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On the parity of generalized partition functions 111
by

F. Ben Said?, J.-L. Nicolas’ and A. Zekraoui® ! ?
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Abstract. Improving on some results of J.-L. Nicolas [[J], the elements of
the set A = A(1 + 2+ 23 + 2% + 2%), for which the partition function p(A,n)
(i.e. the number of partitions of n with parts in A) is even for all n > 6 are
determined. An asymptotic estimate to the counting function of this set is
also given.
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2-adic numbers, counting function, Selberg-Delange formula.
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1 Introduction.

Let N (resp. Ny) be the set of positive (resp. non-negative) integers. If

A = {ay,as,...} is a subset of N and n € N then p(A,n) is the number of

partitions of n with parts in A4, i.e., the number of solutions of the diophantine
equation

a1r1 + asxs + ... =n, (1.1)

in non-negative integers 1, xs, .... As usual we set p(A,0) = 1.
The counting function of the set A will be denoted by A(x), i.e.,

Alz) =|{n <z, ne A} |. (1.2)

Let FFy be the field with 2 elements, P = 1+¢e 2 + ... +enzy € Fy2], N > 1.
Although it is not difficult to prove (cf. [[4], [F]) that there is a unique subset
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A = A(P) of N such that the generating function F'(z) satisfies

F(z) = Fa(2) = _1 - =Y p(A,n)z"=P(z) (mod2), (13)

acA n>0

the determination of the elements of such sets for general P’'s seems to be
hard.

Let the decomposition of P into irreducible factors over Fy be
P = PP PM. (1.4)

We denote by §; = ord(F;), 1 < i <[, the order of P;, that is the smallest
positive integer 3; such that P;(z) divides 1+ 2% in Fy[z]. It is known that
G; is odd (cf. [IJ]). We set

ﬁ: lcm(ﬁl,ﬁQ,...,ﬁl). (15)

Let A = A(P) satisty ([.3) and o(A,n) be the sum of the divisors of n
belonging to A, i.e.,

> d=> dx(Ad), (1.6)

dln,de A dn

where x(A,.) is the characteristic function of the set A, i.e, x(A,d) = 1 if
de Aand x(A,d) =0if d ¢ A. It was proved in [f] (see also [H], [I2]) that
for all k > 0, the sequence (o(A,2%n) mod 2%1),-, is periodic with period
3 defined by (L), in other words,

ni =ny (mod B) = Vk >0, 0(A,2"n,) = o(A,2"ny) (mod 2¥1). (1.7)

Moreover, the proof of ([.4) in [{] allows to calculate o(A,2*n) mod 2k+!
and to deduce the value of x(A,n) where n is any positive integer. Indeed,
let

Sa(m, k) = X(A,m) + 20(A,2m) + ..+ Py(A,2m). (L8)

If n writes n = 28m with k > 0 and m odd, ([[.]) implies
o(A,n) = o(A,25m) = " dSa(d, k), (1.9)
d|lm
which, by Mobius inversion formula, gives

mS(m, k) Z,LL ,g) = Zu(d)a(/l, g), (1.10)
d|m

d|m



where m = H p denotes the radical of m with 1 = 1.

plm
In the above sums, % is always a multiple of 2% so that, from the values of
o(A, %), by (L.10), one can determine the value of S4(m, k) mod 21 and

by ([.§), the value of x(A,2'm) for all i, i < k.

Let B be an odd integer > 3 and (Z/B7Z)* be the group of invertible
elements modulo 3. We denote by < 2 > the subgroup of (Z/57Z)* generated
by 2 and consider its action x on the set Z/(7Z given by a x x = ax for all
a € <2>andx € Z/BZ. The quotient set will be denoted by (Z/5Z)/ <2~
and the orbit of some n in Z/BZ by O(n). For P € Fy[z] with P(0) = 1 and
ord(P) = 3, let A = A(P) be the set obtained from ([.J). Property ([[.71)
shows (after [B]) that if n; and ny are in the same orbit then

o(A,2"n;) = 0(A, 2ny) (mod 28, VE > 0. (1.11)

Consequently, for fixed &, the number of distinct values that (o(A, 2*n) mod
2k+1), 1 can take is at most equal to the number of orbits of Z/3Z.

Let ¢ be the Euler function and s be the order of 2 modulo 3, i.e., the
smallest positive integer s such that 2° = 1 (mod (). If § = p is a prime
number then (Z/pZ)* is cyclic and the number of orbits of Z/pZ is equal to
14+ 7r with r = @ = p—;l. In this case, we have

(Z/pZ)/<2> = {O(g)’ 0(92)7 ey O(gr) = O(l)’ O(p)}, (1'12)

where ¢ is some generator of (Z/pZ)*. For r = 2, the sets A = A(P) were
completely determined by N. Baccar, F. Ben Said and J.-L. Nicolas ([B], B])-
Moreover, N. Baccar proved in [[l] that for all » > 2, the elements of A of the
form 2¥m, k > 0 and m odd, are determined by the 2-adic development of
some root of a polynomial with integer coefficients. Unfortunately, his results
are not explicit and do not lead to any evaluation of the counting function of
the set A. When r = 6, J.-L. Nicolas determined (cf. [[J]) the odd elements
of A= A(1+ z+ 2% + 2% + 2°). His results ( which will be stated in Section
2, Theorem 0) allowed to deduce a lower bound for the counting function of
A. In this paper, we will consider the case p = 31 which satisfies r = 6. In
Fy[z], we have

1_231

= pLp@_ pO, (1.13)

1—=z
with

PO = 142428424425 PO = 142422424425 PO = 1422428424425,

PO =1424224+23+42° PO =14+2242° PO =142342°
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In fact, there are other primes p with » = 6. For instance, p = 223 and
p = 433.

In Section 2, for A = A(PW), we evaluate the sum S4(m, k) which will
lead to results of Section 3 determining the elements of the set A. Section
4 will be devoted to the determination of an asymptotic estimate to the
counting function A(zx) of A. Although, in this paper, the computations are
only carried out for P = P the results could probably be extended to any
P® 1 < i< 6, and more generally, to any polynomial P of order p and such
that r = 6.

Notation. We write ¢ mod b for the remainder of the euclidean division
of a by b. The ceiling of the real number x is denoted by

(2] =inf{n € Z, © <n}.

2  The sum Sy(m, k), A=A(1+z+2°+ 2" +2°).
From now on, we take A = A(P) with
P=PW =14 2422 +24+2° (2.1)

The order of P is f = 31. The smallest primitive root modulo 31 is 3 that
we shall use as a generator of (Z/31Z)*. The order of 2 modulo 31 is s =5
so that

(Z/31Z)] 2> ={0(3), O(3%),..., O(3°) = 0(1), O(31)},  (2.2)

with
O(3)={2"3, 0<k<4},1<j<6 (2.3)

and
0O(31) = {31n, n € N}. (2.4)

For £ > 0 and 0 < j <5, we define the integers uy ; by
up; = (A, 2837) mod 2F*1. (2.5)

The Graeffe transformation. Let K be a field and K[[z]] be the ring
of formal power series with coefficients in K. For an element

f(2)=ap+ a1z +az* +... 4 apz"+ ...
of this ring, the product

F(2)f(=2) = bo +012% +boz" 4. 402" + ..

4



is an even power series. We shall call G(f) the series
G(f)(2) =bo + b1z +by2® + ... +b2" +.... (2.6)

It follows immediately from the above definition that for f, g € K][[]],

G(f9) =G(f)G(g). (2.7)

Moreover if ¢ is an odd integer and f(z) = 1 — 29, we have G(f) = f. We
shall use the following notation for the iterates of f by G :

fo=1 fo=6f), .., fu=G6fu1)=8G%(f). (2.8)

More details about the Graeffe transformation are given in [ff]. By making

the logarithmic derivative of formula ([[.3), we get (cf. [I4]) :

> o(An)" = “F) = zp((z)) (mod 2), (2.9)

n=1

which, by Propositions 2 and 3 of [f], leads to

o(A,2%n)" = 2 W77 _
Z ( ) P(k)(z) 1 — 231

n=1

(P('k)(z)W(k)(z)) (mod 2", (2.10)

with P (2) = 4 (Pyy(2) and
W(z) =1 —2)PP(2)...PO(2). (2.11)

Formula (R.10) proves ([.11) with 8 = 31, and the computation of the k-
th iterates Py and W) by the Graeffe transformation yields the value of
o(A,2%n) mod 2. For instance, for k = 11, we obtain :

Weo = 1183, wpy = 1598, upo = 1554, wps = 845, upq = 264, uys = T01.

A divisor of 2¥37 is either a divisor of 257137 or a multiple of 2*. Therefore,
from (B5) and (G), ux; = ur—1; (mod 2%) holds and the sequence (ug j)r>0
defines a 2-adic integer U; satisfying for all £'s :

U; = ug,; (mod 281, 0 < j <5, (2.12)
It has been proved in [[} that the Ujs are the roots of the polynomial
R(y) = y® — v + 3y* — 11y® + 44y* — 36y + 32.

bt



Note that R(y)® is the resultant in z of ¢31(2) =1+ 2+ ...+ 2% and y + z +
22 4 44 o8 4 16

Let us set
0=Uy=1+2+22 428424 427 4210

It turns out that the Galois group of R(y) is cyclic of order 6 and therefore the
other roots Uy, ..., Us of R(y) are polynomials in . With Maple, by factorizing
R(y) on Q[f] and using the values of uj; ;, we get

Up=0=1183 (mod 2')

1

U1:3—2

(30° + 50° — 360 + 840) = 1598 (mod 2'")

1
= 55 (307 = 50° 4 200° — 1000) = 1554 (mod 2

1
32
1

U, = 5(_95 + 40 + 6° + 240% — 680 + 96) = 264 (mod 2'")

Us

Us (—0° —76° + 120 — 440 + 32) = 845 (mod 2')

1
Us = 1—6(95 — 20" 4+ 36% — 106? + 489 — 48) =701 (mod 2'').  (2.13)

For convenience, if j € Z, we shall set
Ui =Ujmod 6- (2.14)
We define the completely additive function ¢ : Z\ 31Z — Z/67Z by
(n)=3 ifnecO(3), (2.15)

so that ¢(niny) = €(ny1) + £(n2) (mod 6). We split the odd primes different
from 31 into six classes according to the value of ¢. More precisely, for 0 <
J <9,

pEP; = l(p) =7 <= p=2"3 (mod 31), k=0,1,2,3,4.  (2.16)

We take L : N\ 31N — Nj to be the completely additive function defined
on primes by
L(p) = (p). (2.17)



We define, for 0 < j < 5, the additive function w; : N — Ny by

win)= > 1= > 1, (2.18)

pln, peP; pln, €(p)=j

and w(n) = wo(n) + ... +ws(n) = >_,,, 1. We remind that additive functions
vanish on 1.

From (23), (B3), (LI1) and (B13), it follows that if n = 2*m € O(37)
(so that j = ¢(n) = £(m)),

o(A,n) = o(A,2"m) = Uypny  (mod 2811, (2.19)
We may consider the 2-adic number
S(m) = Sa(m) = x(A,m) + 2x(A4,2m) + ... + 2"y (A, 2"m) + ... (2.20)
satisfying from ([L.§),
S(m) = Sa(m, k) (mod 25F1). (2.21)
Then ([CI0) implies for (m,31) = 1,
mS(m) = u(d)Uszz). (2.22)
d|m
If 31 divides m, it was proved in [B, (3.6)] that, for all &'s,
o(A,2"m) = -5 (mod 2"). (2.23)

Remark 1. No element of A has a prime factor in Py. This general result
has been proved in [, but we recall the proof on our example : let us assume
that n = 2¥m € A, where m is an odd integer divisible by some prime p in
P, in other words wy(m) > 1. ([.I0) gives

mSa(m, k) = Z,u(d)cr (A’ g) - Z_M(d)g <A’ 2k%>

d|lm m

_ Z (d)o (A, Zk%) + Z p(pd)o (A, 2kp%)



In the above sum, both % and 74 are in the same orbit, so that from ([[.I1)),
o(A,2F2) = o(A, Qkpmd) (mod 2**1) and therefore mSy(m,k) = 0 (mod
2k+1) . Since m is odd and (cf. (T§)) 0 < Sa(m, k) < 28+ then Sy(m, k) = 0,
so that by (L), 2"m ¢ A, for all 0 < h < k.

In [[3], J.-L. Nicolas has described the odd elements of A. In fact, he
obtained the following :

Theorem 0. ([[3])) (a) The odd elements of A which are primes or
powers of primes are of the form p*, X\ > 1, satisfying one of the following
four conditions :

pEP and N=1,3,4,5 (mod 6)
peEPy and A=0,1 (mod 3)
pEPy and A=0,1 (mod 3)
pEPs and A=0,2,3,4 (mod 6).

(b) No odd element of A is a multiple of 31%. If m is odd, m # 1, and not a
multiple of 31, then

meA if and only if 3lm € A.

(¢) An odd element n € A satisfies wo(n) =0 and ws(n) =0 or 1; in other
words, n s free of prime factor in Py and has at most one prime factor in
Ps.

(d) The odd elements of A different from 1, not divisible by 31, which
are not primes or powers of primes are exactly the odd n's, n # 1, such that

(where m =T, p) :
1. wo(n) =0 and ws(n) =0 or 1.
2. If ws(n) =1 then {(n) +¢(m) =0 or 1 (mod 3).
3. If ws(n) =0 and wy(n) + €(n) — () is even then
20(n) —¢(m)=2o0r 3 or4dorb (mod 6).
4. If ws(n) =0 and wi(n) + €(n) — €(n) is odd then
20(n) —4(m)=0or4 (mod 6).

Remark 2. Point (b) of Theorem 0 can be improved in the following
way : No element of A is a multiple of 312. Indeed, from ([LI{), we have for
m odd, k> 0 and 7 > 2,

BITmSA(31m, k) = S p(d)o (A, 2’?317%) =Y uld)o (A, zkgrﬂ)

. d
d|31™m d|31m



= > u(d) {o (A28177) — o (4251712

d|m
Since 317% and 31772 are in the same orbit O(31) then ([[11]) and (2:23)
give 0(A,2"3172) = 0(A,2"317'2) = —5 (mod 2¥M), so that we get

Sa(31™m, k) = 0 (mod 281). Hence, from ([[.§), S4(317m, k) = 0 and for
all 0 < h < k and all 7 > 2, 2"31"m does not belong to A.

In view of stating Theorem 1 which will extend Theorem 0, we shall need
some notation. The radical m of an odd integer m # 1, not divisible by 31
and free of prime factors belonging to Py will be written

m = P1---PuiPwi+1 - - - PuitwoPwrdwa+1 -+ -+ - - Puitwotwstwa+1 -+ - Pw, (2'24)

where {(p;) = j forwi+...4wj1+1 <i <wy+...+wj, wj = wj(m) = w;(M)
and w = w(m) = w(m) > 1. We define the additive functions from Z \ 31Z
into Z /127 :

a=a(m)=2w; — 2w, + wy —wy mod 12, (2.25)

a=a(m)=ws —w; +wy —wymod 12. (2.26)
Let (v;)iez be the periodic sequence of period 12 defined by

% cos(ig) if i is odd (2.27)
Uy = . AP .
2cos(if) if i is even.

The values of (v;);cz are given by :

1= |0]12]3|4 |5 |6 |7 |8 |9 10]11
vi=1211(1|10(-1}-1|{-2}-1{-1(0| 1|1

Note that
Vite = —Ui, (2.28)
' _J vigr ifdisodd
Uit Vg2 = { 3v;.1 if 4 is even, (2.29)
vy = —2' (mod 3) (2.30)
and
Vi = Vip3 = Vg; (mod 2) (231)



From the U;’s (cf. (.12) and (R.I3)), we introduce the following 2-adic inte-

gers :
5
Ei =Y iU, i€, (2.32)
=0
5
Fi=> vyl i€, (2.33)
=0
5
G=> (1)U (2.34)
=0
From (R.2§), we have
Eiv¢ = —Ei, Eiyi2=Ei, Fiog=—F, Fi2=F. (2.35)
From (R.29), it follows that, if ¢ is odd,
Ei+ Eiyo = B, Fi+ Fipo = Fip, (2.36)
while, if 7 is even,
Ei+ Eiy2 =3Ei1, Fi+ Fiyo=3F, (2.37)
The values of these numbers are given in the following array :
Z Z mod 2!
Ey = | 55(116° — 86* + 296° — 1246% + 5000 — 256) | 1157
Ey = | 7=(360° — 20" + 96° — 260 + 1360 — 64) 1533
Ey = | 3E1 — Eq 1394
Es=|2F, — E 1909
E,=|3E, — 2K, 237
E5 == El - EO 376
Fo = | 55(—36° — 216% + 366* — 366 + 64) 1987
Fy = | 55(—30° — 40* — 136° + 240% — 280 — 64) 166
F2 - 3F1 - FO 559
Fy;=|2F, — F) 393
Fy= | 3F1 — 2k 620
Fs=|F —F, 227
G= | 3(—6°+0"—6°+116% — 340 + 20) 1905
TABLE 1

10



Lemma 1. The polynomials (U;)o<j<s (cf. (B13)) form a basis of Q[f].
The polynomials Ey, Ey, Fy, Fi, G, Uy form an other basis of Q[0]. For all
i's, E; and F; are linear combinations of respectively Eq and E, and Fy and
Fi.

Proof. With Maple, in the basis 1,0, ...,6°, we compute determinant

(U, ..., Us) = 3557~ From (£333), (2333) and (£-34)), the determinant of (Ey, E,
Fy, F1, G, Uy) in the basis Uy, Uy, . . ., Us is equal to 12. The last point follows

from (£:3@) and (R.37). O
We have

Theorem 1. Let m # 1 be an odd integer not divisible by 31 with m of
the form (2.24). Under the above notation and the convention

w_ J 1 ifw=0
0 _{ 0 ifw>0, (2.38)

we have :

1) The 2-adic integer S(m) defined by (Z-20) satisfies
-1 [W2+w4711 0“3 [@—1]
mS<m) =273 2 Eaf%(m) + 73 2 Fa74é(m)

Dw2+W4
+T2H(—1)f<m>(;. (2.39)

2) The 2-adic integer S(31m) satisfies
S(31m) = —31715(m), (2.40)

where 3171 is the inverse of 31 in Zy. In particular, for all k € {0,1,2,3,4},
we have
2"meAd <= 31-2"me A,

since the inverse of 31 modulo 21 is —1 for k < 4.
Proof of Theorem 1, 1). From (P27), we have
mS(m) =Y u(d)Usc) = > 1(d)Ustm) ety (2.41)
d|m d|m

Further, (B.4]]) becomes



with

T(m, j) = T(m,j) = > p(d). (2.43)
dm, ¢(d)=j (mod 6)

Therefore (2.39) will follow from (R.42) and from the following lemma :
Lemma 2. The integer T(m,j) defined in (243) with the convention

(2-38) and the definitions (2.13) and (2.24)-(B.27), for m # 1, is equal to

wotwy
2

w3
T(m,j) = 25713l “Mg_oj + 73(5_11%—43‘

1
+0“2+“4< 3) 2«71, (2.44)

Proof. Let us introduce the polynomial
FX) = (1= X)) (1= X*) (1= X7 =Y " f,X". (2.45)
v>0

If the five signs were plus instead of minus, f(X) would be the generating
function of the partitions in at most w; parts equal to 1, ..., at most ws parts
equal to 5. More generally, the polynomial

FXO) =T[0+ax=>" fx"
=1 v>0

is the generating function of

w

fo = Z Ha?.

€1,,€€{0,1}, 303 eibi=r =1
To the vector € = (ey, ..., €,) € Fy, we associate

a=TIw w@) =JIC-00 1) =3 atm)

i=1

where L is the arithmetic function defined by (R.17) and we get

fo=">_ ud), (2.46)

df, L(d)=v

Consequently, by setting ¢ = exp(%), (2:43), (R-49) and (2:44) give

T(m,j)= > > )
i, L(d)=v

v, v=j (mod 6)

12



5 5
= Y A= et = e
1=0 i=1

v=j (mod 6)
5
Z —zg z 1 gQi)wz(l _ g?»i)wg(]_ _ §4i)w4(1 _ §5i)w5. (247)
By observmg that

1-¢ =¢&°, 1—52292\/5(605%—151116) 1-=21-¢" =7, 1-£° =0,

the sum of the terms in ¢ = 1 and ¢ = 5 in (.47), which are conjugate, is
equal to

2 - 2(.(}3 W w.
673(5’%5““ 0“22%3 LN ) = -5 377 cos %(2% — 2wy + wy — we — 2j).
(2.48)
Now, the contribution of the terms in i = 2 and 7 = 4 is
9 A 3W1+w2+w4+w5
673(5_2]9“@“20“3 0“0 ") =0 V3 3 cos %(WQ + ws — w1 — wy — 47)

v
3
Finally, the term corresponding to i = 3 in (R.47) is equal to

=03 cos %(wz +ws —wi —wy — 4j) (2.49)

l(_l)j2w10w22w30w42w5 — OW2+W4ﬂ2M+w3+W5 _ OW2+W4( 1) W (250)

6 6
Consequently, by using our notation (B.24)-(R.26), (B.47) becomes

W3 —watws 3°
T(m,j) = 5 3" cos%(a —27)+ 0“’3\/77 cos %(a — 47)
—1)
+0“2+W4%2% (2.51)

Observing that o — 2j has the same parity than ws 4+ ws and similarly for
a—4j and w (when wy = w3 = 0), via (2.27), we get (R.44).
Proof of Theorem 1, 2). For all & > 0, from ([.10), we have

3ImSaA(3lm,k) = > M(d)a(A,31-2’“%): 3 M(d)o—(A,Sl-Q’“%)

d|31m d|31m

= Y uld)o(A,31- 2’“ )= > uld) Azkm)
d|m d|m

= Y p(d)o(A,31- 2kd) mS(m, k). (2.52)
d|m

13



Since for all d dividing 1, 31-2*2 € O(31) then, from (2223), 0(A, 31-2"2) =
o(A,31-2%) = -5 (mod 2¥*1), so that (2.53) gives

31mSa(31m, k) + mSa(m, k) = =53 p(d) (mod 2¢*1). (2.53)
d|m

Since m # 1, 31mS4(31m, k) + mSa(m, k) = 0 (mod 2¥*!). Recalling that
m is odd, by using (-20), (B-2])) and their similar for S(31m), we obtain the
desired result. [J

3 Elements of the set A = A(1+2+2°+2*+2°).

In this section, we will determine the elements of the set A of the form
n = 2%317m, where m # 1 satisfies (£.24) and 7 € {0, 1}, since from Remark
2, 2831"m ¢ A for all 7 > 2 . The elements of the set A(1+ 2z + 23 + 2* + 25)
of the form 3172% 7 = 0 or 1, were shown in [[I] to be solutions of 2-adic
equations. More precisely, the following was proved in that paper.

1) The elements of the set A(1 + z + 2% + 2% + 25) of the form 2% k > 0, are
given by the 2-adic solution

D XA =51)=Up=1+2+2"+ 28+ 2" + 274210 4 2" ¢
k>0

of the equation
¥ — ° + 3yt — 1193 + 44y® — 36y + 32 = 0.

Note that S(1) = Uy follows from (R.29).

2) The elements of the set A(1+ 2+ 2% + 2% + 2°) of the form 31 - 2% k£ >0,
are given by the solution

D X(A,31-29)2F = 9(31) =y =2+ 2° + 2" 4 .
£>0

of the equation
31°y5 +315° + 13- 31%y* + 91 - 313y® + 364 - 31%y* + 796 - 31y + 752 = 0,
since, from (B.53) with m = 1, we have 315(31) = —5 — Uy, so that

5+ U
SG1) =Ty = (1 +4+U)(1+2+210+ ) =22+ 27421 4
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Theorem 2. Let m # 1 be an odd integer not divisible by any prime
p € Py (cf. (218)) neither by 312. Then the sum S(m) defined by (2.20) does
not vanish. So we may introduce the 2-adic valuation of S(m) :

v =7(m) = v2(S(m)). (3.1)
Then, if 31 does not divide m, we have
v(31m) = ~v(m). (3.2)

Let us assume now that m s coprime with 31. We shall use the quantities
w; = wi(m) defined by (ZI8), ((m), a = a(m), a = a(m) defined by (ET3)
(B23) and [R24).

o' =ad/(m) = a—20(m) mod 12 = 2ws—2w;+ws—we—2¢(m) mod 12, (3.3)

a =d'(m)=a—40(m) mod 12 = ws—w;+ws—wy—4¢(m) mod 12, (3.4)

t:t(m): ’VW1+W5—£W2+W4_1—‘ _ ’VW2;W4_1—‘

B [eades]  if  wi+ws = wo+wy =1 (mod 2) (3.5)
| [ 1] if not. '
We have :
(1) if ws # 0 and we + wy # 0, the value of v = ~vy(m) is given by
ws—1 if o =0,1,3,4 (mod 6)
v = wy if o =2 (mod 6)
ws+2 if o =5 (mod 6).

(i) If wa+ws = 0 and w3 > 1, we set & = o + 6{(m) mod 12 and
§(1) = vao(E; + 222FIQ) and we have

if witws<uve(Eyr), then ~y=w3—14w;+ws,
Zf Wy + w5 = 'UZ(EO//)a then vy=ws—1+ 5(0/,)7
if w14 ws>ve(Eyr), then ~v=ws—1+uvy(Eqa).

(iii) If ws =0 and wy + wy # 0, we have

Y= —1 + UQ(EO/ + 3tFa/).

15



(iv) If wg = wy =wy = 0 and wy + ws # 0, we have

v = =14 vy(Ey 4 3'Fy 4 291795 (—1)"m@G).

Proof. We shall prove that S(m) # 0 in each of the four cases above.
Assuming S(m) # 0, it follows from Theorem 1, 2) that S(31m) # 0 and
that v(31m) = v(m), which sets (B.9).

Proof of Theorem 2 (i). In this case, formula (B.39) reduces to
mS(m) = gus—1g[ =54 1] E,.
Since E, # 0, S(m) does not vanish ; we have
v =2(8(m)) = ws — 1+ va(Er)

and the result follows from the values of E, modulo 2! given in Table 1.
Proof of Theorem 2 (ii). If wy + wy = 0 and w3 # 0, formula (R.39)
becomes (since, cf. (2.39), E;1 ¢ = —F; holds)

2w371 m) 2w371

msS(m)= 3 3

As displaid in Table 1, Ej; is a linear combination of Ey and E; so that, from
Lemma 1, S(m) does not vanish and v = w3 —1+vy (Eqr + 2°1795G), whence
the result. The values of vy(E;) and (i) calculated from Table 1 are given
below.

(By +27745(=1)"MG) = (1)« (Eor 4+ 297795G)

l 011234
5(@) [1]1[2]1]1

61718191011
0(011{0]0 13
21214122 |4

o | Ot

Proof of Theorem 2 (iii). If wg = 0 and wy 4+ wy # 0 it follows, from
(B.39) and the definition of ¢ above, that

mS(m) —_ 3[“—’2;“’4—11 (Ea/ + 3tFa/)-

But F; and F; are non-zero linear combinations of, respectively, Fy and E;
and Fy and F); by Lemma 1, E, + 3'F, does not vanish and v = —1 +
UQ(EO/ -+ 3tFa/).

Proof of Theorem 2 (iv). If w3 = wy = wy = 0 and m # 1, formula

(B39) gives

mS(m) = = (Eo + 3'Fy + 2W1+w5(_1)f(M)G) _

=

16



From Lemma 1, we obtain E, + 3t F, + 2°1+5(—1)*™ G #£ 0, which implies
S(m) # 0 and y = =1+ vy (Ey + 3'Fy 4 2175 (=1)"™@G) . O

Theorem 3. Let m be an odd integer satisfying m # 1, (m,31) =1, and
with m of the form (2.2]). Let v = v(m) as defined in Theorem 2 and Z(m)
be the odd part of the right hand-side of (2.39), so that

mS(m) = 22 Z(m). (3.6)

(i) If k < v, then 2km ¢ A and 2¥31m ¢ A.

(ii) If k = v, then 2fm € A and 2*31m € A.

(iii) Ifk=~v+r, r > 1, then we set S, = {2" +1,2" +3,...,2""t — 1}
and we have

2""med <= 3JleS, m=1"Z(m) (mod?2" ),

273Im e A <= 3J1ecS, m=—(31)"Z(m) (mod2").

Proof of Theorem 3, (i). We remind that m is odd and (cf. R.21)
S(m) = Su(m, k)(mod 28+1). Tt is obvious from (B-f) that if v > k then
Sa(m, k) = 0(mod 2¥1). So that from (L), S4(m,k) = 0 and 2"m ¢ A,
for all h, 0 < h < k. To prove that 2*31m ¢ A, it suffices to use this last
result and (R:40) modulo 2**1.

Proof of Theorem 3, (ii). If 7 = £ then the same arguments as above
show that
mSa(m, k) = 28Z(m)(mod 2F+1).

So that, by using Theorem 3, (i) and ([[.§), we obtain
28mx (A, 28m) = 28 Z(m)(mod 2F+1).

Since both m and Z(m) are odd, we get x (A, 2¥m) = 1( mod 2), which shows
that 2¥m € A. Once again, to prove that 2*31m € A, it suffices to use this
last result and (2:40) modulo 251,

Proof of Theorem 3, (iii). Let us set k = v+, r > 1. (B.4) and (E.21))
give
mS4(m, k) = 27Z(m)(mod 2771, (3.7)
So that, by using Theorem 3, (i) and (ii), we get
m(27 + 27 (A, 27 m) + L+ 27T (A, 27 m)) = 27 Z(m)(mod 27T,

which reduces to

m(1+ 2x(A, 27 m) + ...+ 2"x (A, 277"m)) = Z(m)(mod 2"1).

17



By observing that 277"m € A if and only if I = 1 + 2x(A4,27'm) + ... +
2"x (A, 27""m) is an odd integer in S,, we obtain

27"mec A <= m=1"'Z(m) (mod?2th), l€S,.

To prove the similar result for 277"31m, one uses the same method and (B.40)
modulo 251, O

4 The counting function.

In Theorem 4 below, we will determine an asymptotic estimate to the
counting function A(z) (cf. (L.F)) of the set A = A(1+ z+ 23+ 2z* + 2°). The
following lemmas will be needed.

Lemma 3. Let K be any positive integer and x > 1 be any real number.

We have %
| {n <z: ged(n,K) =1} |< 7%1’,
where @ is the Fuler function.

Proof. This is a classical result from sieve theory : see Theorems 3 — 5
of [II]. O

Lemma 4. (Mertens’s formula) Let 0 and n be two positive coprime
integers. There exists an absolute constant Cy such that, for all x > 1,

o= [ 0-5<—S

1 -
p<z, p=0(mod 7) p (log x)#m

Proof. For 6 and 7 fixed, Mertens’s formula follows from the Prime Num-

ber Theorem in arithmetic progressions. It is proved in [[] that the constant
(Y is absolute. I

Lemma 5. Fori € {2,3,4}, let

K; = Kz(ﬂf) = H b= H D,

p<z, L(p)e{0,:} p<z, p€PoUP1

where £, Py and P; are defined by (2-1])-(2-18). Then for x large enough,

n:1<n<uz gedn,K;)=1}|=0 * =]
[ {n:1<n<w, gedn K;) =1} | <(logx)§>

18



Proof. By Lemma 3 and (B.16), we have

K,
| {n:n <z, ged(n,K;) =1} |< 7ZL‘%

=1 ][] 11 (1—]19).

0<j<4,7€{0,i}  p<az, p=2937(mod 31)

So that by Lemma 4, for all i € {2,3,4} and x large enough,

10
n:n<wz gedn, K;))=1 Smilx:(’) * .0
| { g 10 1
(log ) D (log )3

Lemma 6. Let r,u € Ny, ¢ and o/ be the functions defined by (2.13)
and (B.3), w; be the additive function given by (B.1§). We take £ to be a
Dirichlet character modulo 2"+ with & as principal character and we let o
be the completely multiplicative function defined on primes p by

o(p) :{ 0 ifl(p)=0 orp=31 (4.1)

1 otherwise.

If y and z are respectively some 2"-th and 12-th roots of unity in C, and if x
15 a real number > 1, we set

Spec(@) = 3 o(n)é(n)y et a0, (4.2)
2“"3(”)n§x

Then, when x tends to infinity, we have

o If & # &,

log1
og ogx) (4.3)

Syze(w) = O (x (log 7)2

o If € =&,

_ r Hy.6(1)Cy. loglog x
Sy,z,EO (.T) - (log l‘)l_fy,z(l) ( F (f%z(]_)) _'_ O logl‘ y (44)

where T is the Euler gamma function,

1
fy2(s) = 231 oD giwels), (4.5)

1<j<5 p, Up)=j

6
z
gl,y,z(s) - 287 gZ,y,Z(S) = ?/Z7> g3,y,z(3) = Ea g4,y,z(5) = 9257 g5,y,z(5) = 247

(4.6)
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pS

yec(s) = H_ 11 (1+}%) <1 _ f(p))ga»y,z(g’ 0

s T T o b b= h s

Proof. The evaluation of such sums is based, as we know, on the Selberg-
Delange method. In [{], one finds an application towards direct results on such
problems. In our case, to apply Theorem 1 of that paper, one should start
with expanding, for complex number s with Rs > 1, the Dirichlet series

Yywrmtwsn) yo '(n)

o(n
yZ£ Z 2w3n) )

n>1

in an Euler product given by

E(p ") +wa(p™) o (p™)
Fy7z,£(3) = H H 1 + Z 2w3 )p )s

1<j<5 p, U(p)=j

S e

1<5<5 p, L(p

which can be written

— . z(s)
§<p> 95,9,
Fy.e(s) = Hy.e(s) [ ] (1 - ;
o(p)=j p
p, £(p)=j

1<5<5

where ¢, .(s) and H, . ¢(s) are defined by ([.6) and ({.7). To complete the
proof of Lemma 6, one has to show that H, . ¢(s) is holomorphic for Rs > 1
and, for y and z fixed, that Hy.¢(s) is bounded for Rs > o > 3, which

can be done by adapting the method given in [[]] (Preuve du Theoréme 2, p.
235). O

Lemma 7. We keep the above notation and we let G be the set of integers
of the form n = 2“3 m with the following conditions :

- m odd and ged(m,31) =1,

— m = mymgmamgyms, where all prime factors p of m; satisfy {(p) = i.
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If G(x) is the counting function of the set G then, when x tends to infinity,

Cz loglog
- (4 4,
60 = e (110 (B37)) 09
where " 1)
O = bbbl ) 61568378..., 4.10
T (1) (410

Hi16,(1), Ciq and f11(1) are defined by ({£.7),([(.§) and (ET).

Proof of Lemma 7. We apply Lemma 6 with y = 2z = 1, £ = &, and
remark that G(z) = S1,14(7). By observing that (1+ 23)(1 — 5
have

w11 ro35) () - (-2) ()

pEP3 pEP3

= 1.000479390466,

o T () (-)

pEP1UPUP4UPs, p<x pEP3, p<z
= 0.75410767606.
The numerical value of the above Eulerian products has been computed by

the classical method already used and described in [[]. Since ' (f11(1)) =
['(3) = 1.225416702465..., we get (F10). O

Lemma 8. We keep the notation introduced in Lemmas 6 and 7. If
(yv 2) S {(17 ]-)7 (_]-7 _1)}7 we have

~ Cz log log x
Sy (1) = (log 2) 1/ (1 + 0O < log z )) ; (4.11)
while, if (y,z,€) ¢ {(1,1,&), (—1,—1,&)}, we have
Syze(x) = Oy ( o x)IZH_Qu_S) : (4.12)

Proof. For y = z = 1, Formula ({.11]) follows from Lemma 7. For y = z =
—1 (which does not occur for u = 0), it follows from (.4) and by observing
that the values of g;, .(5), fy.2(5), Hy £(s), Cy . do not change when replacing
y by —y and z by —z.
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Let us define
1 1
My = R(fy (1)) = SREEE 422+ (e +27)).
When ¢ # &, (E3) implies (.12) while, if £ = &, it follows from ([f.4) and

from the inequality to be proved

My <3S - WAL (-L-D) (413)

To show (f.13), let us first recall that z is a twelfth root of unity.
If 2 # 41, 6f,.(1) is equal to one of the numbers —3/2 £ y/3, —1/2 £y,
3/2 so that

1/(3 301
My < |fy-(D)] < ¢ (5 + \/5) <055 <" —

4 22u+3

for all w > 0, which proves (.13).
If z=1and y # 1 (which implies u > 1), we have

2 2 2 8
§Ry§0052—::1—25in2%§1—2<;%) :1—ﬁ’
nd o 1 3 8 3 1
My1=—+4+-Ry<-— <= = =
y,1 12+3 (/IS 1 3.9 S s

If = —1 and y # —1, ({.13) follows from the preceding case by observing
that f,.(1) = f-, —-(1), which completes the proof of (f.13). O

Lemma 9. Let G be the set defined in Lemma 7, w; and o be the functions
given by (Z1§) and (B-3). For 0 < j < 11, r, u, A\, t € Ny such that t is
odd, we let G;,.ux; be the set of integers n = 2°*™m in G with the following
conditions :

~a/(m) =7 (mod 12),

— wo(m) +ws(m) = X (mod 24),

—m =t (mod 2"*1).

If p is the function given by ({.1), the counting function G;,.r.(x) of the
set Gjrunt 15 equal to

Giruni() = > p(m).
2w3(M)m<z, m=t (mod 2"*1)
a’'(m)=j (mod 12), wa(m)+ws(m)=X\ (mod 2%)
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Ifu>1and A # j (mod 2), G,y is empty while, if A = j (mod 2), when
x tends to infinity, we have

C x 1
Girunt(T) = 6. ortu (loga:) (1 +0 (W)) )

where C' is the constant given by (f-107).
If u=0, then

C T 1
jir004(7) 1227 (log ) < © ((log x)1/8>) ’

Proof. If uw > 1, it follows from (B.3) that o/(m) = wa(m) + wy(m)
(mod 2); therefore, if j # X (mod 2), then G, ¢ is empty. Let us set

2im 2im

(=e2", p=-ei2.

By using the relations of orthogonality :

11 . .
Zﬂha/(m)u*j]ﬁ — { 12 ifo/ = i (mod ]_2)

— 0 if not,

j2=
U1 .
Z - >\]1<’]1 wa(m)+wa(m)) if W2 + w4( ) A (mod 2 )
— if not,
J1=

- e(2H) =27 if m =t (mod 2"*1)
¢ ;Hlf(t)f( m) = { 0 if not,
we get

2¢—1 11

Grrand®) = s 3 3 D EOC NSl

& mod 27+1 j1=0 jo=0

In the above triple sums, the main contribution comes from S; ;¢ () and
S_1-16(x), and the result follows from ([.11)) and ({.13).

If u =0, we have

] noo
Giro04(?) = 15 DD TS, ()

& mod 27+1 j2=0

and, again, the result follows from Lemma 8.
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Theorem 4. Let A = A(1+ z + 2% + 2* + 2°) be the set given by ([[.3)
and A(x) be its counting function. When x — oo, we have

_

(loga)t

where kK = g—‘llC = 1.469696766... and C is the constant of Lemma 7 defined
by {.10).

Proof of Theorem 4. Let us define the sets Ay, Ay, A3z and A4 con-
taining the elements n = 2*m (m odd) of A with the restrictions :

A1 o ws(m) # 0 and wa(m) 4+ wy(m) # 0

: ws(m) # 0 and we(m) = wa(m) =0

: wz(m) =0 and wo(m) + wy(m) # 0
9(m) = ws(m) = wa(m) = 0.

Alz) ~ K

2
€

We have
Ax) = Ai(x) + Aa(x) + As(x) + Ay(x). (4.14)

Further, for i = 2, 3, 4, it follows from Lemma 5 that A;(z) = O < L )

(log )3
and therefore

A(x) = Ay(x) + O * - |- 4.15
(0) = A@) + (Ong)B) (1.15)

Now, we split A; in two parts B and B by putting in B the elements n € A;
which are coprime with 31 and in B the elements n € A; which are multiples
of 31. Let us recall that, from Remark 2, no element of A is a multiple of
312. Therefore,

Ay (x) = B(z) + B(x) (4.16)

with

Ba)= Y pm, Bw= Y em). (417)

n=2kmeA;, n<z n=2k31meA;, n<zx
Let us consider B(x); the case of B will be similar. We define

—1 if 4=0,1, 3,4 (mod 6)
2 if ¢=5 (mod 6)

so that, if I; is the odd part of Ej (cf. (B:33) and Table 1), we have

E, =21"E, (4.19)
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In view of Theorem 2 (i), if i = a/(m) mod 12 then
y(m) —ws(m) = ;. (4.20)

Further, an element n = 2¥m (m odd) belonging to A; is said of index r > 0
if k=~(m)+r. Forr >0and 0 <i <11,

T () = > p(m) = > p(m)

n=2Y(M+rme Ay, n<z n=27(M+rme A, 293(M)m<a—"—vig
o/(m)=i (mod 12) o’(m)=i (mod 12)

(4.21)
will count the number of elements of A; up to z of index r and satisfying
a/(m) =1 (mod 12), so that

=> Z T (). (4.22)

Since y(m) > 0, from the first equality in ([L.2]]), each n counted in T, ) (x)
is a multiple of 2", hence the trivial upper bound

> 10 < o (4.23)
i=0
Since v; > —1, the second equality in ([.2]) implies
ZT(Z ) < G2V x) (4.24)

with G defined in Lemma 7. Moreover, from Lemma 7, there exists an abso-
lute constant K such that, for x > 3,

T

(logx)F

Gz) < K (4.25)

Now, let R be a large but fixed integer; R’ is defined in terms of x by
PXi -1 <z < 2% and R = 1°gx Since T()( ) is a non-negative integer,

(EZ3) implies that T\ (z) = 0 for r > R’.If z is large enough, R < R’ < R"
holds. Setting

11

= ZR: TY (), (4.26)

r=0 =0

from (f.23), we have
B(x) — Br(z) = 8"+ 57,
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with

R 11 R 11
=3 Y1), => Y 19x).
r=R+1 =0 r=R'+1 i=0

The definition of R" and ({.23) yield

R’ 00
Y z 3 z_ =z
oS o = 27‘_2R’§\/E’
r=R'+1 r=R/'+1

while (£.24), (E.25) and the definition of R’ give

so that, for x large enough, we have

3K
0 < B(z) — Br(z) < Vo + ——0 . (4.27)
28(logx)1
We now have to evaluate ;" (x); we shall distinguish two cases, r = 0
and r > 1.
Calculation of To(i) (x).
From (f.21]), we have

@)= > pm)= > p(m).

n=2"Mme Ay, n<z n=27Mme A, n<z, ws#£0, wa+w4£0

o/(m)=i (mod 12) o/ (m)=i (mod 12)
From Theorem 3, we know that 27(™m € A. Hence,

Ty (z) = > p(m).
27(M)m <z, w3#£0, watwsF£0
o/(m)=i (mod 12)
which, by use of ([.20), gives
Ty (w) = 3 p(m).

203(M) <2~ iz, w30, wa+wsF0
o' (m)=i (mod 12)
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(logz)3
the conditions ws # 0, ws+wy # 0, and to get from the second part of Lemma

9,
; x x
1" (@) = Gro001 (27) o ((log x)%>

Calculation of 7" (x) for r > 1.

Under the conditions w3 # 0 and wy 4+ w4 # 0, from (B4), (2-39), B3), [EIT)
and (£.20), we get

But, at the cost of an error term O ( £ ), Lemma 5 allows us to remove

Z(m) = 3’%2;% -1 E\a/(m).
From ([.21)), it follows that
TO(z) = 3 p(m).

n=2Y"+rme A n<z, w30, wotwsFA0
o/ (m)=t (mod 12)

Now, by Theorem 3, we know that 27(™*+"m belongs to A if there is some
l€S8, ={2"+1,..,2" — 1} such that m = [7'Z(m) mod 2"!. Note that
the order of 3 modulo 2"+ is 2"~ ! if » > 2 and 2" if » = 1. We choose

u=r+1

so that ws + ws = A (mod 2°+!) implies 3/2-11 = 3l 1] (mod 2711).
Therefore, we have

2rtl_1
7
T =) > p(m).
leSr A=0 2w3 (M) M <I~Yi—T g Ww3£0, wotwsF#0

o/ (m)=i (mod 12), wa+ws=X\ (mod 27t1)
mEl’li’)[%_ﬂE\i (mod 27t1)

As in the case r = 0, we can remove the conditions w3 # 0 and ws + wy # 0

in the last sum by adding a O ( z ) error term, and we get by Lemma

(log m)%
9 for r fixed

0(@) =

leSr
A=i

2rtl_1

x X
i 55) + 0 ()

=[]

d2)
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C x 1
= — 1 1 + O —2r—5 * 429
24 gvitr(log x) 7 ( <(10g x)? )) 429)

From (f.24), (£23), (£29) and (E.1§), we have

Cx S 1 a1 1
i) = et (53) (3% 7) 0 (=)

r=1

- S (499 (4 ()

By making R going to infinity, the above equality together with (f.27) show
that

37 Cx
16 (log x)i

In a similar way, we can show that B(z) defined in (E17) satisfies

~ 1 37 x
B(x) ~ -
31 16 - 31 <log ;L*)Z

which, with (IG) and (fI73), completes the proof of Theorem 4 with

37 1 74
K=1g (1 + 31) C = 310 = 1.469696766....

Numerical computation of A(z).
There are three ways to compute A(z). The first one uses the definition of
A and simultaneously calculates the number of partitions p(A,n) for n < z;
it is rather slow. The second one is based on the relation ([.10) and the
congruences (B.19) and (B.23) satisfied by o(.A,n). The third one calculates
w;(n), 0 <j <5, in view of applying Theorem 1. The two last methods can
be encoded in a sieving process

The following table displays the values of A(z), A;(z), ..., A4(z) as defined

in (f.14) and also

I

A)(log)’ - Ay(@)loga)t

i X

c(x) =

It seems that ¢(z) and ¢;(x) converge very slowly to k = 1.469696766 . . .,
which is impossible to guess from the table.

28



x | Ax) clx) | Ai(z) |alz) | Ax(z) | As(x) Ay(x)
103 | 480 0.7782 | 20 0.032 | 44 233 183

10* | 4543 0.7914 | 361 0.063 | 532 2294 1356
10° | 43023 0.7925 | 5087 0.094 | 5361 21810 10765
106 | 411764 0.7939 | 60565 0.117 | 52344 208633 90222
107 | 3981774 | 0.7978 | 680728 | 0.136 | 506199 | 2007168 | 787679
108 | 38719773 | 0.8022 | 7403138 | 0.153 | 4887357 | 19390529 | 7038749

Thanks
We are pleased to thank A. Sarkozy who first considered the sets A’s such
that the number of partitions p(.A, n) is even for n large enough for his interest
in our work and X. Roblot for valuable discussions about 2-adic numbers.
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