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, the elements of the set A = A(1 + z + z 3 + z 4 + z 5 ), for which the partition function p(A, n) (i.e. the number of partitions of n with parts in A) is even for all n ≥ 6 are determined. An asymptotic estimate to the counting function of this set is also given.

1 Introduction.

Let N (resp. N 0 ) be the set of positive (resp. non-negative) integers. If A = {a 1 , a 2 , ...} is a subset of N and n ∈ N then p(A, n) is the number of partitions of n with parts in A, i.e., the number of solutions of the diophantine equation

a 1 x 1 + a 2 x 2 + . . . = n, (1.1) 
in non-negative integers x 1 , x 2 , .... As usual we set p(A, 0) = 1.

The counting function of the set A will be denoted by A(x), i.e.,

A(x) =| {n ≤ x, n ∈ A} | . (1.2)
Let F 2 be the field with 2 elements, P = 1 + ǫ 1 z 1 + ...

+ ǫ N z N ∈ F 2 [z], N ≥ 1.
Although it is not difficult to prove (cf. [START_REF] Nicolas | On the parity of additive representation functions[END_REF], [START_REF] Saïd | On some sets with even partition function[END_REF]) that there is a unique subset 1 A = A(P ) of N such that the generating function F (z) satisfies

F (z) = F A (z) = a∈A 1 1 -z a = n≥0
p(A, n)z n ≡ P (z) (mod 2), (1.3) the determination of the elements of such sets for general P ′ s seems to be hard.

Let the decomposition of P into irreducible factors over F 2 be P = P α 1 1 P α 2 2 ...P α l l .

(1.4)

We denote by β i = ord(P i ), 1 ≤ i ≤ l, the order of P i , that is the smallest positive integer β i such that P i (z) divides 1 + z β i in F 2 [z]. It is known that β i is odd (cf. [START_REF] Lidl | Introduction to finite fields and their applications[END_REF]). We set β = lcm(β 1 , β 2 , ..., β l ).

(1.5)

Let A = A(P ) satisfy (1.3) and σ(A, n) be the sum of the divisors of n belonging to A, i.e.,

σ(A, n) = d|n, d∈A d = d|n dχ(A, d), (1.6) 
where χ(A, .) is the characteristic function of the set A, i.e, χ(A, d) = 1 if d ∈ A and χ(A, d) = 0 if d ∈ A. It was proved in [START_REF] Saïd | Sets of parts such that the partition function is even[END_REF] (see also [START_REF] Saïd | On a conjecture of Nicolas-Sárközy about partitions[END_REF], [START_REF] Lahouar | Fonctions de partitions à parité périodique[END_REF]) that for all k ≥ 0, the sequence (σ(A, 2 k n) mod 2 k+1 ) n≥1 is periodic with period β defined by (1.5), in other words,

n 1 ≡ n 2 (mod β) ⇒ ∀k ≥ 0, σ(A, 2 k n 1 ) ≡ σ(A, 2 k n 2 ) (mod 2 k+1 ). (1.7)
Moreover, the proof of (1.7) in [START_REF] Saïd | Sets of parts such that the partition function is even[END_REF] allows to calculate σ(A, 2 k n) mod 2 k+1 and to deduce the value of χ(A, n) where n is any positive integer. Indeed, let S A (m, k) = χ(A, m) + 2χ(A, 2m) + . . . + 2 k χ(A, 2 k m).

(1.8)

If n writes n = 2 k m with k ≥ 0 and m odd, (1.6) implies In the above sums, n d is always a multiple of 2 k , so that, from the values of σ(A, n d ), by (1.10), one can determine the value of S A (m, k) mod 2 k+1 and by (1.8), the value of χ(A, 2 i m) for all i, i ≤ k.

σ(A, n) = σ(A, 2 k m) = d | m dS A (d, k), (1.9 
Let β be an odd integer ≥ 3 and (Z/βZ) * be the group of invertible elements modulo β. We denote by < 2 > the subgroup of (Z/βZ) * generated by 2 and consider its action ⋆ on the set Z/βZ given by a ⋆ x = ax for all a ∈ < 2 > and x ∈ Z/βZ. The quotient set will be denoted by (Z/βZ)/ <2> and the orbit of some n in Z/βZ by O(n). For P ∈ F 2 [z] with P (0) = 1 and ord(P ) = β, let A = A(P ) be the set obtained from (1.3). Property (1.7) shows (after [START_REF] Baccar | On the divisor function of sets with even partition functions[END_REF]) that if n 1 and n 2 are in the same orbit then σ(A, 2 k n 1 ) ≡ σ(A, 2 k n 2 ) (mod 2 k+1 ), ∀k ≥ 0.

(1.11)

Consequently, for fixed k, the number of distinct values that (σ(A, 2 k n) mod 2 k+1 ) n≥1 can take is at most equal to the number of orbits of Z/βZ.

Let ϕ be the Euler function and s be the order of 2 modulo β, i.e., the smallest positive integer s such that 2 s ≡ 1 (mod β). If β = p is a prime number then (Z/pZ) * is cyclic and the number of orbits of Z/pZ is equal to 1 + r with r = ϕ(p) s = p-1 s . In this case, we have (Z/pZ)/ <2> = {O(g), O(g 2 ), ..., O(g r ) = O(1), O(p)}, (1.12) where g is some generator of (Z/pZ) * . For r = 2, the sets A = A(P ) were completely determined by N. Baccar, F. Ben Saïd and J.-L. Nicolas ( [START_REF] Baccar | On sets such that the partition function is even from a certain point on[END_REF], [START_REF] Saïd | Even partition functions[END_REF]). Moreover, N. Baccar proved in [START_REF] Baccar | Sets with even partition functions and 2-adic integers[END_REF] that for all r ≥ 2, the elements of A of the form 2 k m, k ≥ 0 and m odd, are determined by the 2-adic development of some root of a polynomial with integer coefficients. Unfortunately, his results are not explicit and do not lead to any evaluation of the counting function of the set A. When r = 6, J.-L. Nicolas determined (cf. [START_REF] Nicolas | On the parity of generalized partition functions II[END_REF]) the odd elements of A = A(1 + z + z 3 + z 4 + z 5 ). His results ( which will be stated in Section 2, Theorem 0) allowed to deduce a lower bound for the counting function of A. In this paper, we will consider the case p = 31 which satisfies r = 6. In F 2 [z], we have 1 -z 31 1 -z = P (1) P (2) ...P (6) , (1.13) with P (1) = 1+z+z 3 +z 4 +z 5 , P (2) = 1+z+z 2 +z 4 +z 5 , P (3) = 1+z 2 +z 3 +z 4 +z 5 , P (4) = 1 + z + z 2 + z 3 + z 5 , P (5) = 1 + z 2 + z 5 , P (6) = 1 + z 3 + z 5 .

In fact, there are other primes p with r = 6. For instance, p = 223 and p = 433.

In Section 2, for A = A(P (1) ), we evaluate the sum S A (m, k) which will lead to results of Section 3 determining the elements of the set A. Section 4 will be devoted to the determination of an asymptotic estimate to the counting function A(x) of A. Although, in this paper, the computations are only carried out for P = P (1) , the results could probably be extended to any P (i) , 1 ≤ i ≤ 6, and more generally, to any polynomial P of order p and such that r = 6.

Notation. We write a mod b for the remainder of the euclidean division of a by b. The ceiling of the real number x is denoted by

⌈x⌉ = inf{n ∈ Z, x ≤ n}. . 2 The sum S A (m, k), A = A(1 + z + z 3 + z 4 + z 5 ).
From now on, we take A = A(P ) with

P = P (1) = 1 + z + z 3 + z 4 + z 5 .
(

The order of P is β = 31. The smallest primitive root modulo 31 is 3 that we shall use as a generator of (Z/31Z) * . The order of 2 modulo 31 is s = 5 so that

(Z/31Z)/ <2> = {O(3), O(3 2 ), ..., O(3 6 ) = O(1), O(31)}, (2.2) 
with

O(3 j ) = {2 k 3 j , 0 ≤ k ≤ 4}, 1 ≤ j ≤ 6 (2.3) and O(31) = {31n, n ∈ N}. (2.4) 
For k ≥ 0 and 0 ≤ j ≤ 5, we define the integers u k,j by

u k,j = σ(A, 2 k 3 j ) mod 2 k+1 . (2.5)
The Graeffe transformation. Let K be a field and K[[z]] be the ring of formal power series with coefficients in K. For an element

f (z) = a 0 + a 1 z + a 2 z 2 + . . . + a n z n + . . . of this ring, the product f (z)f (-z) = b 0 + b 1 z 2 + b 2 z 4 + . . . + b n z 2n + . . .
is an even power series. We shall call G(f ) the series

G(f )(z) = b 0 + b 1 z + b 2 z 2 + . . . + b n z n + . . . . (2.6) 
It follows immediately from the above definition that for f, g

∈ K[[z]], G(f g) = G(f )G(g). (2.7)
Moreover if q is an odd integer and f (z) = 1 -z q , we have G(f ) = f . We shall use the following notation for the iterates of f by G :

f (0) = f, f (1) = G(f ), . . . , f (k) = G(f (k-1) ) = G (k) (f ). (2.8)
More details about the Graeffe transformation are given in [START_REF] Saïd | Sets of parts such that the partition function is even[END_REF]. By making the logarithmic derivative of formula (1.3), we get (cf. [START_REF] Nicolas | On the parity of additive representation functions[END_REF]) :

∞ n=1 σ(A, n)z n = z F ′ (z) F (z) ≡ z P ′ (z) P (z) (mod 2), (2.9) 
which, by Propositions 2 and 3 of [START_REF] Saïd | Sets of parts such that the partition function is even[END_REF], leads to

∞ n=1 σ(A, 2 k n)z n ≡ z P ′ (k) (z) P (k) (z) = z 1 -z 31 P ′ (k) (z)W (k) (z) (mod 2 k+1
), (2.10) with P ′ (k) (z) = d dz (P (k) (z) and W (z) = (1 -z)P (2) (z)...P (6) (z).

(2.11) Formula (2.10) proves (1.11) with β = 31, and the computation of the kth iterates P (k) and W (k) by the Graeffe transformation yields the value of σ(A, 2 k n) mod 2 k+1 . For instance, for k = 11, we obtain :

u k,0 = 1183, u k,1 = 1598, u k,2 = 1554, u k,3 = 845, u k,4 = 264, u k,5 = 701.
A divisor of 2 k 3 j is either a divisor of 2 k-1 3 j or a multiple of 2 k . Therefore, from (2.5) and (1.6), u k,j ≡ u k-1,j (mod 2 k ) holds and the sequence (u k,j ) k≥0 defines a 2-adic integer U j satisfying for all k ′ s :

U j ≡ u k,j (mod 2 k+1 ), 0 ≤ j ≤ 5.
(2.12)

It has been proved in [START_REF] Baccar | Sets with even partition functions and 2-adic integers[END_REF] that the U ′ j s are the roots of the polynomial R(y) = y 6 -y 5 + 3y For convenience, if j ∈ Z, we shall set

U j = U j mod 6 . (2.14) 
We define the completely additive function ℓ :

Z \ 31Z → Z/6Z by ℓ(n) = j if n ∈ O(3 j ), (2.15) 
so that ℓ(n 1 n 2 ) ≡ ℓ(n 1 ) + ℓ(n 2 ) (mod 6). We split the odd primes different from 31 into six classes according to the value of ℓ. More precisely, for 0 ≤ j ≤ 5,

p ∈ P j ⇐⇒ ℓ(p) = j ⇐⇒ p ≡ 2 k 3 j (mod 31), k = 0, 1, 2, 3, 4.
(2.16)

We take L : N \ 31N -→ N 0 to be the completely additive function defined on primes by L(p) = ℓ(p).

(2.17)

We define, for 0 ≤ j ≤ 5, the additive function ω j : N -→ N 0 by

ω j (n) = p|n, p∈P j 1 = p|n, ℓ(p)=j 1, (2.18) 
and ω(n) = ω 0 (n) + ... + ω 5 (n) = p|n 1. We remind that additive functions vanish on 1.

From (2.5), (2.3), (1.11) and (2.12), it follows

that if n = 2 k m ∈ O(3 j ) (so that j = ℓ(n) = ℓ(m)), σ(A, n) = σ(A, 2 k m) ≡ U ℓ(m) (mod 2 k+1 ).
(2.19)

We may consider the 2-adic number

S(m) = S A (m) = χ(A, m) + 2χ(A, 2m) + ... + 2 k χ(A, 2 k m) + ... (2.20) satisfying from (1.8), S(m) ≡ S A (m, k) (mod 2 k+1 ). (2.21) Then (1.10) implies for (m, 31) = 1, mS(m) = d | m µ(d)U ℓ( m d ) . (2.22)
If 31 divides m, it was proved in [3, (3.6)] that, for all k ′ s,

σ(A, 2 k m) ≡ -5 (mod 2 k+1 ). (2.23) Remark 1.
No element of A has a prime factor in P 0 . This general result has been proved in [START_REF] Baccar | On the divisor function of sets with even partition functions[END_REF], but we recall the proof on our example : let us assume that n = 2 k m ∈ A, where m is an odd integer divisible by some prime p in P 0 , in other words ω 0 (m) ≥ 1. (1.10) gives

mS A (m, k) = d | m µ(d)σ A, n d = d | m µ(d)σ A, 2 k m d = d | m p µ(d)σ A, 2 k m d + d | m p µ(pd)σ A, 2 k m pd = d | m p µ(d) σ A, 2 k m d -σ A, 2 k m pd .
In the above sum, both m d and m pd are in the same orbit, so that from (1.11),

σ(A, 2 k m d ) ≡ σ(A, 2 k m pd ) (mod 2 k+1 ) and therefore mS A (m, k) ≡ 0 (mod 2 k+1 ). Since m is odd and (cf. (1.8)) 0 ≤ S A (m, k) < 2 k+1 then S A (m, k) = 0, so that by (1.8), 2 h m ∈ A, for all 0 ≤ h ≤ k.
In [START_REF] Nicolas | On the parity of generalized partition functions II[END_REF], J.-L. Nicolas has described the odd elements of A. In fact, he obtained the following : Theorem 0. ( [START_REF] Nicolas | On the parity of generalized partition functions II[END_REF])) (a) The odd elements of A which are primes or powers of primes are of the form p λ , λ ≥ 1, satisfying one of the following four conditions : p ∈ P 1 and λ ≡ 1, 3, 4, 5 (mod 6) p ∈ P 2 and λ ≡ 0, 1 (mod 3) p ∈ P 4 and λ ≡ 0, 1 (mod 3) p ∈ P 5 and λ ≡ 0, 2, 3, 4 (mod 6). (c) An odd element n ∈ A satisfies ω 0 (n) = 0 and ω 3 (n) = 0 or 1 ; in other words, n is free of prime factor in P 0 and has at most one prime factor in P 3 .

(b) No odd element of A is a multiple of 31 2 . If m is odd, m = 1,
(d) The odd elements of A different from 1, not divisible by 31, which are not primes or powers of primes are exactly the odd n ′ s, n = 1, such that (where n = p|n p) :

1. ω 0 (n) = 0 and ω 3 (n) = 0 or 1. 2. If ω 3 (n) = 1 then ℓ(n) + ℓ(n) ≡ 0 or 1 (mod 3). 3. If ω 3 (n) = 0 and ω 1 (n) + ℓ(n) -ℓ(n) is even then 2ℓ(n) -ℓ(n) ≡ 2 or 3 or 4 or 5 (mod 6). 4. If ω 3 (n) = 0 and ω 1 (n) + ℓ(n) -ℓ(n) is odd then 2ℓ(n) -ℓ(n) ≡ 0 or 4 (mod 6).
Remark 2. Point (b) of Theorem 0 can be improved in the following way : No element of A is a multiple of 31 2 . Indeed, from (1.10), we have for m odd, k ≥ 0 and τ ≥ 2,

31 τ mS A (31 τ m, k) = d | 31 τ m µ(d)σ A, 2 k 31 τ m d = d | 31m µ(d)σ A, 2 k 31 τ m d = d | m µ(d) σ A, 2 k 31 τ m d -σ A, 2 k 31 τ -1 m d .
Since 31 τ m d and 31 τ -1 m d are in the same orbit O(31) then (1.11) and (2.23) give σ(A,

2 k 31 τ m d ) ≡ σ(A, 2 k 31 τ -1 m d ) ≡ -5 (mod 2 k+1
), so that we get S A (31 τ m, k) ≡ 0 (mod 2 k+1 ). Hence, from (1.8), S A (31 τ m, k) = 0 and for all 0 ≤ h ≤ k and all τ ≥ 2, 2 h 31 τ m does not belong to A.

In view of stating Theorem 1 which will extend Theorem 0, we shall need some notation. The radical m of an odd integer m = 1, not divisible by 31 and free of prime factors belonging to P 0 will be written

m = p 1 . . . p ω 1 p ω 1 +1 . . . p ω 1 +ω 2 p ω 1 +ω 2 +1 . . . . . . p ω 1 +ω 2 +ω 3 +ω 4 +1 . . . p ω , (2.24) where ℓ(p i ) = j for ω 1 + ... + ω j-1 + 1 ≤ i ≤ ω 1 + ... + ω j , ω j = ω j (m) = ω j (m) and ω = ω(m) = ω(m) ≥ 1. We define the additive functions from Z \ 31Z into Z/12Z : α = α(m) = 2ω 5 -2ω 1 + ω 4 -ω 2 mod 12, (2.25) 
a = a(m) = ω 5 -ω 1 + ω 2 -ω 4 mod 12.
(2.26)

Let (v i ) i∈Z be the periodic sequence of period 12 defined by

v i = 2 √ 3 cos(i π 6 ) if i is odd 2 cos(i π 6 ) if i is even. (2.27)
The values of (v i ) i∈Z are given by : i = 0 1 2 3 4 5 6 7 8 9 10 11

v i = 2 1 1 0 -1 -1 -2 -1 -1 0 1 1 Note that v i+6 = -v i , (2.28) 
v i + v i+2 = v i+1 if i is odd 3v i+1 if i is even, (2.29) v 2i ≡ -2 i (mod 3) (2.30) and v i ≡ v i+3 ≡ v 2i (mod 2). (2.31)
From the U j 's (cf. (2.12) and (2.13)), we introduce the following 2-adic integers :

E i = 5 j=0 v i+2j U j , i ∈ Z, (2.32) 
F i = 5 j=0 v i+4j U j , i ∈ Z, (2.33) 
G = 5 j=0
(-1) j U j .

(2.34) From (2.28), we have

E i+6 = -E i , E i+12 = E i , F i+6 = -F i , F i+12 = F i . (2.35)
From (2.29), it follows that, if i is odd,

E i + E i+2 = E i+1 , F i + F i+2 = F i+1 , (2.36) 
while, if i is even,

E i + E i+2 = 3E i+1 , F i + F i+2 = 3F i+1 , (2.37) 
The values of these numbers are given in the following array :

Z Z mod 2 11 E 0 = 1 32 (11θ 5 -8θ 4 + 29θ 3 -124θ 2 + 500θ -256) E 1 = 1 16 (3θ 5 -2θ 4 + 9θ 3 -26θ 2 + 136θ -64) E 2 = 3E 1 -E 0 E 3 = 2E 1 -E 0 E 4 = 3E 1 -2E 0 E 5 = E 1 -E 0 F 0 = 1 32 (-3θ 5 -21θ 3 + 36θ 2 -36θ + 64) F 1 = 1 32 (-3θ 5 -4θ 4 -13θ 3 + 24θ 2 -28θ -64) F 2 = 3F 1 -F 0 F 3 = 2F 1 -F 0 F 4 = 3F 1 -2F 0 F 5 = F 1 -F 0 G = 1 4 (-θ 5 + θ 4 -θ 3 + 11θ 2 -34θ + 20) TABLE 1 Lemma 1. The polynomials (U j ) 0≤j≤5 (cf. (2.13)) form a basis of Q[θ]. The polynomials E 0 , E 1 , F 0 , F 1 , G, U 0 form an other basis of Q[θ].
For all i ′ s, E i and F i are linear combinations of respectively E 0 and E 1 and F 0 and F 1 .

Proof. With Maple, in the basis 1, θ, . . . , θ 5 , we compute determinant (U 0 , ..., U 5 ) = 1 1024 . From (2.32), (2.33) and (2.34), the determinant of (E 0 , E 1 , F 0 , F 1 , G, U 0 ) in the basis U 0 , U 1 , . . . , U 5 is equal to 12. The last point follows from (2.36) and (2.37).

We have Theorem 1. Let m = 1 be an odd integer not divisible by 31 with m of the form (2.24). Under the above notation and the convention

0 ω = 1 if ω = 0 0 if ω > 0, (2.38)
we have :

1) The 2-adic integer S(m) defined by (2.20) satisfies

mS(m) = 2 ω 3 -1 3 ⌈ ω 2 +ω 4 2 -1⌉ E α-2ℓ(m) + 0 ω 3 2 3 ⌈ ω 2 -1⌉ F a-4ℓ(m) + 0 ω 2 +ω 4 3 2 ω-1 (-1) ℓ(m) G. (2.39)
2) The 2-adic integer S(31m) satisfies

S(31m) = -31 -1 S(m), (2.40) 
where 31 -1 is the inverse of 31 in Z 2 . In particular, for all k ∈ {0, 1, 2, 3, 4}, we have

2 k m ∈ A ⇐⇒ 31 • 2 k m ∈ A, since the inverse of 31 modulo 2 k+1 is -1 for k ≤ 4.
Proof of Theorem 1, 1). From (2.22), we have

mS(m) = d | m µ(d)U ℓ( m d ) = d | m µ(d)U ℓ(m)-ℓ(d) .
(2.41) Further, (2.41) becomes

mS(m) = 5 j=0 T (m, j)U ℓ(m)-j = 5 j=0 T (m, ℓ(m) -j)U j , (2.42) 
with

T (m, j) = T (m, j) = d|m, ℓ(d)≡j ( mod 6)
µ(d).

(2.43) Therefore (2.39) will follow from (2.42) and from the following lemma :

Lemma 2. The integer T (m, j) defined in (2.43) with the convention (2.38) and the definitions (2.18) and (2.24)-(2.27), for m = 1, is equal to

T (m, j) = 2 ω 3 -1 3 ⌈ ω 2 +ω 4 2 -1⌉ v α-2j + 0 ω 3 2 3 ⌈ ω 2 -1⌉ v a-4j +0 ω 2 +ω 4 (-1) j 3 2 ω-1 .
(2.44)

Proof. Let us introduce the polynomial

f (X) = (1 -X) ω 1 (1 -X 2 ) ω 2 ...(1 -X 5 ) ω 5 = ν≥0 f ν X ν . (2.45)
If the five signs were plus instead of minus, f (X) would be the generating function of the partitions in at most ω 1 parts equal to 1, ..., at most ω 5 parts equal to 5. More generally, the polynomial

f (X) = ω i=1 (1 + a i X b i ) = ν≥0 f ν X ν
is the generating function of

f ν = ǫ 1 ,...,ǫω∈{0,1}, ω i=1 ǫ i b i =ν ω i=1 a ǫ i i .
To the vector ǫ = (ǫ 1 , ..., ǫ ω ) ∈ F ω 2 , we associate

d = ω i=1 p ǫ i i , µ(d) = ω i=1 (-1) ǫ i , L(d) = ω i=1 ǫ i ℓ(p i )
where L is the arithmetic function defined by (2.17) and we get

f ν = d|m, L(d)=ν µ(d), (2.46) 
Consequently, by setting ξ = exp( 

f ν = 1 6 5 i=0 ξ -ij f (ξ i ) = 1 6 5 i=1 ξ -ij f (ξ i ) = 1 6 5 i=1 ξ -ij (1 -ξ i ) ω 1 (1 -ξ 2i ) ω 2 (1 -ξ 3i ) ω 3 (1 -ξ 4i ) ω 4 (1 -ξ 5i ) ω 5 . (2.47)
By observing that

1-ξ = ξ 5 , 1-ξ 2 = ̺ = √ 3(cos π 6 -i sin π 6 ), 1-ξ 3 = 2, 1-ξ 4 = ̺, 1-ξ 6 = 0,
the sum of the terms in i = 1 and i = 5 in (2.47), which are conjugate, is equal to

2 6 R(ξ -j ξ 5ω 1 ̺ ω 2 2 ω 3 ̺ ω 4 ξ ω 5 ) = 2 ω 3 3 √ 3 ω 2 +ω 4 cos π 6 (2ω 5 -2ω 1 + ω 4 -ω 2 -2j).
(2.48) Now, the contribution of the terms in i = 2 and i = 4 is

2 6 R(ξ -2j ̺ ω 1 ̺ ω 2 0 ω 3 ̺ ω 4 ̺ ω 5 ) = 0 ω 3 √ 3 ω 1 +ω 2 +ω 4 +ω 5 3 cos π 6 (ω 2 + ω 5 -ω 1 -ω 4 -4j) = 0 ω 3 √ 3 ω 3 cos π 6 (ω 2 + ω 5 -ω 1 -ω 4 -4j) (2.49)
Finally, the term corresponding to i = 3 in (2.47) is equal to 1 6 (-1) j 2 ω 1 0 ω 2 2 ω 3 0 ω 4 2 ω 5 = 0 ω 2 +ω 4 (-1) j 6 2 ω 1 +ω 3 +ω 5 = 0 ω 2 +ω 4 (-1) j 6 2 ω . (2.50)

Consequently, by using our notation (2.24)-(2.26), (2.47) becomes

T (m, j) = 2 ω 3 3 √ 3 ω 2 +ω 4 cos π 6 (α -2j) + 0 ω 3 √ 3 ω 3 cos π 6 (a -4j) +0 ω 2 +ω 4 (-1) j 6 2 ω . (2.51)
Observing that α -2j has the same parity than ω 2 + ω 4 and similarly for a -4j and ω (when ω 0 = ω 3 = 0), via (2.27), we get (2.44).

Proof of Theorem 1, 2). For all k ≥ 0, from (1.10), we have

31mS A (31m, k) = d | 31m µ(d)σ(A, 31 • 2 k m d ) = d | 31m µ(d)σ(A, 31 • 2 k m d ) = d | m µ(d)σ(A, 31 • 2 k m d ) - d | m µ(d)σ(A, 2 k m d ) = d | m µ(d)σ(A, 31 • 2 k m d ) -mS A (m, k). (2.52) Since for all d dividing m, 31•2 k m d ∈ O(31) then, from (2.23), σ(A, 31•2 k m d ) ≡ σ(A, 31 • 2 k ) ≡ -5 (mod 2 k+1 ), so that (2.52) gives 31mS A (31m, k) + mS A (m, k) ≡ -5 d | m µ(d) (mod 2 k+1 ).
(2.53)

Since m = 1, 31mS A (31m, k) + mS A (m, k) ≡ 0 (mod 2 k+1
). Recalling that m is odd, by using (2.20), (2.21) and their similar for S(31m), we obtain the desired result.

Elements of the set

A = A(1 + z + z 3 + z 4 + z 5 ).
In this section, we will determine the elements of the set A of the form n = 2 k 31 τ m, where m = 1 satisfies (2.24) and τ ∈ {0, 1}, since from Remark 2, 2 k 31 τ m / ∈ A for all τ ≥ 2 . The elements of the set A(1 + z + z 3 + z 4 + z 5 ) of the form 31 τ 2 k , τ = 0 or 1, were shown in [START_REF] Baccar | Sets with even partition functions and 2-adic integers[END_REF] to be solutions of 2-adic equations. More precisely, the following was proved in that paper.

1) The elements of the set A(1 + z + z 3 + z 4 + z 5 ) of the form 2 k , k ≥ 0, are given by the 2-adic solution k≥0 χ(A, 2 k ) 2 k = S(1) = U 0 = 1 + 2 + 2 2 + 2 3 + 2 4 + 2 7 + 2 10 + 2 11 + ... of the equation y 6 -y 5 + 3y 4 -11y 3 + 44y 2 -36y + 32 = 0. Note that S(1) = U 0 follows from (2.22).

2) The elements of the set A(1 + z + z 3 + z 4 + z 5 ) of the form 31 • 2 k , k ≥ 0, are given by the solution Then, if 31 does not divide m, we have

γ(31m) = γ(m). (3.2) 
Let us assume now that m is coprime with 31. We shall use the quantities ω i = ω i (m) defined by (2.18), ℓ(m), α = α(m), a = a(m) defined by (2.15), (2.25) and (2.26),

α ′ = α ′ (m) = α-2ℓ(m) mod 12 = 2ω 5 -2ω 1 +ω 4 -ω 2 -2ℓ(m) mod 12, (3.3) a ′ = a ′ (m) = a -4ℓ(m) mod 12 = ω 5 -ω 1 + ω 2 -ω 4 -4ℓ(m) mod 12, (3.4) 
t = t(m) = ω 1 + ω 5 + ω 2 + ω 4 2 -1 - ω 2 + ω 4 2 -1 = ⌈ ω 1 +ω 5 2 ⌉ if ω 1 + ω 5 ≡ ω 2 + ω 4 ≡ 1 (mod 2) ⌈ ω 1 +ω 5 2 -1⌉ if not.
(3.5)

We have : (i) if ω 3 = 0 and ω 2 + ω 4 = 0, the value of γ = γ(m) is given by

γ =    ω 3 -1 if α ′ ≡ 0, 1, 3, 4 (mod 6) ω 3 if α ′ ≡ 2 (mod 6) ω 3 + 2 if α ′ ≡ 5 (mod 6). (ii) If ω 2 + ω 4 = 0 and ω 3 ≥ 1, we set α ′′ = α ′ + 6ℓ(m) mod 12 and δ(i) = v 2 (E i + 2 v 2 (E i ) G) and we have if ω 1 + ω 5 < v 2 (E α ′′ ), then γ = ω 3 -1 + ω 1 + ω 5 , if ω 1 + ω 5 = v 2 (E α ′′ ), then γ = ω 3 -1 + δ(α ′′ ), if ω 1 + ω 5 > v 2 (E α ′′ ), then γ = ω 3 -1 + v 2 (E α ′′ ).
(iii) If ω 3 = 0 and ω 2 + ω 4 = 0, we have

γ = -1 + v 2 (E α ′ + 3 t F a ′ ).
(iv) If ω 3 = ω 2 = ω 4 = 0 and ω 1 + ω 5 = 0, we have

γ = -1 + v 2 (E α ′ + 3 t F a ′ + 2 ω 1 +ω 5 (-1) ℓ(m) G).
Proof. We shall prove that S(m) = 0 in each of the four cases above. Assuming S(m) = 0, it follows from Theorem 1, 2) that S(31m) = 0 and that γ(31m) = γ(m), which sets (3.2).

Proof of Theorem 2 (i).

In this case, formula (2.39) reduces to

mS(m) = 2 ω 3 -1 3 ⌈ ω 2 +ω 4 2 -1⌉ E α ′ .
Since E α ′ = 0, S(m) does not vanish ; we have

γ = v 2 (S(m)) = ω 3 -1 + v 2 (E α ′ )
and the result follows from the values of E α ′ modulo 2 11 given in Table 1.

Proof of Theorem 2 (ii).

If ω 2 + ω 4 = 0 and ω 3 = 0, formula (2.39) becomes (since, cf. (2.35),

E i+6 = -E i holds) mS(m) = 2 ω 3 -1 3 E α ′ + 2 ω 1 +ω 5 (-1) ℓ(m) G = (-1) ℓ(m) 2 ω 3 -1 3 E α ′′ + 2 ω 1 +ω 5 G .
As displaid in Table 1, E i is a linear combination of E 0 and E 1 so that, from Lemma 1, S(m) does not vanish and γ = ω 3 -1+v 2 (E α ′′ + 2 ω 1 +ω 5 G), whence the result. The values of v 2 (E i ) and δ(i) calculated from Table 1 are given below. i 0 1 2 3 4 5 6 7 8 9 10 11 v 2 (E i ) 0 0 1 0 0 3 0 0 1 0 0 3

δ(i) 1 1 2 1 1 8 2 2 4 2 2 4
Proof of Theorem 2 (iii). If ω 3 = 0 and ω 2 + ω 4 = 0 it follows, from (2.39) and the definition of t above, that

mS(m) = 1 2 3 ⌈ ω 2 +ω 4 2 -1⌉ (E α ′ + 3 t F a ′ ).
But E i and F i are non-zero linear combinations of, respectively, E 0 and E 1 and F 0 and

F 1 ; by Lemma 1, E α ′ + 3 t F a ′ does not vanish and γ = -1 + v 2 (E α ′ + 3 t F a ′ ).
Proof of Theorem 2 (iv). If ω 3 = ω 2 = ω 4 = 0 and m = 1, formula (2.39) gives

mS(m) = 1 6 E α ′ + 3 t F a ′ + 2 ω 1 +ω 5 (-1) ℓ(m) G .
From Lemma 1, we obtain E α ′ + 3 t F a ′ + 2 ω 1 +ω 5 (-1) ℓ(m) G = 0, which implies S(m) = 0 and γ = -1

+ v 2 E α ′ + 3 t F a ′ + 2 ω 1 +ω 5 (-1) ℓ(m) G . Theorem 3.
Let m be an odd integer satisfying m = 1, (m, 31) = 1, and with m of the form (2.24). Let γ = γ(m) as defined in Theorem 2 and Z(m) be the odd part of the right hand-side of (2.39), so that mS(m) = 2 γ(m) Z(m).

(3.6)

(i) If k < γ, then 2 k m / ∈ A and 2 k 31m / ∈ A. (ii) If k = γ, then 2 k m ∈ A and 2 k 31m ∈ A. (iii) If k = γ + r, r ≥ 1, then we set S r = {2 r + 1, 2 r + 3, ..., 2 r+1 -1}
and we have

2 γ+r m ∈ A ⇐⇒ ∃ l ∈ S r , m ≡ l -1 Z(m) (mod 2 r+1 ), 2 γ+r 31m ∈ A ⇐⇒ ∃ l ∈ S r , m ≡ -(31l) -1 Z(m) (mod 2 r+1 ).
Proof of Theorem 3, (i). We remind that m is odd and (cf. 2.21) So that, by using Theorem 3, (i) and (1.8), we obtain

S(m) ≡ S A (m, k)(mod 2 k+1 ). It is obvious from (3.6) that if γ > k then S A (m, k) ≡ 0(mod 2 k+1 ). So that from (1.8), S A (m, k) = 0 and 2 h m ∈ A, for all h, 0 ≤ h ≤ k. To prove that 2 k 31m / ∈ A, it
2 k mχ(A, 2 k m) ≡ 2 k Z(m)(mod 2 k+1 ).
Since both m and Z(m) are odd, we get χ(A, 2 k m) ≡ 1( mod 2), which shows that 2 k m ∈ A. Once again, to prove that 2 k 31m ∈ A, it suffices to use this last result and (2.40) modulo 2 k+1 .

Proof of Theorem 3, (iii). Let us set

k = γ + r, r ≥ 1. (3.6) and (2.21) give mS A (m, k) ≡ 2 γ Z(m)(mod 2 γ+r+1 ). (3.7)
So that, by using Theorem 3, (i) and (ii), we get

m(2 γ + 2 γ+1 χ(A, 2 γ+1 m) + . . . + 2 γ+r χ(A, 2 γ+r m)) ≡ 2 γ Z(m)(mod 2 γ+r+1 ),
which reduces to

m(1 + 2χ(A, 2 γ+1 m) + . . . + 2 r χ(A, 2 γ+r m)) ≡ Z(m)(mod 2 r+1 ).
By observing that 2 γ+r m ∈ A if and only if l = 1 + 2χ(A, 2 γ+1 m) + . . . + 2 r χ(A, 2 γ+r m) is an odd integer in S r , we obtain

2 γ+r m ∈ A ⇐⇒ m ≡ l -1 Z(m) (mod 2 r+1 ), l ∈ S r .
To prove the similar result for 2 γ+r 31m, one uses the same method and (2.40) modulo 2 k+1 .

4 The counting function.

In Theorem 4 below, we will determine an asymptotic estimate to the counting function A(x) (cf. (1.2)) of the set A = A(1 + z + z 3 + z 4 + z 5 ). The following lemmas will be needed. Lemma 3. Let K be any positive integer and x ≥ 1 be any real number. We have

| {n ≤ x : gcd(n, K) = 1} |≤ 7 ϕ(K) K x,
where ϕ is the Euler function.

Proof. This is a classical result from sieve theory : see Theorems 3 -5 of [START_REF] Halberstam | Sieve methods[END_REF]. Lemma 4. (Mertens's formula) Let θ and η be two positive coprime integers. There exists an absolute constant C 1 such that, for all x > 1,

π(x; θ, η) = p≤x, p≡θ( mod η) (1 - 1 p ) ≤ C 1 (log x) 1 ϕ(η) .
Proof. For θ and η fixed, Mertens's formula follows from the Prime Number Theorem in arithmetic progressions. It is proved in [START_REF] Ben Saïd | On the counting function of the sets of parts such that the partition function takes even values for n large enough[END_REF] that the constant C 1 is absolute. Lemma 5. For i ∈ {2, 3, 4}, let

K i = K i (x) = p≤x, ℓ(p)∈{0,i} p = p≤x, p∈P 0 ∪Pi p,
where ℓ, P 0 and P i are defined by (2.15)-(2.16). Then for x large enough,

| {n : 1 ≤ n ≤ x, gcd(n, K i ) = 1} |= O x (log x) 1 3 
.

Proof. By Lemma 3 and (2.16), we have

| {n : n ≤ x, gcd(n, K i ) = 1} |≤ 7x ϕ(K i ) K i = 7x 0≤j≤4, τ ∈{0,i} p≤x, p≡2 j 3 τ ( mod 31) (1 - 1 p ).
So that by Lemma 4, for all i ∈ {2, 3, 4} and x large enough,

| {n : n ≤ x, gcd(n, K i ) = 1} |≤ 7C 10 1 x (log x) 10 ϕ(31) = O x (log x) 1 3 
. Lemma 6. Let r, u ∈ N 0 , ℓ and α ′ be the functions defined by (2.15) and (3.3), ω j be the additive function given by (2.18). We take ξ to be a Dirichlet character modulo 2 r+1 with ξ 0 as principal character and we let ̺ be the completely multiplicative function defined on primes p by

̺(p) = 0 if ℓ(p) = 0 or p = 31 1 otherwise. (4.1) 
If y and z are respectively some 2 u -th and 12-th roots of unity in C, and if x is a real number > 1, we set

S y,z,ξ (x) = 2 ω 3 (n) n≤x ̺(n)ξ(n)y ω 2 (n)+ω 4 (n) z α ′ (n) . (4.2) 
Then, when x tends to infinity, we have

• If ξ = ξ 0 , S y,z,ξ (x) = O x log log x (log x) 2 . (4.3) 
• If ξ = ξ 0 , S y,z,ξ 0 (x) = x (log x) 1-fy,z(1) H y,z,ξ 0 (1)C y,z Γ (f y,z (1)) + O log log x log x , (4.4) 
where Γ is the Euler gamma function,

f y,z (s) = 1 ϕ(31) 1≤j≤5 p, ℓ(p)=j g j,y,z (s), (4.5) 
g 1,y,z (s) = z 8 , g 2,y,z (s) = yz 7 , g 3,y,z (s) = z 6 2 s , g 4,y,z (s) = yz 5 , g 5,y,z (s) = z 4 , (4.6) 
H y,z,ξ (s) = 1≤j≤5 p, ℓ(p)=j 1 + g j,y,z (s)ξ(p) p s -z -2j ξ(p) 1 - ξ(p) p s g j,y,z (s) 
,

C y,z = 1≤j≤5    p, ℓ(p)=j (1 - 1 p ) -g j,y,z (4.7) 
p

(1 - 1 p ) g j,y,z (1) 30  
  . (4.8) 
Proof. The evaluation of such sums is based, as we know, on the Selberg-Delange method. In [START_REF] Saïd | Sur une application de la formule de Selberg-Delange[END_REF], one finds an application towards direct results on such problems. In our case, to apply Theorem 1 of that paper, one should start with expanding, for complex number s with Rs > 1, the Dirichlet series

F y,z,ξ (s) = n≥1 ̺(n)ξ(n)y ω 2 (n)+ω 4 (n) z α ′ (n) (2 ω 3 (n) n) s
in an Euler product given by

F y,z,ξ (s) = 1≤j≤5 p, ℓ(p)=j 1 + ∞ m=1 ξ(p m )y ω 2 (p m )+ω 4 (p m ) z α ′ (p m ) (2 ω 3 (p m ) p m ) s = 1≤j≤5 p, ℓ(p)=j 1 + g j,y,z (s)ξ(p) p s -z -2j ξ(p) ,
which can be written

F y,z,ξ (s) = H y,z,ξ (s) 1≤j≤5 p, ℓ(p)=j 1 - ξ(p) p s -g j,y,z (s) 
, where g j,y,z (s) and H y,z,ξ (s) are defined by (4.6) and (4.7). To complete the proof of Lemma 6, one has to show that H y,z,ξ (s) is holomorphic for Rs > 1 2 and, for y and z fixed, that H y,z,ξ (s) is bounded for Rs ≥ σ 0 > 1 2 , which can be done by adapting the method given in [START_REF] Saïd | Sur une application de la formule de Selberg-Delange[END_REF] (Preuve du Theorème 2, p. 235). Lemma 7. We keep the above notation and we let G be the set of integers of the form n = 2 ω 3 (m) m with the following conditions :

-m odd and gcd(m, 31) = 1, -m = m 1 m 2 m 3 m 4 m 5 , where all prime factors p of m i satisfy ℓ(p) = i.

If G(x) is the counting function of the set G then, when x tends to infinity,

G(x) = Cx (log x) 1/4 1 + O log log x log x , (4.9) 
where Proof of Lemma 7. We apply Lemma 6 with y = z = 1, ξ = ξ 0 and remark that G(x) = S 1,1,ξ 0 (x). By observing that (1

C = H 1,1,ξ 0 (1)C 1,1 Γ (f 1,1 (1) 
+ 1 p-1 )(1 -1 p ) = 1, we have H 1,1,ξ 0 (1) = p∈P 3 1 + 1 2(p -1) 1 - 1 p 1 2 = p∈P 3 1 - 1 2p 1 - 1 p -1 2 ≍ 1.000479390466, C 1,1 = lim x→∞ p∈P 1 ∪P 2 ∪P 4 ∪P 5 , p≤x 1 - 1 p -1 p∈P 3 , p≤x 1 - 1 p -1 2 p≤x 1 - 1 p 3 4
≍ 0.75410767606.

The numerical value of the above Eulerian products has been computed by the classical method already used and described in [START_REF] Saïd | Sur une application de la formule de Selberg-Delange[END_REF]. Since Γ (f 1,1 (1)) = Γ( 3 4 ) = 1.225416702465..., we get (4.10). Lemma 8. We keep the notation introduced in Lemmas 6 and 7. If (y, z) ∈ {(1, 1), (-1, -1)}, we have

S y,z,ξ 0 (x) = C x (log x) 1/4 1 + O log log x log x , (4.11) 
while, if (y, z, ξ) / ∈ {(1, 1, ξ 0 ), (-1, -1, ξ 0 )}, we have

S y,z,ξ (x) = O r x (log x) 1/4+2 -2u-3 .
(4.12)

Proof. For y = z = 1, Formula (4.11) follows from Lemma 7. For y = z = -1 (which does not occur for u = 0), it follows from (4.4) and by observing that the values of g j,y,z (s), f y,z (s), H y,z,ξ (s), C y,z do not change when replacing y by -y and z by -z. Theorem 4. Let A = A(1 + z + z 3 + z 4 + z 5 ) be the set given by (1.3) and A(x) be its counting function. When x → ∞, we have

A(x) ∼ κ x (log x) 1 4 
, where κ = 74 31 C = 1.469696766... and C is the constant of Lemma 7 defined by (4.10).

Proof of Theorem 4. Let us define the sets A 1 , A 2 , A 3 and A 4 containing the elements n = 2 k m (m odd) of A with the restrictions :

A 1 : ω 3 (m) = 0 and ω 2 (m) + ω 4 (m) = 0 A 2 : ω 3 (m) = 0 and ω 2 (m) = ω 4 (m) = 0 A 3 : ω 3 (m) = 0 and ω 2 (m) + ω 4 (m) = 0 A 4 : ω 2 (m) = ω 3 (m) = ω 4 (m) = 0.
We have

A(x) = A 1 (x) + A 2 (x) + A 3 (x) + A 4 (x). (4.14) 
Further, for i = 2, 3, 4, it follows from Lemma 5 that

A i (x) = O x (log x) 1 3
and therefore

A(x) = A 1 (x) + O x (log x) 1 3 
.

(4.15)

Now, we split A 1 in two parts B and B by putting in B the elements n ∈ A 1 which are coprime with 31 and in B the elements n ∈ A 1 which are multiples of 31. Let us recall that, from Remark 2, no element of A is a multiple of 31 2 . Therefore,

A 1 (x) = B(x) + B(x) (4.16) with B(x) = n=2 k m∈A 1 , n≤x ρ(m), B(x) = n=2 k 31m∈A 1 , n≤x ρ(m). ( 4 

.17)

Let us consider B(x) ; the case of B will be similar. We define 

ν i = v 2 (E i ) -1 =    -1 if i ≡ 0, 1,
E i = 2 -1-ν i E i . (4.19) In view of Theorem 2 (i), if i = α ′ (m) mod 12 then γ(m) -ω 3 (m) = ν i . (4.20)
Further, an element n = 2 k m (m odd) belonging to A 1 is said of index r ≥ 0 if k = γ(m) + r. For r ≥ 0 and 0 ≤ i ≤ 11,

T (i) r (x) = n=2 γ(m)+r m∈A 1 , n≤x α ′ (m)≡i (mod 12) ρ(m) = n=2 γ(m)+r m∈A 1 , 2 ω 3 (m) m≤2 -r-ν i x α ′ (m)≡i (mod 12)
ρ(m) (4.21) will count the number of elements of A 1 up to x of index r and satisfying α ′ (m) ≡ i (mod 12), so that 

B(x) = r≥0 11 i=0 T (i) r (x). ( 4 
T (i) r (x) ≤ G(2 1-r x) (4.24)
with G defined in Lemma 7. Moreover, from Lemma 7, there exists an absolute constant K such that, for x ≥ 3, 

G(x) ≤ K x (log x) 1 4 • (4.25) Now, let R be a large but fixed integer ; R ′ is defined in terms of x by 2 R ′ -1 ≤ √ x < 2 R ′ and R" = log x log 2 . Since T (i) r (x) is a non-negative integer, (4.23) implies that T (i) r (x) = 0 for r > R". If x is large enough, R < R ′ < R ′′ holds. Setting B R (x) = R r=0 11 i=0 T (i) r (x), ( 4 
T (i) r (x), S" = R" r=R ′ +1 11 i=0 T (i) r (x).
The definition of R ′ and (4.23) yield

S" ≤ R" r=R ′ +1 x 2 r ≤ ∞ r=R ′ +1 x 2 r = x 2 R ′ ≤ √ x,
while (4.24), (4.25) and the definition of R ′ give

S ′ ≤ R ′ r=R+1 G x 2 r-1 ≤ R ′ r=R+1 2Kx 2 r log x 2 R ′ -1 1 4 ≤ 2 5 4 Kx (log x) 1 4 R ′ r=R+1 1 2 r ≤ 3Kx 2 R (log x) 1 4 
, so that, for x large enough, we have

0 ≤ B(x) -B R (x) ≤ √ x + 3Kx 2 R (log x) 1 4 
• (4.27)

We now have to evaluate T (i) r (x) ; we shall distinguish two cases, r = 0 and r ≥ 1.

Calculation of T

(i) 0 (x). From (4.21), we have

T (i) 0 (x) = n=2 γ(m) m∈A 1 , n≤x α ′ (m)≡i (mod 12) ρ(m) = n=2 γ(m) m∈A, n≤x, ω 3 =0, ω 2 +ω 4 =0 α ′ (m)≡i (mod 12)
ρ(m).

From Theorem 3, we know that 2 γ(m) m ∈ A. Hence,

T (i) 0 (x) = 2 γ(m) m≤x, ω 3 =0, ω 2 +ω 4 =0 α ′ (m)≡i (mod 12) ρ(m),
which, by use of (4.20), gives

T (i) 0 (x) = 2 ω 3 (m) m≤2 -ν i x, ω 3 =0, ω 2 +ω 4 =0 α ′ (m)≡i (mod 12)
ρ(m).

But, at the cost of an error term O

x

(log x) 1 3 
, Lemma 5 allows us to remove the conditions ω 3 = 0, ω 2 +ω 4 = 0, and to get from the second part of Lemma 9, From (4.21), it follows that ρ(m). Now, by Theorem 3, we know that 2 γ(m)+r m belongs to A if there is some l ∈ S r = {2 r + 1, ..., 2 r+1 -1} such that m ≡ l -1 Z(m) mod 2 r+1 . Note that the order of 3 modulo 2 r+1 is 2 r-1 if r ≥ 2 and 2 r if r = 1. We choose u = r + 1 so that ω 2 + ω 4 ≡ λ (mod 2 r+1 ) implies 3 ⌈ λ 2 -1⌉ ≡ 3 ⌈ ω 2 +ω 4 2 -1⌉ (mod 2 r+1 ). Therefore, we have

T (i) 0 (x) = G i,0,0,0,1 x 2 ν i + O x (log x) 1 3 = C 12 x 2 ν i (log x) 1 4 1 + O 1 (log x) 1/12 . ( 4 
T (i) r (x) =
T (i) r (x) = l∈Sr 2 r+1 -1 λ=0 
2 ω 3 (m) m≤2 -ν i -r x, ω 3 =0, ω 2 +ω 4 =0 α ′ (m)≡i (mod 12), ω 2 +ω 4 ≡λ (mod 2 r+1 )

m≡l -1 3 ⌈ λ 2 -1⌉ E i (mod 2 r+1 ) ρ(m).
As in the case r = 0, we can remove the conditions ω 3 = 0 and ω 2 + ω 4 = 0 in the last sum by adding a O

x (log x) Cx (log x)

1 4 3 2 - 1 2 R 1 + O 1 (log x) 2 -2R-5
.

By making R going to infinity, the above equality together with (4.27) show that B(x) ∼ 37 16

Cx (log x)

1 4
, x → ∞. (4.30)

In a similar way, we can show that B(x) defined in (4.17 

Numerical computation of A(x).

There are three ways to compute A(x). The first one uses the definition of A and simultaneously calculates the number of partitions p(A, n) for n ≤ x ; it is rather slow. The second one is based on the relation (1.10) and the congruences (2.19) and (2.23) satisfied by σ(A, n). The third one calculates ω j (n), 0 ≤ j ≤ 5, in view of applying Theorem 1. The two last methods can be encoded in a sieving process

The following table displays the values of A(x), A 1 (x), ..., A 4 (x) as defined in (4.14) and also c(x) = A(x)(log x)

1 4
x , c 1 (x) = A 1 (x)(log x) 1 4

x .

It seems that c(x) and c 1 (x) converge very slowly to κ = 1.469696766 . . ., which is impossible to guess from the table.

x A(x) c(x) A 1 (x) c 1 (x) A 2 (x) A 3 (x) A 4 (x) 
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  ) which, by Möbius inversion formula, gives mS A (m, k) = denotes the radical of m with 1 = 1.

  and not a multiple of 31, then m ∈ A if and only if 31m ∈ A.

Theorem 2 .

 2 k≥0 χ(A, 31 • 2 k ) 2 k = S(31) = y = 2 2 + 2 5 + 2 11 + ... of the equation 31 5 y 6 + 31 5 y 5 + 13 • 31 4 y 4 + 91 • 31 3 y 3 + 364 • 31 2 y 2 + 796 • 31y + 752 = 0, since, from (2.53) with m = 1, we have 31S(31) = -5 -U 0 , so that S(31) = 5 + U 0 1 -32 = (1 + 4 + U 0 )(1 + 2 5 + 2 10 + ...) = 2 2 + 2 5 + 2 11 + ... Let m = 1 be an odd integer not divisible by any prime p ∈ P 0 (cf. (2.16)) neither by 31 2 . Then the sum S(m) defined by (2.20) does not vanish. So we may introduce the 2-adic valuation of S(m) : γ = γ(m) = v 2 (S(m)).(3.1)

  suffices to use this last result and (2.40) modulo 2 k+1 . Proof of Theorem 3, (ii). If γ = k then the same arguments as above show that mS A (m, k) ≡ 2 k Z(m)(mod 2 k+1 ).

H 1 , 1 ,

 11 ξ 0 (1), C 1,1 and f 1,1 (1) are defined by (4.7),(4.8) and (4.5).

Since ν i ≥ - 1 ,

 1 .22) Since γ(m) ≥ 0, from the first equality in (4.21), each n counted in T (i) r (x) is a multiple of 2 r , hence the trivial upper bound the second equality in (4.21) implies 11 i=0

  .26) from (4.22), we have B(x) -B R (x) = S ′ + S",

r 2 -

 2 (x) for r ≥ 1. Under the conditions ω 3 = 0 and ω 2 + ω 4 = 0, from (3.6), (2.39), (3.3), (4.19) and (4.20), we get Z(m) = 3 ⌈ ω 2 +ω 4 1⌉ E α ′ (m) .

  n=2 γ(m)+r m∈A, n≤x, ω 3 =0, ω 2 +ω 4 =0 α ′ (m)≡i (mod 12)

  (4.16) and (4.15), completes the proof of Theorem 4 with

  4 -11y 3 + 44y 2 -36y + 32.Note that R(y)5 is the resultant in z of φ 31 (z) = 1 + z + ... + z 30 and y + z + z 2 + z 4 + z 8 + z 16 .

	Let us set	
				θ = U 0 = 1 + 2 + 2 2 + 2 3 + 2 4 + 2 7 + 2 10 + ...
	It turns out that the Galois group of R(y) is cyclic of order 6 and therefore the
	other roots U 1 , ..., U 5 of R(y) are polynomials in θ. With Maple, by factorizing
	R(y) on Q[θ] and using the values of u 11,j , we get
					U 0 = θ ≡ 1183 (mod 2 11 )
		U 1 =	1 32	(3θ 5 + 5θ 3 -36θ 2 + 84θ) ≡ 1598 (mod 2 11 )
		U 2 =	1 32	(-3θ 5 -5θ 3 + 20θ 2 -100θ) ≡ 1554 (mod 2 11 )
		U 3 =	1 32	(-θ 5 -7θ 3 + 12θ 2 -44θ + 32) ≡ 845 (mod 2 11 )
	U 4 =	1 32	(-θ 5 + 4θ 4 + θ 3 + 24θ 2 -68θ + 96) ≡ 264 (mod 2 11 )
	U 5 =	1 16	(θ 5 -2θ 4 + 3θ 3 -10θ 2 + 48θ -48) ≡ 701 (mod 2 11 ).	(2.13)

Let us define M y,z = ℜ(f y,z (1)) = 1 6 ℜ(z 6 (z 2 + z -2 + 1 2 + y(z + z -1 ))).

When ξ = ξ 0 , (4.3) implies (4.12) while, if ξ = ξ 0 , it follows from (4.4) and from the inequality to be proved

To show (4.13), let us first recall that z is a twelfth root of unity.

for all u ≥ 0, which proves (4.13).

If z = 1 and y = 1 (which implies u ≥ 1), we have

and

• If z = -1 and y = -1, (4.13) follows from the preceding case by observing that f y,z (1) = f -y,-z (1), which completes the proof of (4.13).

Lemma 9. Let G be the set defined in Lemma 7, ω j and α ′ be the functions given by (2.18) and (3.3). For 0 ≤ j ≤ 11, r, u, λ, t ∈ N 0 such that t is odd, we let G j,r,u,λ,t be the set of integers n = 2 ω 3 (m) m in G with the following conditions :

-

). If ρ is the function given by (4.1), the counting function G j,r,u,λ,t (x) of the set G j,r,u,λ,t is equal to

If u ≥ 1 and λ ≡ j (mod 2), G j,r,u,λ,t is empty while, if λ ≡ j (mod 2), when x tends to infinity, we have

where C is the constant given by (4.10).

If u = 0, then

By using the relations of orthogonality :

In the above triple sums, the main contribution comes from S 1,1,ξ 0 (x) and S -1,-1,ξ 0 (x), and the result follows from (4.11) and (4.12).

If u = 0, we have G j,r,0,0,t (x) = 1 12 • 2 r ξ mod 2 r+1 11 j 2 =0 ξ(t)µ -jj 2 S 1,µ j 2 ,ξ (x) and, again, the result follows from Lemma 8.