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Model theoretic forcing in analysis

Introduction

In this paper we introduce a framework of model theoretic forcing for metric structures, i.e., structures based on metric spaces. We use the language of infinitary continuous logic, which we define below. This is a variant of finitary continuous logic which is exposed in [BU] or [START_REF] Ben Yaacov | Model theory for metric structures, Model theory with Applications to Algebra and Analysis[END_REF].

The model theoretic forcing framework introduced here is analogous to that developed by Keisler [Kei73] for structures of the form considered in first-order model theory.

The paper concludes with an application to separable quotients of Banach spaces. The long standing Separable Quotient Problem is whether for every nonseparable Banach space X there exists a operator T : X → Y such that T (X) is a separable, infinite dimensional Banach space. We prove the following result (Theorem 5.4): If X is an infinite dimensional Banach space and T : X → Y is a surjective operator with infinite dimensional kernel, then there exist Banach spaces X, Ŷ and a surjective operator T : X → Ŷ such that (i) X has density character ω 1 , (ii) The range of T is separable, (iii) (X, Y, T ) and ( X, Ŷ , T ) are elementarily equivalent as metric structures.

The paper is organized as follows. In Section 1 we introduce the syntax that will be used in the paper. In Section 2, we introduce model theoretic forcing for metric structures. Section 3 we focus our attention on two particular forcing properties. These properties are used in Section 4 to prove the general Omitting Types Theorem. The last section, Section 5, is devoted to the aforementioned application to separable quotients.

For the exposition of the material we focus on one-sorted languages. However, as the reader will notice, the results presented here hold true, mutatis mutandi, for multi-sorted contexts. In fact, the structures used in the last section are multi-sorted.

The authors are grateful to Yi Zhang for his encouragement and patience.

Preliminaries

Recall that if f : (X, d) → (X ′ , d ′ ) is a mapping between two metric spaces, then f is uniformly continuous if and only if there exists a mapping δ : (0, ∞) → (0, ∞] such that for all x, y ∈ X and ǫ > 0, d(x, y) < δ(ǫ) =⇒ d ′ (f (x), f (y)) ≤ ǫ.

(1)

If (1) holds, we say that δ is a uniform continuity modulus and that f respects δ. The choice of strict and weak inequalities here is so that the property of respecting δ be preserved under certain important constructions (e.g., completions and ultraproducts).

Let δ ′ : (0, ∞) → (0, ∞] be any mapping, and define:

δ(ǫ) = sup{δ ′ (ǫ ′ ) | 0 < ǫ ′ < ǫ}. (2)
Then δ and δ ′ are equivalent as uniform continuity moduli, in the sense that a function f respects δ if and only if it respects δ ′ . In addition we have

δ(ǫ) = sup{δ(ǫ ′ ) | 0 < ǫ ′ < ǫ}, (3) 
i.e., δ is increasing and continuous on the left. As a consequence, (1) is equivalent to the apparently stronger version:

d(x, y) < δ(ǫ) =⇒ d ′ (f (x), f (y)) < ǫ. (4) 
From this point on, when referring to a uniform continuity modulus δ, we mean one that satisfies (3).

In this section we introduce infinitary continuous formulas. For a general text regarding continuous structures and finitary continuous first order formulas we refer the reader to Sections 2 and 3 of [BU] or Sections 2-6 of [START_REF] Ben Yaacov | Model theory for metric structures, Model theory with Applications to Algebra and Analysis[END_REF].

Recall that a continuous signature L consists of the following data:

• For each n, a set of n-ary function and predicate symbols.

• A distinguished binary predicate symbol d.

• For each n-ary symbol s and i < n, a uniform continuity modulus for the ith argument denoted δ s,i . A continuous L-structure is a set M equipped with interpretations of the symbols of the language:

• Each n-ary function symbol is interpreted by an n-ary function:

f M : M n → M.
• Each n-ary predicate symbol is interpreted by a continuous n-ary predicate:

P M : M n → [0, 1].
• The interpretation d M of the distinguished symbol d is a complete metric.

• For each n-ary symbol s and i < n, the interpretation s M , viewed as a function of its ith argument, respects the uniform continuity modulus δ s,i .

It is proved in [BU] that the following system of connectives is full :

x → ¬x, x → x 2 , (x, y) → x -. y := max(x -y, 0)
This means that for every n ≥ 1, the family of functions from [0, 1] n → [0, 1] which can be written using these three operations is dense in the class of all continuous functions [0, 1] n → [0, 1]. For the purposes of this paper (namely, to simplify the treatment of forcing, in Section 2), it is convenient to use the connective ∔ instead of -. . Note that this causes no loss in expressive power, since x -. y = ¬(¬x ∔ y).

In this paper we extend the class of first-order continuous formulas by considering formulas that may contain the infinitary connectives and , where for a set of formulas Φ, ϕ∈Φ ϕ and ϕ∈Φ ϕ stand for sup{ϕ | ϕ ∈ Φ}ϕ and inf{ϕ | ϕ ∈ Φ}, respectively. Because of the infinitary nature of this language, in order to form formulas with these connectives, one needs to be particularly careful about the uniform continuity moduli of the terms and formulas with respect to each variable, denoted δ τ,x and δ ϕ,x , respectively; thus, we have the following definition.

Definition 1.1. Let L be a continuous signature. We define the formulas of L ω 1 ,ω . Simultaneously, for each variable x, each term τ and each formula ϕ of L ω 1 ,ω we define uniform continuity moduli δ τ,x and δ ϕ,x . Both definitions are inductive.

• A variable is a term, with δ x,x = id and δ x,y = ∞ for y = x.

• If f is an n-ary function symbol and τ 0 , . . . , τ n-1 are terms, then f τ 0 . . . τ n-1 is a term. If τ is a term of this form,

δ τ,x (ǫ) = sup ǫ 0 +...+ǫ n-1 <ǫ min{δ τ i ,x • δ f,i (ǫ i ) | i < n}.
Here we follow the convention that δ(∞) = ∞. • If P is an n-ary predicate symbol and τ 0 , . . . τ n-1 are terms, then P τ 0 . . . τ n-1 is a formula (called an atomic formula). The definition of δ P τ 0 ...τ n-1 ,x is formally identical that of δ f τ 0 ...τ n-1 ,x . • If ϕ and ψ are formulas then so are ¬ϕ, 1 2 ϕ and ϕ ∔ ψ. We have:

δ ¬ϕ,x (ǫ) = δ ϕ,x (ǫ) δ1 2 ϕ,x (ǫ) = δ ϕ,x (2ǫ) δ ϕ∔ψ,x (ǫ) = sup ǫ 0 +ǫ 1 <ǫ min{δ ϕ,x (ǫ 0 ), δ ψ,x (ǫ 1 )}.
• Let Φ be a countable set of formulas in a finite tuple of free variables x. For each variable

x, let δ ′ Φ,x = inf ϕ∈Φ δ ϕ,x : (0, ∞) → [0, ∞]. If δ ′ Φ,x ( 
ǫ) > 0 for all ǫ > 0 and x ∈ x, then Φ is a formula, also denoted ϕ∈Φ ϕ. Its uniform continuity moduli are given by δ Φ,x (ǫ) = sup{δ ′ Φ,x (ǫ ′ ) : 0 < ǫ ′ < ǫ}, so that (3) is satisfied.

• If ϕ is a formula and x a variable, then inf x ϕ is a formula. For y = x we have δ infx ϕ,y = δ ϕ,y , while δ infx ϕ,x = ∞.

Notation 1.2. Rather than putting and sup in our language we define them as abbreviations:

Φ := ¬ ϕ∈Φ ¬ϕ sup x ϕ := ¬ inf x ¬ϕ.
If M is an L-structure and ϕ(x 0 , . . . , x n-1 ) ∈ L ω 1 ,ω , one constructs the interpretation ϕ M : M n → [0, 1] in the obvious manner. By induction on the structure of ϕ one also shows that for each variable x, ϕ M is uniformly continuous in x respecting δ ϕ,x .

Finitary continuous first order formulas, as defined in [BU] and [START_REF] Ben Yaacov | Model theory for metric structures, Model theory with Applications to Algebra and Analysis[END_REF], are constructed in the same manner, with the exclusion of the infinitary connectives and (i.e., only using the connectives ¬, 1 2 , ∔, or equivalently ¬, 1 2 , -. ). We observe that ϕ ∧ ψ is equivalent to ϕ -. (ϕ -. ψ), so finitary instances of and are allowed there as well. The set of all such formulas is denoted L ω,ω .

Definition 1.3. Let L be a continuous signature and let ϕ be an L ω 1 ,ω -formula. The set of subformulas of ϕ denoted sub(ϕ), is defined inductively as follows.

• If P is a predicate symbol and τ 0 , . . . τ n-1 are terms, then sub(P τ 0 . . . τ n-1 ) = {P τ 0 . . . τ n-1 }. • sub(¬ϕ) = {¬ϕ} ∪ sub(ϕ) and sub(

1 2 ϕ) = { 1 2 ϕ} ∪ sub(ϕ). • sub(ϕ ∔ ψ) = { ϕ ∔ ψ } ∪ sub(ϕ) ∪ sub(ψ). • sub( ϕ∈Φ ϕ) = { ϕ∈Φ ϕ } ∪ ϕ∈Φ sub(ϕ). • sub(inf x ϕ) = { inf x ϕ } ∪ sub(ϕ). L ω 1 ,ω need not be countable if L is countable. Nevertheless, it is often sufficient to work with countable fragments of L ω 1 ,ω : Definition 1.4. A fragment of L ω 1 ,ω is subset of L ω 1 ,ω
which contains all atomic formulas and is closed under subformulas and substitution of terms for free variables.

Remark 1.5. Every countable subset of L ω 1 ,ω is contained in a countable fragment of L ω 1 ,ω .
For the next three sections (that is, the rest of the paper minus the last section), L will denote a fixed countable continuous signature, and L A will denote a fixed countable fragment of L ω 1 ,ω . We will let C = {c i | i < ω} be a set of new constant symbols, and

L(C) = L ∪ C. An L(C)-structure M will be called canonical if the set {c M i | i < ω} is dense in M.
By L A (C) we will denote the smallest countable fragment of L ω 1 ,ω (C) that contains L A ; notice that L A (C) is obtained allowing closing L A under substitution of constant symbols from C for free variables.

We will also use the following notation:

• The set of all sentences in L A (C) will be denoted L s A (C). • The set of all atomic sentences in L A (C) will be denoted L as A (C). • The set of variable-free terms in L(C) will be denoted T(C).

Forcing

Definition 2.1. A forcing property for L A is a triplet (P, ≤, f ) where (P, ≤) is a partially ordered set. The elements of P are called conditions. For each condition p, f assigns a mapping f p : L as A (C) → [0, 1] satisfying the following conditions. (i) p ≤ q implies f p ≤ f q i.e., f p (ϕ) ≤ f q (ϕ) for all ϕ ∈ L as A (C). (ii) Given p ∈ P, ǫ > 0, τ, σ ∈ T(C), and an atomic L(C)-formula ϕ(x) there are q ≤ p and c ∈ C such that:

f q (d(τ, c)) < ǫ, f q (d(τ, σ)) < f p (d(σ, τ )) + ǫ,
and if f p (d(τ, σ)) < δ ϕ,x (ǫ), f q (ϕ(σ)) < f p (ϕ(τ )) + ǫ.
For the rest of this section, (P, ≤, f ) will denote a fixed forcing property.

Definition 2.2. Let p ∈ P be a condition and ϕ ∈ L s A (C) a sentence. We define F p (ϕ) ∈ [0, 1] by induction on ϕ. For ϕ atomic,

F p (ϕ) = f p (ϕ). Otherwise, F p (¬ϕ) = ¬ inf q≤p F q (ϕ) F p ( 1 2 ϕ) = 1 2 F p (ϕ) F p (ϕ ∔ ψ) = F p (ϕ) ∔ F p (ψ) F p ( Φ) = inf ϕ∈Φ F p (ϕ) F p (inf x ϕ(x)) = inf c∈C F p (ϕ(c)).
If r ∈ R and F p (ϕ) < r we say that p forces that ϕ < r, in symbols p ϕ < r.

Remark 2.3. Let p ∈ P be a condition, ϕ ∈ L s A (C) a sentence, and r ∈ R. Then,

p ϕ < r ⇐⇒ f p (ϕ) < r, if ϕ is atomic p 1 2 ϕ < r ⇐⇒ p ϕ < 2r p ¬ϕ < r ⇐⇒ (∃s > 1 -r)(∀q ≤ p)(q ϕ < s) p (ϕ ∔ ψ) < r ⇐⇒ (∃s)(p ϕ < s and p ψ < r -s) p Φ < r ⇐⇒ (∃ϕ ∈ Φ)(p ϕ < r) p inf x ϕ(x) < r ⇐⇒ (∃c ∈ C)(p ϕ(c) < r).
Remark 2.4. The forcing relation can be defined inductively, without reference to the function F p (ϕ), by the list of equivalences in the preceding remark. One can then define

F p (ϕ) as inf{ r ∈ R | p ϕ < r }.
The following basic properties will be used many times.

Lemma 2.5. For all p, ϕ,

(i) F p (ϕ) ∈ [0, 1]. (ii) q ≤ p =⇒ F q (ϕ) ≤ F p (ϕ). (iii) F p (ϕ) + F p (¬ϕ) ≥ 1.
Proof. The first two items are by induction on the structure of ϕ. The last one follows directly from the definition.

2.5

Definition 2.6. We also define F w p by:

F w p (ϕ) = sup q≤p inf q ′ ≤q F q ′ (ϕ).
If r ∈ R and F w p (ϕ) < r we say that p weakly forces that ϕ < r, in symbols p w ϕ < r. By Lemma 2.5, F w p (ϕ) ≤ F p (ϕ). Remark 2.7. The weak forcing relation w can be defined without reference to the function F w p as follows: p w ϕ < r if and only if (∃s < r)(∀q ≤ p)(∃q ′ ≤ q)(q ′ ϕ < s). We can then define F w p (ϕ) as inf{ r | p w ϕ < r }.

Lemma 2.8.

Let p ∈ P, ϕ ∈ L s A (C) and r ∈ R. Then F w p (ϕ) = sup q≤p F w q (ϕ) = sup q≤p inf q ′ ≤q F w q ′ (ϕ).
Proof. That F w p (ϕ) = sup q≤p F w q (ϕ) follows easily from the definitions, and

sup q≤p F w q (ϕ) ≥ sup q≤p inf q ′ ≤q F w q ′ (ϕ) is immediate. Finally: sup q≤p inf q ′ ≤q F w q ′ (ϕ) = sup q≤p inf q ′ ≤q sup q ′′ ≤q ′ inf q ′′′ ≤q ′′ F q ′′′ (ϕ) ≥ sup q≤p inf q ′ ≤q inf q ′′′ ≤q ′ F q ′′′ (ϕ) = sup q≤p inf q ′ ≤q F q ′ (ϕ) = F w p (ϕ).

2.8

Proposition 2.9. The weak forcing function F w obeys the following inductive rules:

F w p (¬ϕ) = ¬ inf q≤p F w q (ϕ) F w p ( 1 2 ϕ) = 1 2 F w p (ϕ) F w p (ϕ ∔ ψ) = sup q≤p inf q ′ ≤q F w q ′ (ϕ) ∔ F w q ′ (ψ) F w p ( Φ) = sup q≤p inf q ′ ≤q inf ϕ∈Φ F w q ′ (ϕ) F w p (inf x ϕ(x)) = sup q≤p inf q ′ ≤q inf c∈C F w q ′ (ϕ(c)).
Proof. For ¬ϕ and 1 2 ϕ this follows from a straightforward calculation. For example:

F w p (¬ϕ) = sup q≤p inf q ′ ≤q F q ′ (¬ϕ) = sup q≤p inf q ′ ≤q ¬ inf q ′′ ≤q ′ F q ′ (ϕ) = ¬ inf q≤p sup q ′ ≤q inf q ′′ ≤q ′ F q ′ (ϕ) = ¬ inf q≤p F w q (ϕ),
For the other three, the inequality ≥ is obtained substituting the definition of F w p on the left hand side and using the fact that F p ≥ F w p . For ≤, we first use Lemma 2.8 to replace each occurrence of F w p on the left hand side with sup q<p inf q ′ ≤q F w q ′ . Thus, it will suffice to show that:

F w p (ϕ ∔ ψ) ≤ F w p (ϕ) ∔ F w p (ψ) F w p ( Φ) ≤ inf ϕ∈Φ F w p (ϕ) F w p (inf x ϕ(x)) ≤ inf c∈C F w p (ϕ(c)). For ∔ assume F w p (ϕ) = r and F w p (ψ) = s.
Then for all ǫ > 0 and for all q ≤ p there is q ′ 0 ≤ q such that F q ′ 0 (ϕ) < r + ǫ, and as q ′ 0 ≤ p there is q ′ ≤ q ′ 0 such that F q ′ (ψ) < s + ǫ. Then F q ′ (ϕ ∔ ψ) < r + s + 2ǫ, yielding F w q ′ (ϕ ∔ ψ) ≤ r + s. For Φ and inf x ϕ(x) it's a straightforward quantifier exchange argument, e.g.:

F w p ( Φ) = sup q≤p inf q ′ ≤q inf ϕ∈Φ F p (ϕ) ≤ inf ϕ∈Φ sup q≤p inf q ′ ≤q F p (ϕ) = inf ϕ∈Φ F w (ϕ).
2.9

Lemma 2.10. For all p ∈ P and τ : F w p (inf x d(τ, x)) = 0. Proof. If not then F w p (inf x d(τ, x)) = sup q≤p inf q ′ ≤q inf c∈C f p (d(τ, x)) > 0. But this contradicts the definition of forcing property.

2.10

Definition 2.11. A nonempty G ⊆ P is generic if:

(i) It is directed downwards, i.e., for all p, q ∈ G there is p ′ ∈ G such that p ′ ≤ p, q.

(ii) It is closed upwards, i.e., if p ∈ G and q ≥ p then q ∈ G.

(iii) For every ϕ ∈ L s A (C) and r > 1 there is p ∈ G such that

F p (ϕ) + F p (¬ϕ) < r. If G is a generic set and ϕ ∈ L s A (C) we define ϕ G = inf p∈G F p (ϕ).
Proposition 2.12. Every condition belongs to a generic set.

Proof. Fix p ∈ P. Let ( (r n , ϕ n ) : n < ω ) enumerate all pairs (r, ϕ), where r ∈ Q, r > 1, and ϕ ∈ L s A (C). Construct a sequence p 0 ≥ p 1 ≥ . . . ≥ p n ≥ . . . in P as follows. We start with p 0 = p. Assume p n has already been chosen. By definition

F pn (¬ϕ n ) + inf q≤pn F q (ϕ n ) = 1 < r n , so we can choose p n+1 ≤ p n such that F pn (¬ϕ n )+F p n+1 (ϕ n ) < r n , whereby F p n+1 (¬ϕ n ) + F p n+1 (ϕ n ) < r n . Define G = { q ∈ P | q ≥ p n for some n }.
Then G is generic, and p ∈ G.

2.12

Lemma 2.13. Let G be generic and ϕ ∈ L s A (C). Then ϕ G = inf p∈G F w p (ϕ).

Proof. The inequality ≥ is immediate since F w p (ϕ) ≤ F p (ϕ). For the other, assume ϕ G > inf p∈G F w p (ϕ), so there are ǫ > 0 and p ∈ G such that ϕ G -ǫ > F w p (ϕ). As G is generic there is q ∈ G such that F q (ϕ) + F q (¬ϕ) < 1 + ǫ, and as p ∈ G we may assume q ≤ p. We obtain

F w p (ϕ) ≥ inf q ′ ≤q F q ′ (ϕ) = 1 -F q (¬ϕ) > F q (ϕ) -ǫ ≥ ϕ G -ǫ > F w p (ϕ),
a contradiction.

2.13

Lemma 2.14.

If G is generic and ϕ ∈ L s A (C), then (¬ϕ) G = 1 -ϕ G . Proof. From Lemma 2.5 we have ϕ G + (¬ϕ) G ≥ 1, while ϕ G + (¬ϕ) G ≤ 1 follows from Definition 2.11.

2.14

Lemma 2.15. Let G be a generic set and τ, σ ∈ T(C). Then:

(i) For every ǫ > 0 there is c τ,ǫ,G ∈ C such that d(τ, c τ,ǫ,G ) G < ǫ. (ii) d(τ, σ) G = d(σ, τ ) G . (iii) For every atomic L(C)-formula ϕ(x), if d(τ, σ) G < δ ϕ,x (ǫ) then |ϕ(τ ) G -ϕ(σ) G | < ǫ.
Proof. For (i), observe that (inf x d(τ, x)) G = 0 by Lemma 2.10 and Lemma 2.13, so there is p ∈ G such that F p (inf x d(τ, x)) < ǫ, and thus there exists c ∈ C such that d(τ, c) G ≤ F p (d(τ, c)) < ǫ. The other two statements follow directly from Lemma 2.13 and the definition of forcing property.

2.15

Lemma 2.16. Let M G 0 be the term algebra T(C) equipped with the natural interpretation of the function symbols, and interpreting the predicate symbols by: P M G 0 (τ ) = P (τ ) G . Then M G 0 is a pre-L(C)-structure, and its completion M G is a canonical structure. Proof. First we use Lemma 2.15 to show that d M G 0 is a pseudometric. Symmetry is Lemma 2.15(ii). The triangle inequality follows from Lemma 2.15(iii), keeping in mind that δ d(x,σ),x = id. That d M G 0 (τ, τ ) = 0 follows from the triangle inequality and Lemma 2.15(i). Finally, by Lemma 2.15(iii), every symbol respects its uniform continuity modulus. Thus M G 0 is a pre-structure, and we can define M G to be its completion. That C M G is dense in M G now follows from Lemma 2.15(i).

2.16

Theorem 2.17. For all ϕ ∈ L s A (C) we have ϕ M G = ϕ G . Proof. By induction on ϕ:

(i) For ϕ atomic, this is immediate from the construction of M G . (ii) For 1 2 ϕ, ϕ ∔ ψ and Φ, this is immediate from the definition of forcing and the induction hypothesis. (iii) For ¬ϕ, this is immediate from Lemma 2.14 and the induction hypothesis. (iv) For inf x ϕ(x), it follows from the definition of forcing and the induction hypothesis that (inf

x ϕ) G = inf{ϕ(c) M G | c ∈ C}. Since C M G is dense in M G and ϕ(x) M G is uniformly continuous in x, the latter is equal to (inf x ϕ) M G .
2.17

The forcing Properties P(M) and P(M, Σ)

If M is class of L-structures, we denote by M(C) the class of all structures of the form (M, a c ) c∈C 0 , where M is in M and C 0 is a finite subset of C; such a structure is regarded naturally as an L(C 0 )-structure by letting a c be the interpretation of c in M, for each c ∈ C 0 .

Let Σ be a class of formulas of L A that contains all the atomic formulas and is closed under subformulas, and let Σ(C) denote the subset of L(C) obtained from formulas ϕ in Σ by replacing finitely many free variables of ϕ with constant symbols from C.

The forcing property P(M, Σ) is defined as follows. The conditions of P(M, Σ) are the finite sets of the form { ϕ 1 < r 1 , . . . , ϕ n < r n }, where ϕ 1 , . . . , ϕ n ∈ Σ(C) and there exist M ∈ M(C) such that ϕ M i < r i , for i = 1, . . . , n. The partial order ≤ on conditions is reverse inclusion, i.e., if p, q are conditions of P(M, Σ), then p ≤ q if and only p ⊇ q. If p is a condition of P(M ∆ , Σ) and ϕ is an atomic sentence of L(C), we define

f p (ϕ) = min{r ≤ 1 | ϕ < r ∈ p}, if {r ≤ 1 | ϕ < r ∈ p} = ∅, 1, otherwise.
When Σ is the set of all atomic L-formulas, the forcing property P(M, Σ) is denoted simply P(M).

The main result of this section is Proposition 3.4, below, which characterizes weak forcing for the forcing property P(M, Σ); for the proof, we need two lemmas. Definition 3.1. We extend the definition of f p above to all sentences of Σ(C):

H p (ϕ) = min{r ≤ 1 | ϕ < r ∈ p}, if {r ≤ 1 | ϕ < r ∈ p} = ∅, 1, otherwise.
We define H w p accordingly: H w p (ϕ) = sup q≤p inf p≤q H p (ϕ). Clearly if q ≤ p then H q (ϕ) ≤ H p (ϕ) and H w q (ϕ) ≤ H w p (ϕ), whereby for all p: H w p (ϕ) ≤ H p (ϕ). Lemma 3.2. For all p ∈ P(M, Σ) and ϕ ∈ Σ(C):

H w p (ϕ) = inf{r ∈ [0, 1] | (∀q ≤ p)(q ∪ {ϕ < r} ∈ P(M, Σ))} = sup{r ∈ [0, 1] | p ∪ {¬ϕ < 1 -r} ∈ P(M, Σ)} (Here inf ∅ = 1, sup ∅ = 0.)
Proof. The first equality is a mere rephrasing: H w p (ϕ) ≤ r if and only if inf q ′ ≤q H p (ϕ) ≤ r for all q ≤ p, i.e., if and only if q ∪ {ϕ < r} ∈ P(M, Σ) for all q ≤ p.

For the second equality: Assume first that q = p ∪ {¬ϕ < 1 -r} ∈ P(M, Σ). Then q ≤ p but q∪{ϕ < r} / ∈ P(M, Σ). This gives ≥. Now assume p∪{¬ϕ < 1-r} / ∈ P(M, Σ).

Then p ∪ {¬ϕ < 1 -r} cannot be realized in the given class. Thus, for every q ≤ p, as q can be realized, it is realized in a model where ϕ ≤ r. Thus q ∪ {ϕ < s} ∈ P(M, Σ) for all q ≤ p and s > r. This gives ≤.

3.2

Proposition 3.3. The functions H w p satisfy the properties stated for F w p in Lemma 2.8 and Proposition 2.9, i.e.:

H w p (ϕ) = sup q≤p H w q (ϕ) = sup q≤p inf q ′ ≤q H w q ′ (ϕ) H w p (¬ϕ) = ¬ inf q≤p H w q (ϕ) H w p ( 1 2 ϕ) = 1 2 H w p (ϕ) H w p (ϕ ∔ ψ) = sup q≤p inf q ′ ≤q H w q ′ (ϕ) ∔ H w q ′ (ψ) H w p ( Φ) = sup q≤p inf q ′ ≤q inf ϕ∈Φ H w q ′ (ϕ) H w p (inf x ϕ(x)) = sup q≤p inf q ′ ≤q inf c∈C H w q ′ (ϕ(c)). Proof.
The first property is proved precisely as in Lemma 2.8.

For ¬: it follows from Lemma 3.2 that H w p (¬ϕ) = ¬ inf q≤p H q (ϕ), and we conclude as in the proof of Proposition 2.9.

For 1 2 : observe that q ∪ {ϕ < r} ∈ P(M, Σ) if and only if q ∪ { 1 2 ϕ < 1 2 r} ∈ P(M, Σ) and apply Lemma 3.2.

For the last three we reduce as in the proof of Proposition 2.9 to showing that:

H w p (ϕ ∔ ψ) ≤ H w p (ϕ) ∔ H w p (ψ) H w p ( Φ) ≤ inf ϕ∈Φ H w p (ϕ) H w p (inf x ϕ(x)) ≤ inf c∈C H w p (ϕ(c)
). For ∔ this follows from Lemma 3.2. For and inf the quantifier exchange argument from proof of the corresponding items in Proposition 2.9 works here too.

3.3

Proposition 3.4. Suppose that p is a condition in the forcing property P(M, Σ) and σ is a sentence of Σ(C). Then F w p (σ) = H w p (σ). Proof. For atomic σ the equality is immediate. We then proceed by induction on σ, noting that Proposition 2.9 on the one hand and Proposition 3.3 on the other tell us that F w p and H w p obey the same inductive definitions.

3.4

Generic Models and sup inf-Formulas

Recall from Section 1 that the expressions Φ and sup x ϕ are regarded abbreviations of ¬ ϕ∈Φ ¬ϕ and ¬ inf x ¬ϕ respectively. Proposition 4.1. Let (P, ≤, f ) be a forcing property for L A (C) and let p ∈ P. Then

(i) F p ( Φ) = sup ϕ∈Φ F w p (ϕ). (ii) F p (sup x ϕ(x)) = sup c∈C F w p (ϕ(c)).
Proof. The proofs are straightforward applications of the definitions: for (i),

F p ( Φ) = F p (¬ ϕ∈Φ ¬ϕ) = ¬ inf q≤p F q ( ϕ∈Φ ¬ϕ) = ¬ inf q≤p inf ϕ∈Φ F q (¬ϕ) = ¬ inf q≤p inf ϕ∈Φ ¬ inf q ′ ≤q F q ′ (ϕ) = sup q≤p sup ϕ∈Φ inf q ′ ≤q F q ′ (ϕ) = sup ϕ∈Φ sup q≤p inf q ′ ≤q F q ′ (ϕ) = sup ϕ∈Φ F w p (ϕ),
and for (ii),

F p (sup x ϕ(x)) = F p (¬ inf x ¬ϕ(x)) = ¬ inf q≤p F q (inf x ¬ϕ(x)) = ¬ inf q≤p inf c∈C F q (¬ϕ(c)) = ¬ inf q≤p inf c∈C ¬ inf q ′ ≤q F q ′ (ϕ(c)) = sup q≤p sup c∈C inf q ′ ≤q F q ′ (ϕ(c)) = sup c∈C sup q≤p inf q ′ ≤q F q ′ (ϕ(c)) = sup c∈C F w q ′ (ϕ(c)).

4.1

Notation 4.2. If Φ is a finite set of formulas, say Φ = {ϕ 1 , . . . , ϕ n }, we write

ϕ 1 ∧ • • • ∧ ϕ n and ϕ 1 ∨ • • • ∨ ϕ n
as abbreviations of Φ and Φ, respectively.

Proposition 4.3. If (P, ≤, f ) is a forcing property for L A (C) and p ∈ P, then

F p (ϕ 1 ∨ • • • ∨ ϕ n ) = max i F w p (ϕ i ).
Proof. By Proposition 4.1.

4.3

Definition 4.4. Let Σ be a class of formulas of L A which contains all atomic formulas and is closed under subformulas. A sup inf-formula over Σ is an L A -formula of the form sup

x 1 . . . sup xm n<ω inf y 1 . . . inf y i(n) (σ n,1 (x, ȳn ) ∨ • • • ∨ σ n,j(n) (x, ȳn )),
where σ n,ν belongs to Σ for n < ω and ν = 1, . . . , j(n), x = x 1 , . . . , x m , and ȳn = y 1 , . . . , y i(n) .

Proposition 4.5. Let Σ be a class of formulas of L A which contains all atomic formulas and is closed under subformulas. Suppose that ϕ is a sup inf-formula over Σ, of the form

sup x 1 . . . sup xm n<ω inf y 1 . . . inf y i(n) (σ n,1 (x, ȳn ) ∨ • • • ∨ σ n,j(n) (x, ȳn )),
where σ n,ν belongs to Σ for n < ω and ν = 1, . . . , j(n), x = x 1 , . . . , x m , and ȳn = y 1 , . . . , y i(n) . Then, if (P, ≤, f ) is a forcing property for L A (C) and p ∈ P,

F p (ϕ) = sup c∈C m q≤p inf q ′ ≤q d∈C i(n) n<ω max 1≤ν≤j(n) F w q ′ ( σ n,ν (c, d) ).
Proof. We use Propositions 4.1 and 4.3 to compute F p (ϕ):

F p ( sup x 1 . . . sup xm n<ω inf y 1 . . . inf y i(n) (σ n,1 (x, ȳn ) ∨ • • • ∨ σ n,j(n) (x, ȳn ) )) = sup c∈C m F w p ( n<ω inf y 1 . . . inf y i(n) (σ n,1 (c, ȳn ) ∨ • • • ∨ σ n,j(n) (c, ȳn )) ) (by 4.1) = sup c∈C m sup q≤p inf q ′ ≤q F q ′ ( n<ω inf y 1 . . . inf y i(n) (σ n,1 (c, ȳn ) ∨ • • • ∨ σ n,j(n) (c, ȳn )) ) = sup c∈C m sup q≤p inf q ′ ≤q inf n<ω inf d∈C i(n) F q ′ ( σ n,1 (c, d) ∨ • • • ∨ σ n,j(n) (c, d) ) = sup c∈C m sup q≤p inf q ′ ≤q inf n<ω inf d∈C i(n) max 1≤ν≤j(n)
F w q ′ ( σ n,ν (c, d) ) (by 4.3).

4.5

Remark 4.6. If p is a condition in the forcing property P(M, Σ), then F w p (ϕ) = H w p (ϕ), by Proposition 3.4. Hence, if ϕ is as in Proposition 4.5,

F p (ϕ) = sup c∈C m q≤p inf q ′ ≤q d∈C i(n) n<ω max 1≤ν≤j(n) H w q ′ ( σ n,ν (c, d) ).
Recall (Section 1) that C denotes countable set of constants not in L and that L(C) = L∪C. As in Section 3, if M is a class of L-structures, M(C) denotes the class of structures of the form (M, a c ) c∈C 0 , where M is in M and C 0 is a finite subset of C. If Γ is a set of inequalities of the form ϕ < r, where ϕ is an L A (C)-formula and r is a real number, we will say that Γ is satisfiable in M if there exists a structure M in M(C) such that ϕ M < r for every inequality ϕ < r in Γ.

Let Σ be class of formulas of L A that contains all the atomic formulas and is closed under subformulas. A finite Σ-piece of M is a finite set p of inequalities of the form ϕ < r, where ϕ ∈ Σ, such that p that is satisfiable in M.

Corollary 4.7 (Omitting Types Theorem). Let ( ϕ n | n < ω ) be a sequence of Lformulas such that for each n < ω ϕ n is a sup inf-formula over Σ, of the form

sup x 1 . . . sup x m(n) ψ n (x 1 , . . . , x m(n) ),
where for each n < ω ψ n is of the form

k<ω inf y 1 . . . inf y i(n,k) (σ n,k,1 (x n , ȳn,k ) ∨ • • • ∨ σ n,k,j(n,k) (x n , ȳn,k )),
with xn = x 1 , . . . , x m(n) , and ȳn,k = y 1 , . . . , y i(n,k) , and let ( r n | n < ω ) be a sequence of real numbers such that for every finite Σ-piece p of M and every cn ∈ C m(n) , the set p ∪ {ψ n (c n ) < r n } is satisfiable in M. Then there exists a canonical L(C)-structure M such that ϕ M n ≤ r n for every n < ω. Proof. Let p be a condition in the forcing property P(M, Σ). Fix a condition q ≤ p, n < ω and cn

∈ C m(n) . Since q ∪ {ψ n (c n ) < r n } is satisfiable in M, there exist k < ω and dn,k ∈ C i(n,k) such that q ∪ { σ n,k,1 (c n , dn,k ) ∨ • • • ∨ σ n,k,j(n,k) (c n , dn,k ) < r n } is satisfiable in M. Let q ′ = q ∪ { σ n,k,1 (c n , dn,k ) < r n , . . . , σ n,k,j(n,k) (c n , dn,k ) < r n }.
Then, q is a condition in P(M, Σ), and by Lemma 3.2, max 1≤ν≤j(n,k)

H w q ′ ( σ n,k,ν (c n , dn,k ) ) < r n , so inf q ′ ≤q d∈C i(n,k) k<ω max 1≤ν≤j(n,k) H w q ′ ( σ n,k,ν (c n , dn,k ) ) < r n .
Thus, by Remark 4.6, F p (ϕ n ) ≤ r n . Let G be a generic set for P(M, Σ) (the existence of G is guaranteed by Proposition 2.12). For every n < ω, ϕ G n = inf p∈G F p (ϕ n ) ≤ r n (see Definition 2.11). Let now M G be as in Lemma 2.16. Then, by Theorem 2.17,

ϕ M G n = ϕ G n ≤ r n .

4.7

Remark 4.8. The reader may worry about the fact that the assumptions of Corollary 4.7 involve strict inequalities while the conclusion only yields a weak inequality. In fact it would be enough to assume a weak inequality, i.e., that p ∪ {ψ n (c n ) ≤ r n } is satisfiable in M for every p and ψ n as in the statement of Corollary 4.7, or more precisely, that p ∪ {ψ n (c n ) < r n + ǫ} is satisfiable for every ǫ > 0. Indeed, in this case we would be able to find M in which ϕ M n ≤ r n + 2 -m for all n, m, i.e., such that ϕ M n ≤ r n for all n.

Application: Separable Quotients

If ϕ is a formula of L ω 1 ,ω , we will say that ϕ is finitary if all the occurrences of in ϕ are finitary, i.e., if whenever ψ∈Φ ψ is a subformula of ϕ, the set Φ is finite. We recall from Section 1 that the set of all finitary formulas is denoted L ω,ω .

If M and N are L-structures, M and N are said to be elementary equivalent, written M ≡ N, if ϕ M = ϕ N for every finitary L-sentence ϕ. Thus M ≡ N if and only if ϕ M < r implies ϕ N < r for every finitary L-sentence ϕ and every rational number r. If M is a substructure of N, M is said to be an elementary substructure

of N if (M, a | a ∈ M) ≡ (N, a | a ∈ M).
A Banach space (X, • ) can be regarded as a metric structure in a number of ways. A natural approach is to introduce for each nonnegative rational r a distinct sort for the closed ball B X (r) of radius r around 0; the metric on B X (r) is given by the norm • ; in the structure we also include:

• the inclusion maps I r,s : B X (r) → B X (s) for r < s,

• the vector addition, which maps B X (r) × B X (s) onto B X (r + s),

• for each λ ∈ Q, the scalar multiplication by λ, which maps B X (r) onto B X (|λ|r),

• the normalized norm predicate • /r, which maps B X (r) onto the interval [0, 1],

• the normalized distance predicate on B X (r) defined by d(x, y) = x -y /(2r) (as x -y ∈ B X (2r)). Notice that with the normalized norm and distance, all symbols are 1-Lipschitz, meaning that the identity function δ(ǫ) = ǫ is a modulus of uniform continuity for each and every one of them.

Other ways of regarding Banach space as metric structures are discussed in Section 3 of [BU] and in Section 4 [Ben].

If X and Y are Banach spaces and T : X → Y is a Banach space operator, we denote by (X, Y, T ) the structure that includes, in addition to the Banach space structure of X and the Banach space structure on Y , in separate sorts, the operator T as a family of functions between the appropriate sorts, i.e., from B X (r) to B Y (s) if s ≥ T r. If T is nonzero, the function δ(ǫ) = ǫ/ T is a modulus of uniform continuity for T .

Proposition 5.1. Let X, Y, X, Ŷ be Banach spaces and let T : X → Y and T : X → Ŷ be bounded linear operators such that (X, Y, T ) ≡ ( X, Ŷ , T ). Then T is surjective if and only if T is surjective.

Proof. For a real number r ≥ 0, let B X (r) and B Y (r) denote the closed balls of radius r around 0 in X and Y , respectively. The proof of the Open Mapping Theorem shows that T : X → Y is surjective if and only if the following holds: for every ǫ > 0 there exists δ(ǫ) > 0 such that ∀y ∈ B Y (δ(ǫ)) ∃x ∈ B X (1) ( T (x) -y ≤ ǫ ).

We can assume that δ(ǫ) < 1 for ǫ < 1. Thus, T is surjective if and only if for every ǫ with 0 < ǫ < 1 we have ϕ (X,Y,T ) ǫ = 0, where ϕ ǫ is the following finitary sentence (the where for each n < ω, a n is the interpretation of c n , b n is the interpretation of d n , and a * 0 is the interpretation of c * 0 . By (i), we have ( X, Y, T ) ≺ ( X 1 , Y 1 , T 1 ), so, in particular, by Proposition 5.1, T 1 is surjective. Now we iterate the preceding process to find for each ordinal α with 0 < α < ω 1 a separable structure

( X α , Y α , T α , a n , b n , a * i | n < ω, i < α ) such that if 0 < α < β < ω 1 , • ( X α , Y α , T α , a n , b n , a * i | n < ω, i < α ) ≺ ( X β , Y β , T β , a n , b n , a * i | n < ω, i < α ) • a * i ∈ X α for i < α • a *
i = 1 and a * i -a * j = 1 for i < j < α • The linear span of {b n | n < ω} is a dense subset of T α (X α ). The theorem then follows by taking X = α<ω 1 X α , Ŷ = α<ω 1 Y α , and T = α<ω 1 T α .
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(Or, if one wishes to be pedantic, replace T (x) -y -. ǫ with 1 2 T (x) -y -. ǫ 2 .) Hence, if (X, Y, T ) ≡ ( X, Ŷ , T ) and T is surjective, T is surjective too.

5.1

The authors are grateful to William B. Johnson for pointing out that Proposition 5.1 is given by the proof of the Open Mapping Theorem.

All the Banach spaces mentioned henceforth will be infinite dimensional.

The Separable Quotient Problem is perhaps the most prominent open problem in nonseparable Banach space theory. The question is whether for every nonseparable Banach space X there exist a separable Banach space Y and a surjective operator T : X → Y . Let T : X → Y be a Banach space operator and consider the structure (X, Y, T ) (the sorts of this structure are X and Y ). In this section we use Corollary 4.7 to prove that if T : X → Y is surjective and has infinite dimensional kernel, then there exists an operator T : X → Ŷ such that (i) (X, Y, T ) ≡ ( X, Ŷ , T ), (ii) X has density character ω 1 , (iii) Ŷ is separable. It follows from (i) and Proposition 5.1 that T is surjective.

Lemma 5.2. Suppose that X is a Banach space and Y is a closed proper subspace of X. Then there exists a non-zero linear functional f : X → R whose restriction to Y is zero. Up to multiplication by a scalar we may further assume that f = 1.

Proof. This is a well-known application of the Hahn-Banach theorem; the proof can be found in a textbook, e.g., [FHH + 01].

5.2

Lemma 5.3. If X is a Banach space of density character κ, there exists a family (x i ) i<κ in X such that x i = 1 for every i < κ and x i -x j ≥ 1 for i < j < κ.

Proof. The construction of (x i ) i<κ is inductive. Fix j < κ and suppose that constructed x i is defined for i < j. Let Y be the closed linear span of {x i | i < j}, which is a proper closed subspace of X. By Lemma 5.2, take f : X → R such that f (x) = 0 for every x ∈ Y and f = 1. Let now x j be an element of the unit sphere of X such that |f (x)| = f = 1. Then, if y ∈ Y , we have x j -y ≥ |f (x j ) -f (y)| = 1; in particular, x j -x i ≥ 1 for i < j.

5.3

Theorem 5.4. For every surjective operator T : X → Y with infinite dimensional kernel there exists an operator T : X → Ŷ such that

• (X, Y, T ) ≡ ( X, Ŷ , T ),

• X has density character ω 1 ,

• Ŷ is separable.

Furthermore, if D is a given countable subset of X, the structure ( X, Ŷ , T ) can be chosen with the following property: there exists a separable subspace X 0 of X such that D ⊆ X 0 and if T 0 denotes the restriction of T to X 0 ,

• (X 0 , T 0 (X 0 ), T 0 ) ≺ (X, Y, T ),

• (X 0 , T 0 (X 0 ), T 0 ) ≺ ( X, Ŷ , T ).

Proof. By the Löwenheim-Skolem Theorem [HI02, page 47], there exists a separable subspace X 0 of X such that if T 0 denotes the restriction of T to X 0 and Y 0 = T 0 (X 0 ),

(Note that X 0 can be taken so that it contains any given countable subset of X.) Let A be a countable dense subset of X 0 and consider the structure

Let L be the signature that results from expanding the signature of ( X, Y, T, a | a ∈ A ) with new constant symbols c 0 , c 1 , . . . and c * 0 of sort B X (1) as well as new constant symbols d 0 , d 1 , . . . and of sort B Y (1).

Let us introduce some temporary terminology. If ϕ is an L-sentence, an L-structure M satisfies the inequality ϕ < r if ϕ M < r. An inequality ϕ < r will be called finitary if the formula ϕ is finitary.

Let Γ consist of the following inequalities (the variable x in (vii) is of sort B Y (1)): (i) All the finitary inequalities satisfied by the structure ( X 0 , Y 0 , T, a | a ∈ A ) (ii) ¬ c n < ǫ (i.e., c n > 1 -ǫ) and ¬ d n < ǫ, for every n < ω and every rational ǫ > 0. (iii) ¬ 1 2 c m -c n < 1 2 + ǫ (i.e., c n -c m > 1 -2ǫ) and ¬ 1 2 d m -d n < 1 2 + ǫ, for every pair m, n with m < n < ω and every rational ǫ > 0. (iv) ¬ c * 0 < ǫ, for every rational ǫ > 0. (v) ¬ 1 2 c * 0 -c n < 1 2 + ǫ, for every n < ω and every rational ǫ > 0. (vi) T (c ω ) < ǫ, for every rational ǫ > 0. (vii) For every rational ǫ > 0, the inequality

Here 1 n+1 • is just the normalized norm predicate on the sort of T (x)-i<n r i d i , and (n + 1) • ϕ is defined in general as ϕ ∔ • • • ∔ ϕ n + 1 times. Lemma 5.3 ensures that the hypotheses of Corollary 4.7 are satisfied with Σ = L ω,ω . Thus by Corollary 4.7, Γ has a separable model ( X 1 , Y 1 , T 1 , a, a n , b n , a * 0 | a ∈ A, n < ω ),