

( ei2√
gi2

· · · eik√
gik

)

=
(
d(si1i2···ik

)
ei1√
gi1

+ si1i2···ik
∇̃0(

ei1√
gi1

)
)( ei2√

gi2

· · · eik√
gik

)

=
(
d(si1i2···ik

)
ei1√
gi1

)( ei2√
gi2

· · · eik√
gik

)

= d(si1i2···ik
)
( ei1√

gi1

ei2√
gi2

· · · eik√
gik

)

Therefore, any connection ∇1 on (CT (D), π̃, D) may be written

∇1 = ∇̃0 + ω (6)

for some ω ∈ Γ
(
T ∗D ⊗ End(CT (D))

)
.

As it is written in the Introduction, an image I is considered as a section of a bun-
dle (CT (D), π̃, D) ∈ Gn, where n = 3 for color images, and n = 4 for color/infrared
images.
Let I be a color/infrared image. Then, in the global frame induced by the global
trivialization ϕ, we have

I(p) = r(p)
e1(p)√
g1(p)

+ g(p)
e2(p)√
g2(p)

+ b(p)
e3(p)√
g3(p)

+ t(p)
e4(p)√
g4(p)

where r, g, b, t are respectively red, green, blue and temperature components in the
RGBT color/infrared space.
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3.3. Computing first fundamental forms from connections on Clifford bundles

This is the main part of the paper. We propose a general method to construct first
fundamental forms of 2-dimensional surfaces representing nD images in the setting
of Clifford algebras bundles. This is done in such a way that all the applications
we present in this paper appear as particular cases, the embedding spaces being
R

6 for color/infrared images and R
5 for color images.

Let (E1, π1, D) ∈ Fn of metric g, and (F1, π1, D) a subbundle 2 of rank m with
global frame (ej1 , ej2 , . . . , ejm

). Following the construction of the previous part,
(E1, π1, D) generates a Clifford bundle (CT1(D), π̃1, D) ∈ Gn. Let ∇1 and S be
respectively a connection and a section of (CT1(D), π̃1, D). The 1-form ∇1(S)
defined on D with values in CT1(D) may be written

∇1(S) = 〈∇1(S)〉0 + 〈∇1(S)〉1 + 〈∇1(S)〉2 + · · · + 〈∇1(S)〉2n−1

where 〈∇1(S)〉k denotes the part of ∇1(S) of degree k. Strictly speaking, 〈∇1(S)〉k
is a 1-form on D with values in the part of CT1(D) of degree k.

Next we construct a vector bundle (E2, π2, D) ∈ Fm (m is the rank of the sub-
bundle F1) whose metric h arises from the information given by all the parts of
∇1(S) except the one of degree 1. Roughly speaking, this metric corresponds to the
metric of the ambient space of the surface. Then using a vector bundle morphism
and a tensor product over a well-chosen ring, the vector part of ∇1(S) provides a
way to measure variations of S with respect to the metric h, which corresponds to
the metric of the surface induced by the metric of its ambient space, i.e. its first
fundamental form.

We now detail the last part of the construction. Let us denote (CT2(D), π̃2, D)
the Clifford bundle of Gm generated by (E2, π2, D). We define a vector bundle
morphism ψ from (E1, π1, D) to (E2, π2, D) by

ψ(p)
( ei(p)√

gi(p)

)
=






el(p)√
hl(p)

if ei(p) = ejl
(p) ∈ F1(p)

0 otherwise

This morphism induces a vector bundle morphism ψ̃ from (CT1(D), π̃1, D) to
(CT2(D), π̃2, D) defined by

ψ̃(p)
( ei1(p)ei2(p) · · · eik

(p)√
gi1(p)gi2(p) · · · gik

(p)

)
=






eα1
(p)eα2

(p)···eα
k
(p)√

hα1
(p)hα2

(p)···hα
k
(p)

if

∣∣∣∣∣∣∣∣∣

ei1(p) = ejα1
(p)

ei2(p) = ejα2
(p)

...
eik

(p) = ejα
k
(p)

0 otherwise

2The reason why to consider such subbundles will be clarify in Sec. 4 devoted to applications
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From ψ̃, we construct a vector bundle morphism Ψ from (T ∗D ⊗ CT1(D), p1, D)
to (T ∗D ⊗ CT2(D), p2, D) that maps

η(p) ⊗ ei1(p)ei2(p) · · · eik
(p)√

gi1(p)gi2(p) · · · gik
(p)

to 



η(p) ⊗ eα1
(p)eα2

(p)···eα
k
(p)√

hα1
(p)hα2

(p)···hα
k
(p)

if

∣∣∣∣∣∣∣∣∣

ei1(p) = ejα1
(p)

ei2(p) = ejα2
(p)

...
eik

(p) = ejα
k
(p)

0 otherwise

(7)

Let η1 be the vector part of ∇1(S). It is important to notice that for all the
applications to be treated in Sec. 4, we may suppose that

η1 =
n∑

i=1

η1i ⊗
ei√
gi

where for each i, the 1-form η1i is exact, i.e. may be written as the differential dfi

of fi ∈ Ck(D). We have therefore

Ψ(p)(η1(p)) =
n∑

i=1

dfi(p) ⊗ ψ(p)
( ei(p)√

gi(p)

)

=

m∑

l=1

dfjl
(p) ⊗

( el(p)√
hl(p)

)

Let η2 be the section of (T ∗D ⊗ CT2(D), p2, D) given by the set Ψ(p)(η1(p)), for
p ∈ D:

η2 =

m∑

l=1

dfjl
⊗

( el√
hl

)

From η2, we aim at constructing a symmetric tensor of rank 2 with values in
CT2(D) that could be interpreted as the first fundamental form of a 2-dimensional
surface embedded into R

m+2 equipped with a Riemannian metric.

From the bimodule structure of Γ(T ∗D ⊗ CT2(D)) over Γ(CT2(D)) given by iso-
morphisms (4) and (5), we have

m∑

l=1

1

2

( el√
hl

η2 + η2
el√
hl

)
el =

m∑

l=1

dfjl
⊗ el (8)

If we denote B the ring Γ(CT2(D)), then we may show that

Γ(T ∗D ⊗ CT2(D)) ⊗B Γ(T ∗D ⊗ CT2(D)) ≃ Γ(T ∗D ⊗ T ∗D ⊗ CT2(D))
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the isomorphism being given by the two following morphisms

γ : (ω1 ⊗ s1) ⊗ (ω2 ⊗ s2) 7−→ (ω1 ⊗ ω2) ⊗ s1s2

δ : (ω1 ⊗ ω2 ⊗ s) 7−→ (ω1 ⊗ s) ⊗ (ω2 ⊗ 1)

From this tensor product, we define a symmetrized tensor product by

(ω1 ⊗ s1)(ω2 ⊗ s2) :=
1

2

[
(ω1 ⊗ s1) ⊗ (ω2 ⊗ s2) + (ω2 ⊗ s1) ⊗ (ω1 ⊗ s2)

]

Applying this latter to (8) with itself gives

( m∑

l=1

dfjl
⊗ el

)( m∑

l=1

dfjl
⊗ el

)
=

m∑

l=1

(dfjl
)2 ⊗ hl (9)

Then we can consider the following CT2(D)-valued symmetric tensor of rank 2

dx2 ⊗ 1 + dy2 ⊗ 1 + (dfj1 )
2 ⊗ h1 + (dfj2 )

2 ⊗ h2 + · · · + (dfjm
)2 ⊗ hm

Identifying R and its injection into each fiber, this CT2(D)-valued tensor may be
viewed as the first fundamental form of the surface S parametrized by

ϕ : (x, y) 7−→ (x, y, fj1(x, y), fj2(x, y), · · · , fjm
(x, y))

embedded into R
m+2 equipped with the metric

(
1 0
0 1

)
⊕




h1 0 0 · · · · · · 0
0 h2 0 · · · · · · 0

0 0
. . .

...
...

...
. . .

...
0 0 · · · · · · 0 hm




Indeed, the first fundamental form of S is the symmetric tensor of rank 2

dS2 = dx2 + dy2 + h1(dfj1)
2 + h2(dfj2 )

2 + · · · + hm(dfjm
)2

4. Applications

The aim of this part is to show that by the choices of the vector subspaces F1(p)
(of dimension m), the 1-form ω and the section we derive with the connection

∇1 = ∇̃0 + ω, we may perform several kinds of edge detection.

Let us remark that the vector spaces E1(p) (of dimension n) are fixed in the sense
that they are acquisition spaces of the images. Moreover, we have seen that the
first fundamental form we construct is independant of the metric g of (E1, π1, D).

In what follows, we denote by ‖ ‖ the function mapping a blade x to
√
x t(x),

where t is the main anti-automorphism of the corresponding Clifford algebra.
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4.1. The usual color edge detection: n=3

In this part, we show that we may obtain the metric (1) of the usual method
of color edge detection following the Clifford bundles framework described above.
However, in this very particular case, the general method of the previous section
may be simplified to compute (1) since this one does not depend on any informa-
tion on the image that needs to be computed.

Let (E1, π1, D) ∈ F3 of metric

g :=




1 0 0
0 1 0
0 0 1





Let I be the considered color image, seen as a section of the Clifford bundle
(CT1(D), π̃1, D) generated by (E1, π1, D), i.e.

I(p) = r(p) e1(p) + g(p) e2(p) + b(p) e3(p)

where e1(p)
2 = e2(p)

2 = e3(p)
2 = 1.

Let ∇1 be the connection on (CT1(D), π̃1, D) defined by ∇1 = ∇̃0. In other words,
we choose ω ≡ 0. Then,

∇1(I) = dr ⊗ e1 + dg ⊗ e2 + db⊗ e3

We apply (9) to ∇1(I) to get the following CT1(D)-valued symmetric tensor of
rank 2

dr2 ⊗ 1 + dg2 ⊗ 1 + db2 ⊗ 1

At last, we have only to remark that

dx2 ⊗ 1 + dy2 ⊗ 1 + dr2 ⊗ 1 + dg2 ⊗ 1 + db2 ⊗ 1

may indeed be viewed as the first fundamental form of the surface parametrized
by

ϕ : (x, y) 7−→ (x, y, r(x, y), g(x, y), b(x, y))

embedded into (R5, ‖‖2).

Figure 2. shows the result of such an edge detection. We see that it consists in
detecting the strongest color variations of the image.

4.2. Color edge detection with respect to a given hue: n=3, m=3

The aim of this application is to detect edges on a color image without taking into
account those located in a region of hue similar to a given hue h0.

Let us first mention how to proceed with the method based on a surfacic approach.
We consider a color image as a 2-dimensional surface S parametrized by

ϕ : (x, y) 7−→ (x, y, r(x, y), g(x, y), b(x, y))
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(a) (b)

Figure 2. a. original image b. Color edge detection

embedded into R
5 equipped with the metric

g :=

(
1 0
0 1

)
⊕




λ 0 0
0 λ 0
0 0 λ





where we define λ as follows. We consider the domain

Ω(p) = {(x, y), ‖(x, y) − p‖∞ ≤ 1}

We set

λ(p) = 1 if max
(x,y)∈Ω(p)

d
(
h0, h[r(x, y), g(x, y), b(x, y)]

)
> d0 (10)

where d0 is a threshold that determines if there is similarity or not, and d is
the angular distance on S1. Then, we extend λ into a derivable strictly positive
function on [0, π] such that λ is negligible on [0, d0 − ǫ], where ǫ << 1 is fixed,
the aim being to not take into account color variations in the domain of similarity
B(h0, d0) of the hue h0. Then, from the first fundamental form of S:

dS2 = dx2 + dy2 + λdr2 + λdg2 + λdb2

we derive the ”edge detector” of Section 2.1.

Let us now explain how to construct such a metric in the Clifford bundles frame-
work. We take (F1, π1, D) = (E1, π1, D) ∈ F3 as subbundle of (E1, π1, D). Let I
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be the section of (CT1(D), π̃1, D) representing the considered color image, i.e.

I(p) = r(p)
e1(p)√
g1(p)

+ g(p)
e2(p)√
g2(p)

+ b(p)
e3(p)√
g3(p)

For each p ∈ D, we denote A(p) the endomorphism

A(p)(x) =

{ ((
e1(p)√
g1(p)

+ e2(p)√
g2(p)

+ e3(p)√
g3(p)

)
∧ x

)
B(p) if x is a vector

0 otherwise

where B(p) is the bivector

B(p) =
( e1(p)√

g1(p)
+

e2(p)√
g2(p)

+
e3(p)√
g3(p)

)
∧ µ(p)

and

µ(p) = µ1
e1(p)√
g1(p)

+ µ2
e2(p)√
g2(p)

+ µ3
e3(p)√
g3(p)

is a vector of hue h0. Remark that A(p) makes the geometric product between a
representant of the current hue and a representant of the hue h0.

Let ∇1 be the connection on (CT1(D), π̃1, D) defined by

∇1 = ∇̃0 + (dx + dy) ⊗A

Then,

∇1(I) = ∇̃0(I) + (dx + dy) ⊗
(( e1√

g1
+

e2√
g2

+
e3√
g3

)
∧ I

)
B

We see that the vector part, the scalar part and the bivector part of ∇1(I) are
respectively given by

∇̃0(I)

(dx+ dy) ⊗
(( e1√

g1
+

e2√
g2

+
e3√
g3

)
∧ I

)
· B

(dx+ dy) ⊗
(( e1√

g1
+

e2√
g2

+
e3√
g3

)
∧ I

)
∧B

Denoting by ∆(h) the function measuring for each p the hue difference between
I(p) and µ, we have the following result:

Proposition
Let X be the constant vector field on D of coordinates (1, 0), then

|tan(∆(h))| =

∥∥∥〈∇1X
(I)〉2

∥∥∥
∣∣∣〈∇1X

(I)〉0
∣∣∣
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Proof. We have

〈∇1X
(I)〉2 =

(( e1√
g1

+
e2√
g2

+
e3√
g3

)
∧ I

)
∧B

and

〈∇1X
(I)〉0 =

(( e1√
g1

+
e2√
g2

+
e3√
g3

)
∧ I

)
·B

The proof is trivial once the expression of
(( e1√

g1
+

e2√
g2

+
e3√
g3

)
∧ I

)
B

is simplified.
For this, we orthogonalize each one of the two bivectors (strictly speaking, they
are bivector-valued sections). Let us treat the example of B. We have

B =
( e1√

g1
+

e2√
g2

+
e3√
g3

)
∧

(
µ− k

( e1√
g1

+
e2√
g2

+
e3√
g3

))

for any k ∈ R. Then, we search k0 such that
[(
µ1

e1√
g1

+µ2
e2√
g2

+µ3
e3√
g3

)
−k0

( e1√
g1

+
e2√
g2

+
e3√
g3

)]
·
( e1√

g1
+

e2√
g2

+
e3√
g3

)
= 0

A simple computation leads to

k0 =
µ1 + µ2 + µ3

3

Therefore, B may be written
( e1√

g1
+

e2√
g2

+
e3√
g3

)
µ̃

where µ̃ =
[(
µ1−

µ1 + µ2 + µ3

3

) e1√
g1

+
(
µ2−

µ1 + µ2 + µ3

3

) e2√
g2

+
(
µ3−

µ1 + µ2 + µ3

3

) e3√
g3

]

We see that µ̃ is in fact the chrominance vector vµ of µ.
In the same way, we show that

( e1√
g1

+
e2√
g2

+
e3√
g3

)
∧ I =

( e1√
g1

+
e2√
g2

+
e3√
g3

)
PCh(I)

where PCh denotes the orthogonal projection on the chrominance plane.

Consequently,
((

e1√
g1

+ e2√
g2

+ e3√
g3

)
∧ I

)
B =

(
e1√
g1

+ e2√
g2

+ e3√
g3

)
PCh(I)

(
e1√
g1

+ e2√
g2

+ e3√
g3

)
vµ

= −3
(
PCh(I) vµ

)

(11)
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At last, let us remark that the (non-oriented) angle between PCh(I) and vµ is in
fact ∆h. Then we have

‖〈∇1X
I〉2‖

|〈∇1X
I〉0|

=
‖〈PCh(I) vµ〉2‖
|〈PCh(I) vµ〉0|

=
‖PCh(I)‖‖vµ‖|sin(±∆h)|
‖PCh(I)‖‖vµ‖|cos(±∆h)| = |tan(±∆h)|

�

From the sign of the scalar part −3
(
PCh(I) · vµ

)
of ∇1X

I, we know if ±∆h is

in [−π
2 ,

π
2 ] or not. Moreover, as the tangent map is odd, we have |tan(±∆h)| =

|tan(∆h)|. Therefore, if the scalar part is negativ, we obtain

∆h = arctan(|tan(±∆h)|)
In a similar way, we may obtain ∆h when the sign of the scalar part is positiv.

We construct the function λ mentioned above from ∆h, just replacing (10) by

λ(p) = 1 if max
(x,y)∈Ω(p)

∆h(x, y) > d0

Then, we apply the rest of the method described in Section 3.3, i.e. (F1, π1, D)
generates a vector bundle (E2, π2, D) of rank 3 equipped with a metric h given by

h :=




λ 0 0
0 λ 0
0 0 λ





and a Clifford bundle (CT2(D), π̃2, D). Then, we construct a 1-form η2 with values
in CT2(D)

η2 = dr ⊗ e1√
h1

+ dg ⊗ e2√
h2

+ db ⊗ e3√
h3

from the 1-form

∇1(I) = dr ⊗ e1√
g1

+ dg ⊗ e2√
g2

+ db⊗ e3√
g3

Applying formulas (8) and (9) to η2, we get the symmetric tensor of rank 2

dx2 ⊗ 1 + dy2 ⊗ 1 + dr2 ⊗ λ+ dg2 ⊗ λ+ db2 ⊗ λ

which can be assimilated to the metric of S.

Figure 3. shows an example of such an application. We aim at not detecting edges
corresponding to the ornaments of the hat. The picture (c) is the result of the
computations detailled above for h0 = 5π

3 ( the magenta hue) and d0 = 0.43. We
observe that almost all the color variations inside this region are not detected, and
the frontier of the region is globally well-detected (in particular transitions with
the background and with the hat). It is more difficult to detect transitions with
the hair since their hue is close to the magenta hue.
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(a) (b) (c)

Figure 3. a. original image b. usual color edge detection c. color
edge detection with respect to the magenta hue

4.3. Color edge classification: n=3, mi = 3

Let I be the section of (CT1(D), π̃1, D) ∈ G3 representing a color image

I = r
e1√
g1

+ g
e2√
g2

+ b
e3√
g3

4.3.1. Measure of variations with respect to a hue. We say that I is varying at a
given point in the direction X with respect to the hue h0 if its usual derivative in

the direction X , ∇̃0X
(I), or in the direction −X , −∇̃0X

(I) belongs to RGB and if
the corresponding hue is h0. We aim at characterizing such vectors in the Clifford
algebras (bundles) framework. Let B be a bivector-valued section coding the hue
h0.

First, we suppose that

[∇̃0X
(I)(p) ∧B(p)]B(p)−1 = 0

i.e. ∇̃0X
(I)(p) belongs to the plane generated by B(p). We distinguish four cases:

(a) Neither ∇̃0X
(I)(p) nor −∇̃0X

(I)(p) belongs to RGB.

(b) ∇̃0X
(I)(p) or −∇̃0X

(I)(p) is along the grey axis.

(c) ∇̃0X
(I)(p) or −∇̃0X

(I)(p) belongs to RGB and the corresponding hue is the
complementary of h0.

(d) ∇̃0X
(I)(p) or −∇̃0X

(I)(p) belongs to RGB and the corresponding hue is h0.

The following result gives a necessary and sufficient condition for the case (d)
to occur. We set by convention sign(0) = ±. Let us denote

Σi =
(
∇̃0X

(I) · ei√
gi

)
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for i = 1, 2, 3, and

Σ =
[(( e1√

g1
+

e2√
g2

+
e3√
g3

)
∧ ∇̃0X

(I)
)
· B

]

Let also σi, for i = 1, 2, 3, and σ be defined by σi = sign(Σi) and σ = sign(Σ).

Proposition
With the previous notations, I is varying at p in the direction X with respect to
the hue h0 if and only if the following conditions are fullfilled:

(i) The derivative ∇̃0X
(I)(p) is not zero;

(ii) σ1 = σ2 = σ3;
(iii) Σ is not null and −σ is equal to the sign of one of the non zero Σi.

Proof. Let us first remark that (i) ensures that one of the Σi is not zero. The

second assertion means that one of two vectors ∇̃0X
(I)(p) or −∇̃0X

(I)(p) belongs
to RGB. As Σ 6= 0, the case (b) does not occur.

If ∇̃0X
(I)(p) ∈ RGB, then the sign of one of the non zero Σi is +, and we know

from (11) that σ is negative if and only if h
(
∇̃0X

(I)(p)
)

= h0.

If −∇̃0X
(I)(p) ∈ RGB, then the sign of one of the non zero Σi is −, and the

orthogonal projection of ∇̃0X
(I)(p) onto the chrominance plane (see (11)) belongs

to the axis generated by the chrominance vector of the complementary hue of the

hue of −∇̃0X
(I)(p). Therefore σ is positive if and only if the hue of −∇̃0X

(I)(p)
is h0. �

From this proposition we deduce the following corollary: I is varying at p in the
direction X with respect to the complementary hue of h0 if and only if the three
conditions (i), (ii) and (iv) are fullfilled, where the condition (iv) is obtained by
replacing −σ by σ in (iii).

We now suppose that ∇̃0X
(I)(p) does not necessary belong to the plane gener-

ated by B(p). The derivative ∇̃0X
(I)(p) is said to be measurable with respect to

h0 if the conditions (i), (ii) and (iii) of the preceding propsition hold. Such a defi-

nition makes sense since we deduce from these relations that ∇̃0X
(I)(p) is varying

with respect to a hue that is closer of h0 than of its complementary. In the same

way, we can say if ∇̃0X
(I)(p) is measurable with respect to the complementary of

h0 or not. We then measure this variation by the expression

‖∇̃0X
(I)(p) ·B(p)B(p)−1‖

4.3.2. Application to shadows and highlights detection. The aim of this appli-
cation is to analyse the nature of the edges of a color image in function of the
variation of the light. We refer to [4] and [5] for the corresponding classification
in shadows, highlights and material edges. The segmentation we deduce from the
general framework described before requires the hypothesis of white illumination
and neutral interface reflection (see [4],[5]).
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Let ϕ be the parametrization of the surface S representing a color image em-
bedded into (R5, ‖‖2). The analysis of edges we propose relies on the study of the

derivative ∇̃0X
(I) where X is such that dϕ(X) is an eigenvector associated to the

highest eigenvalue of the first fundamental form of S.

Before detailling the parameters of (3.3) we use for such an application, let us
make the following crucial remark. Due to the nature of the objects we use to deal
with an image (surfaces or fiber bundles), we only have to consider, in practice,
points of D with integer coordinates. Therefore, there exists a certain freedom in
the way to compute derivatives of functions defined onD. In particular, derivatives
of the components red, green, blue and temperature at such points are given by
discrete approximations (Sobel, Canny-Deriche, etc).

Let

B =
( e1√

g1
+

e2√
g2

+
e3√
g3

)
∧

(
u1

e1√
g1

+ u2
e2√
g2

+ u3
e3√
g3

)

be a bivector-valued section of (CT1(D), π̃1, D) such that h(u1(p), u2(p), u3(p)) =
h(I(p)) and dpu1 = dpu2 = dpu3 = 0 for p with integer coordinates. In other
words, B is a section coding the current hue and satisfying

∇̃0(B) = ∇̃0

( e1√
g1

+
e2√
g2

+
e3√
g3

)(
u1

e1√
g1

+ u2
e2√
g2

+ u3
e3√
g3

)

−
( e1√

g1
+

e2√
g2

+
e3√
g3

)
∇̃0

(
u1

e1√
g1

+ u2
e2√
g2

+ u3
e3√
g3

)
= 0

on integer coordinates points.

Let ∇1 be the connection with ω ≡ 0, i.e. ∇1 = ∇̃0. We have at such points

∇1

[
I+

( ( e1√
g1

+
e2√
g2

+
e3√
g3

)
∧I

)
·B

]
= ∇1(I)+

[( e1√
g1

+
e2√
g2

+
e3√
g3

)
∧∇1(I)

]
·B

We obtain a CT1(D)-valued 1-form on D, which may be decomposed into a scalar
and a vector part.

From this 1-form, we may perform 6 edge detections: usual edge detection (see
Section 4.1), material edge detection, non material edge detection, this latter be-
ing divided into shadows detection, highlights detection, and others. Therefore, we
need to construct 6 vector bundles of rank 3 (E2i

, π2i
, D) equipped with metrics

hi, i = 1 . . . 6. The metrics hi, i = 2 . . . 6 are given by the geometry of ∇1X
(I) for

dϕ(X) be an eigenvector associated to the highest eigenvalue of the first funda-
mental form of S.

Let us first compute the metric of S by considering the vector bundle (E21
, π21

, D)
of metric h1 = I3. This allows us to perform the edge detection of Figure 4.b. and
to obtain for each p the vector ∇1Y

(I) that maximizes the norm of ∇1X
(I) for
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(a) (b) (c)

Figure 4. a. original image b. global segmentation c. material edges

‖X‖ = 1 in TpD. Following the arguments of [4], material edge detection arises
from rejections of directional derivatives of the image on the planes generated by
the light source direction (achromatic axis) and the current colors, which are the
planes of the current hues. We now detail how to perform material and non mate-
rial edge detection using (3.3).

We can decompose ∇1(I) into

∇1(I) = ∇1(I ∧BB−1) + ∇1(I ·BB−1)

This leads in particular for p with integer coordinates to

∇1(I)(p) = ∇1(I)(p) ∧B(p)B(p)−1 + ∇1(I)(p) ·B(p)B(p)−1

Let λ2 defined as follows. We set λ2(p) = 1 if ‖∇1Y
(I)(p)∧B(p)B(p)−1‖ ≥ N for

N a threshold to be determined, and we extend λ2 into a derivable strictly positive
function such that λ2 is negligible on [0, N−ǫ], where ǫ << 1 is fixed. We also define
a function λ3 by stating that λ3(p) is negligible if ‖∇1Y

(I)(p)∧B(p)B(p)−1‖ ≥ N ,
and extending λ3 into a derivable strictly positive function such that λ3 ≡ 1 on
[0, N − ǫ].

From λ2, we consider the metric h2 = λ2I3 generating a vector bundle (E22
, π22

, D)
and a Clifford bundle (CT22

, π̃22
, D). From the vector-valued 1-form ∇1(I∧B B−1),

we construct a vector-valued 1-form in (CT22
, π̃22

, D) by (7). Following the process
gives rise to a symmetric tensor of rank 2 that can be assimilated to the metric of
a surface S2 embedded into R

5 equipped with the metric

(
1 0
0 1

)
⊕




λ2 0 0
0 λ2 0
0 0 λ2
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In particular, for p with interger coordinates and λ2(p) = 1, we have

(dS2)
2(Z1, Z2)(p) = dx⊗ dx (Z1, Z2)(p) + dy ⊗ dy (Z1, Z2)(p)

+
(
∇1Z1

(I)(p) ∧B(p)B(p)−1
)
·
(
∇1Z2

(I)(p) ∧B(p)B(p)−1
)

by the identification of R with its injection into each fiber.

Replacing λ2 by λ3 and ∇1(I ∧ BB−1) by ∇1(I · BB−1), the edge detection
of Figure 4.c. is replaced by the edge detection of Figure 5.a.

Then, we aim at characterizing shadows and highlights. We say that variations
of an image at p are measurable with respect to a hue h0 if ∇1Y

(I)(p) is measur-
able with respect to h0 for Y be the tangent vector field mentioned above. We then
distinguish variations measurable with respect to the current hue and variations
measurable with respect to its complementary, the information being given by

[(( e1√
g1

+
e2√
g2

+
e3√
g3

)
∧∇1Y

(I)
)
·B

]

or equivalently

∇1Y

[(( e1√
g1

+
e2√
g2

+
e3√
g3

)
∧ I

)
·B

]

This is precisely the scalar part of the 1-form applied to the tangent vector field Y .

We construct three functions λi, i = 4 . . . 6, each one of them generating a Clifford
bundle (CT2i

(D), π̃2i
, D) associated to the metric hi = λiI3. Then, mapping the

1-form ∇1(I · BB−1) into each one of these Clifford bundles allows to perform
different edge detections. Let us now explicit these functions.

We set λ4(p) equals 1 if ‖∇1Y
(I)(p) ∧ B(p)B(p)−1‖ ≤ N and variations of I

at p with respect to the hue given by B(p), i.e. the current hue, are measurable.
We set λ5(p) equals 1 if ‖∇1Y

(I)(p) ∧ B(p)B(p)−1‖ ≤ N and variations of I at
p with respect to the complementary hue of B(p) are measurable. At last, we set
λ6(p) equals 1 if ‖∇1Y

(I)(p) ∧ B(p)B(p)−1‖ ≤ N and variations of I at p are
neither measurable with respect to the current hue nor to its complementary. As
usual, we extend these functions to strictly positive derivable functions that are
negligible where the conditions are not respected.

Figure 5.a. shows edges of the image of Figure 4.a. which are non material edges
(see Figure 4.c.). These edges are decomposed in function of the position of ∇1Y

(I)
in the cube RGB. We can see on Figure 5.b. the edges due to shadows. They cor-
respond to high variations with respect to the current hue under the constraint
‖∇1Y

(I)(p) ∧ B(p)B(p)−1‖ ≤ N . Highlights are given by Figure 5.c., they cor-
respond to high variations with respect to the complementary of the current hue
under the previous constraint. We do not represent edges corresponding to the
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(a) (b) (c)

Figure 5. a. non material edges . b. edges arising from the mea-
sure of variations with respect to the current hue . c. edges arising
from the measure of variations with respect to the complementary
of the current hue

metric h6, since they do not represent significative edges.

4.4. Edge detection in the color domain with constraints on the temperature:
n=4, m=3

The aim of this application is to detect hot objects in a room. We need both color
and temperature information (see Figure 6.a. and 6.b.). Therefore we consider the
color/infrared image associated to the scene.

Let λ be the function defined as follows. We set λ(p) equals 1 if t(p) ≥ t0 for
t0 a given temperature, and we extend it to a derivable strictly positive function
such that λ is negligible on [0, t0 − ǫ], for ǫ << 1 fixed. The role of λ is to not take
into account color variations where t < t0.

To perform the edge detection, we can either deal with the surface represent-
ing the color/infrared image or with the surface representing the color image. In
the first case, we consider the surface parametrized by

ϕ : (x, y) 7−→ (x, y, r(x, y), g(x, y), b(x, y), t(x, y))

embedded into R
6 equipped with the metric

(
1 0
0 1

)
⊕




λ 0 0 0
0 λ 0 0
0 0 λ 0
0 0 0 0
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In the second case, we consider the surface parametrized by

ϕ : (x, y) 7−→ (x, y, r(x, y), g(x, y), b(x, y))

embedded into R
5 equipped with the metric

(
1 0
0 1

)
⊕




λ 0 0
0 λ 0
0 0 λ





In both cases, the first fundamental form of the surface is

dx2 + dy2 + λdr2 + λdg2 + λdb2

We detail now how to proceed to compute the metric corresponding to the second
case. Let (E1, π1, D) ∈ F4 of metric g and let (F1, π1, D) be the subbundle of
global frame ( e1√

g1
,
e2√
g2
,
e3√
g3

)

We consider the section I of (CT1(D), π̃1, D) ∈ G4 generated by (E1, π1, D) repre-
senting the considered color/infrared image, i.e.

I(p) = r(p)
e1(p)√
g1(p)

+ g(p)
e2(p)√
g2(p)

+ b(p)
e3(p)√
g3(p)

+ t(p)
e4(p)√
g4(p)

The chosen connection ∇1 on (CT1(D), π̃1, D) is

∇1 = ∇̃0 + (dx + dy) ⊗A

where for p ∈ D, A(p) is the endomorphism

A(p)(x) = x · e4(p)√
g4(p)

Then, we have

∇1(I) = dr ⊗ e1√
g1

+ dg ⊗ e2√
g2

+ db⊗ e3√
g3

+ dt⊗ e4√
g4

+ (dx + dy) ⊗ t

Here, ∇1(I) contains only a scalar and a vector part. From the scalar part, we get
the temperature component of the image and thus the function λ defined above.
This one generates a metric h = λI3 of a vector bundle (E2, π2, D) ∈ F3.

From (7), we construct the following element of Γ(CT2(D))

η2 = dr ⊗ e1√
h1

+ dg ⊗ e2√
h2

+ db ⊗ e3√
h3

As before we obtain from η2 a CT2(D)-valued symmetric tensor of rank 2, namely

dx2 ⊗ 1 + dy2 ⊗ 1 + dr2 ⊗ λ+ dg2 ⊗ λ+ db2 ⊗ λ

This tensor corresponds to the first fundamental form we aimed at computing.

Figure 6.c. shows the result of such an edge detection on a scene representing
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(a) (b) (c)

Figure 6. a. color information of the scene b. temperature in-
formation of the scene c. color edge detection with respect to
temperature constraint.

a man standing in front of a wall and holding a cup of hot coffee. By a well-chosen
t0, we may detect only the man and the cup.

4.5. Color/infrared edge detection with constraints on color and temperature:
n=4, mν = 4

The main goal of this application is to rewrite the color/infrared edge detection of
[1] with the method described in (3.3). Note that they are not completely similar
since in this paper we measure color variations in the RGB space, whereas we deal
with the HSL color space defined in Section 2.2 in [1].

Let µ represent the skin color of the man (see Figure 7.a.) with (µ1, µ2, µ3) as
RGB coordinates. From µ we construct a section

µ(p) = µ1
e1(p)√
g1(p)

+ µ2
e2(p)√
g2(p)

+ µ3
e3(p)√
g3(p)

of (CT1(D), π̃1, D) ∈ G4 generated by (E1, π1, D) ∈ F4 of metric g. For this appli-
cation, we choose (E1, π1, D) itself as the subbundle (F1, π1, D). We consider the
color/infrared image I representing the scene as a section of this fiber bundle

I(p) = r(p)
e1(p)√
g1(p)

+ g(p)
e2(p)√
g2(p)

+ b(p)
e3(p)√
g3(p)

+ t(p)
e4(p)√
g4(p)

Then, we consider also the following connection

∇1 = ∇̃0 + (dx + dy) ⊗A

where A ∈ Γ(End(CT1(D))) is defined for each p by

A(p)(x) = µ(p)x

Therefore, we have

∇1(I) = ∇̃0(I) + (dx+ dy) ⊗ µ I

Let α denote the function measuring for each p the oriented angle between µ(p)
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and the color part of I(p). We have the following result.

Lemma
Let X be the constant vector field on D of coordinates (1, 0), then

|tan(α)| =

∥∥∥〈∇1X
(I)〉2 · (e1e2e3) (e1e2e3)

−1
∥∥∥

∣∣∣〈∇1X
(I)〉0

∣∣∣

and

t =

∥∥∥〈∇1X
(I)〉2 − 〈∇1X

(I)〉2 · (e1e2e3) (e1e2e3)
−1

∥∥∥
‖µ‖

Proof. We have

〈∇1X
(I)〉2 = µ ∧ I = (µ ∧ I) · (e1e2e3)(e1e2e3)−1 + µ ∧ t e4√

g4

= µ ∧ [I · (e1e2e3)(e1e2e3)−1] + µ ∧ t e4√
g4

and

〈∇1X
(I)〉0 = µ · I = µ · [I · (e1e2e3)(e1e2e3)−1]

Therefore,
∥∥∥〈∇1X

(I)〉2 · (e1e2e3) (e1e2e3)
−1

∥∥∥
∣∣∣〈∇1X

(I)〉0
∣∣∣

=
‖µ‖‖I · (e1e2e3)(e1e2e3)−1‖|sin(α)|
‖µ‖‖I · (e1e2e3)(e1e2e3)−1‖|cos(α)|

and ∥∥∥〈∇1X
(I)〉2 − 〈∇1X

(I)〉2 · (e1e2e3) (e1e2e3)
−1

∥∥∥
‖µ‖ =

‖µ‖‖t e4√
g4
‖

‖µ‖
�

From |tan(α)| we may directly determine |α| since −π
2 ≤ α ≤ π

2 (µ and the color
part of I are vectors in the cube RGB).

We set λ(p) = 1 if

min
(x,y)∈Ω(p)

|α(x, y)| ≤ α0 and max
(x,y)∈Ω(p)

t(x, y) ≥ t0

where α0 and t0 are two thresholds that determine regions of interest. Then, we
extend λ into a derivable strictly positive function on [0, π/2]× [0, 255] such that λ
is negligible on [α0 + ǫ, π/2]× [0, 255]

⋃
[0, π/2]× [0, t0 − ǫ] where ǫ << 1 is fixed.
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(a) (b) (c)

Figure 7. a. regions of interest b. edge detection for k = 1 c.
edge detection for k = 25

From λ, we derive a family of vector bundles (E2, π2, D) ∈ F4 indexed by ν ∈ N

and equipped with the metric

hν =




λ 0 0 0
0 λ 0 0
0 0 λ 0
0 0 0 νλ




The role of ν is to control the weight of temperature variations in the image. Each
one of these vector bundles generates a Clifford bundle (CT2(D), π2, D) ∈ G4.
Following (3.3), for a given ν we construct

η2 = dr
e1√
h1

+ dg
e2√
h2

+ db
e3√
h3

+ dt
e4√
h4

from which we derive a CT2(D)-valued symmetric tensor of rank 2:

dx2 ⊗ 1 + dy2 ⊗ 1 + dr2 ⊗ λ+ dg2 ⊗ λ+ db2 ⊗ λ+ dt2 ⊗ νλ

This tensor can be assimilated to the first fundamental form of the 2-dimensional
surface parametrized by

ϕ : (x, y) 7−→ (x, y, r(x, y), g(x, y), b(x, y), t(x, y))

embedded into R
6 equipped with the metric

(
1 0
0 1

)
⊕




λ 0 0 0
0 λ 0 0
0 0 λ 0
0 0 0 ν λ




Figure 7. shows results of edge detections for different values of ν. We refer to ([1])
for detailled comments.



Clifford algebras bundles to multidimensional image segmentation 29

5. Conclusion

Defining an image as a section of a trivial Clifford bundle over its domain, we have
developed in this paper a general method to construct first fundamental forms of
surfaces whose characteristics (parametrization, metric of the ambient space) arise
from the choices of the connection, the section to derive with this connection and
the subbundle (F1, π1, D). To construct such metrics, we take advantage of Clifford
algebras framework by the efficiency of computations and their high dimensions.
Applying the method of Section 2.1 to the metrics constructed, we perform edge
detections on color and color/infrared images. By the genericity of the method we
have presented, it could be applied to images of higher dimensions.
Such a formalism could appear superficial to detect edges, and in particular in
the definitions of the coefficients of metrics. However, we refer the reader to some
works on image smoothing which are entierely based on the metric of the surface
representing the image. Indeed, in [12], the authors solve the heat equation associ-
ated to the Laplace-Beltrami operator on each component to denoise color images,
the metric of the surface being the first fundamental form arising from the stan-
dard euclidean norm of the ambient space. The metrics we define and construct in
this paper make possible for example to smooth only the regions of a color image
that correspond to a given hue.
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