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Clifford Fourier Transform for Color Image
Processing

Thomas Batard, Michel Berthier and Christophe Saint-Jean

Abstract The aim of this paper is to define a Clifford Fourier transformthat is suit-
able for color image spectral analysis. There have been manyattempts to define
such a transformation using quaternions or Clifford algebras. We focus here on a
geometric approach using group actions. The idea is to generalize the usual defi-
nition based on the characters of abelian groups by considering group morphisms
from R2 to spinor groups Spin(3) and Spin(4). The transformation wepropose is
parameterized by a bivector and a quadratic form, the choiceof which is related to
the application to be treated. A general definition for 4D signal defined on the plane
is also given; for particular choices of spinors it coincides with the definitions of S.
Sangwine and T. Bülow.

1 Introduction

During the last years several attempts have been made to generalize the classical
approach of scalar signal processing with the Fourier transform to higher dimen-
sional signals. The reader will find a detailed overview of the related works at the
beginning of [1]. We only mention in this introduction some of the approaches in-
vestigated by several authors.
Motivated by the spectral analysis of color images, S. Sangwine and T. Ell have
proposed in [13] and [5] a generalization based on the use of quaternions: a color
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corresponds to an imaginary quaternion and the imaginary complexi is replaced by
the unit quaternionµ coding the grey axis. A quaternionic definition is also given
by T. Bülow and G. Sommer in the context of analytic signals,for signals defined
on the plane and with values in the algebraH of quaternions [3]. Concerning ana-
lytic signals, let us mention the work of M. Felsberg who makes use of the Clifford
algebrasR2,0 andR3,0 to define an appropriate Clifford Fourier transform [6].
A generalization in the Clifford algebras context appears also in J. Ebling and G.
Scheuermann [4]. The authors mainly use their transformation to analyze frequen-
cies of vector fields. Using the same Fourier kernel, B. Mawardi and E. Hitzer obtain
an uncertainty principle forR3,0 multivector functions [11]. The reader may find
in [1] definitions of Clifford Fourier transform and Clifford Gabor filters based on
the Dirac operator and Clifford analysis.
One could ask the reason why to propose a new generalization.An important thing
when dealing with Fourier transform is its link with group representations. We then
recall in section 2 the usual definition of the Fourier transform of a function defined
on an abelian Lie group by means of the characters of the group. The definition we
propose in section 3 relies mainly on the generalization of the notion of characters,
that is why we study the group morphisms fromR2 to Spin(3) and Spin(4). These
morphisms help to understand the behavior of the Fourier transform with respect
to well chosen spinors. We treat in section 4 three applications corresponding to
specific bivectors ofR4,0. They consist in filtering frequencies according to color,
hue and chrominance part of a given color. In section 5, we show that for particular
choices of group morphisms and under well chosen idenfication with quaternions,
the Clifford Fourier transform we propose coincides with the definitions of S. Sang-
wine [5] and T. Bülow [2].

2 Fourier transform and group actions

Let us recall briefly some basic ideas related to the group approach of the definition
of the Fourier transform. Details can be found in the Appendix, see also [15] for
examples of applications to Fourier descriptors.
Let G be a Lie group. The Pontryagin dual ofG, denoted̂G, is the set of equivalence
classes of unitary irreducible representations ofG. It appears that ifG is abelian,
every irreducible unitary representation ofG is of dimension 1, i.e. is a continuous
group morphism fromG to S1. This is precisely the definition of a character. It is
well known that the characters ofRm are given by

(x1, · · · ,xm) 7−→ ei(u1x1+···+umxm)

with u1,u2, · · · ,um real. This shows that̂Rm = Rm. The characters of SO(2) are the
group morphisms

θ 7−→ einθ
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for n∈ Z and the corresponding Pontryagin dual isZ. The characters ofZ/nZ are
the groups morphisms

u 7−→ ei 2πku
N

for k∈ Z/nZ, from which we deduce thatZ/nZ is its own Pontryagin dual.

In the general case (provided thatG is unimodular), the Fourier transform of a func-
tion f ∈ L2(G;C) is defined onĜ by

f̂ (ϕ) =

∫

G
f (x)ϕ(x−1)dν(x)

(for ν a well chosen invariant measure onG). Applying this formula to the case
G= Rm, resp.G=SO(2), resp.G= Z/nZ leads to the usual definition of the Fourier
transform, resp. Fourier coefficients, resp. discret Fourier transform.

From now on, we deal with the abelian group(R2,+) since this paper is devoted to
applications to image processing.

Traditionally, the Fourier transform of a function that is valued inRn is defined
by n standard Fourier transforms on each one of its components. Using group rep-
resentations theory, we are able to define Fourier transforms that unify the different
components.

Let us first treat the casen = 2.
Let f be a real or complex valued function defined onR2. Its Fourier transform is
given by

f̂ (a,b) =

∫

R2
f (x,y)e−i(ax+by) dxdy

Under the identification ofC with (R2,‖‖2), we haveS1=SO(2) and the action
of S1 on C, given by the complex multiplication, corresponds to the action of
the group SO(2) on(R2,‖‖2). Therefore, we can define a Fourier transform in
L2(R2,(R2,‖‖2)) using the action of group morphisms fromR2 to SO(2) on
(R2,‖‖2). These one are real unitary representations of the groupR2 of dimension 2.

Let us make the following crucial remark:
the Fourier transform off ∈ L2(R2,(R2,‖‖2)) defined above can be written in the
Clifford algebra language. Indeed, from the embedding of(R2,‖‖2) into R2,0, f
may be viewed as aR1

2,0-valued function

f (x,y) = f1(x,y)e1 + f2(x,y)e2

wheree2
1 = e2

2 = 1 ande1e2 =−e2e1. From this point of view, the Fourier transform
of f is given by

f̂ (a,b) =
∫

R2
[cos((ax+by)/2)1+sin((ax+by)/2)e1e2]( f1(x,y)e1 + f2(x,y)e2)
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[cos(−(ax+by)/2)1+sin(−(ax+by)/2)e1e2]dxdy

using the fact that the action of Spin(2) onR1
2,0 corresponds to the action of SO(2)

on (R2,‖‖2) (see Appendix). We can write this last formula in the following form:

f̂ (a,b) =

∫

R2
( f1(x,y)e1 + f2(x,y)e2)⊥ϕa,b(−x,−y)dxdy

where ϕa,b is the morphism fromR2 to Spin(2) that sends(x,y) to exp[((ax+
by)/2)(e1e2)] and⊥ denotes the actionv⊥s= s−1vsof Spin(2) onR1

2,0, and more
generally the action of Spin(n) onR1

n,0.

Note that group morphisms fromR2 to Spin(2) followed by the action onR1
2,0 cor-

respond to the action of group morphisms fromR2 to SO(2) on(R2,‖‖2). In other
words, they are real unitary representations ofR2 of dimension 2 too.

Remark 1.As in the standard case, where the Fourier transform of a realvalued
function is defined by embeddingR into C, we define here the Fourier transform of
a real valued function by embeddingR into R2.

Starting from these elementary observations, we now proceed to generalize this con-
struction forRn-valued functions defined onR2. In other words, we are looking
for a generalization of the action of group morphisms to SO(2) on the values of a
(R2,‖‖2)-valued function.

3 Clifford Fourier transform in L2(R2,(Rn,Q))

Let f ∈ L2(R2,(Rn,Q)). We propose to associate the Fourier transform off with
the action of the following group morphisms on the values off , depending on the
parity of n.

If n is even, then we consider the morphisms

ϕ : R2 −→ SO(Q)

If n is odd, then we embed(Rn,Q)) into (Rn+1,Q⊕1) and consider the morphisms

ϕ : R2 −→ SO(Q⊕1)

We deduce that ifn is even, then the Fourier transform off is aRn-valued function,
whereas ifn is odd, the Fourier transform off is aRn+1-valued function.

Thus the generalization we propose is based on the computation of real unitary rep-
resentations of dimensionn or n+1 of the abelian groupR2. The main fact is that
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we no more consider equivalent classes of representations.This means in particular
that the Fourier transform we define depends on the definite positive quadratic form
of Rn.

Remark 2.For Q=1 onR, the Fourier transforms we define correspond to the stan-
dard Fourier transforms ofR-valued functions.

Remark 3.Recall that up to a change of the basis, a definite positive quadratic form
is given by the identity matrix. Then,f may always be viewed as a(Rl ,‖‖2)-valued
function(l denotesn is n is even andn+ 1 if n is odd). As a consequence of the
change of the basis, SO(Q) become SO(l) and group morphisms fromR2 to SO(Q)
become group morphisms fromR2 to SO(l).

As for the case ofR2-valued functions, we can rewrite the Fourier transform in the
Clifford algebra language, using the fact that the action ofSpin(l) onR1

l ,0 correspond

to the action of SO(l) onRl . This rewrite is motivated by the fact that it appears to
be much more easier to compute group morphisms to Spin(l) rather than group mor-
phisms to the matrix group SO(l).

If n is even, then from the embedding ofRn into Rn,0, f may be viewed as aR1
n,0-

valued function,

f (x,y) = f1(x,y)e1 + f2(x,y)e2 + · · ·+ fn(x,y)en

where e2
i = 1 andeiej = −ejei . Denoting byϕ a group morphism fromR2 to

Spin(n), we define the Clifford-Fourier transform off by

f̂ (ϕ) =

∫

R2
ϕ(x,y) f (x,y)ϕ(−x,−y)dxdy=

∫

R2
f (x,y)⊥ϕ(−x,−y)dxdy

If n is odd, we first embedRn into Rn+1. Then, from the embedding ofRn+1 into
Rn+1,0, f may be viewed as aR1

n+1,0-valued function,

f (x,y) = f1(x,y)e1 + f2(x,y)e2 + · · ·+ fn(x,y)en +0en+1

where e2
i = 1 andeiej = −ejei . Denoting byϕ a group morphism fromR2 to

Spin(n+1), we define the Clifford-Fourier transform off by

f̂ (ϕ) =
∫

R2
ϕ(x,y) f (x,y)ϕ(−x,−y)dxdy=

∫

R2
f (x,y)⊥ϕ(−x,−y)dxdy

From now on, we deal with the case n=3 since this paper is devoted to color image
processing. However, we have seen above that we treat the cases n=3 and n=4 in the
same manner, by computing group morphisms fromR2 to Spin(4).
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3.1 The cases n=3,4: Group morphisms fromR2 to Spin(4)

This part is devoted to the computation of group morphisms fromR2 to Spin(4).

Using the fact that the group Spin(4) is isomorphic to the group Spin(3)× Spin(3),
we first compute group morphisms fromR2 to Spin(3).

One can verify that Spin(3) is the group

Spin(3)= {a1+be1e2 +ce2e3 +de3e1, a2 +b2+c2 +d2 = 1}

and is isomorphic to the group of unit quaternions.

Proposition 1. The group morphisms fromR2 to Spin(3) are given by

(x,y) 7−→ e
1
2(ux+vy)B

where B belongs toS2
3,0 and u and v are real.

Proof. We have to determine the abelian subalgebras of the Lie algebra spin(3) =
R2

3,0 of the Lie group Spin(3). More precisely, as the exponentialmap ofR2 is onto,
group morphisms fromR2 to Spin(3) are given by Lie algebra morphisms from the
abelian Lie algebraR2 of R2 to spin(3). Taking two generators( f1, f2) of R2, any
morphismϕ from R2 to spin(3) satisfies:

ϕ( f1)×ϕ( f2) = 0.

We deduce thatIm(ϕ) is an abelian subalgebra ofR2
3,0 of dimension≤ 2. If a =

a1e1e2 + a2e3e1 + a3e2e3 andb = b1e1e2 + b2e3e1 + b3e2e3 satisfya×b = 0, then
the structure relations ofR2

3,0, i. e.

e1e2×e3e1 = e2e3, e3e1×e2e3 = e1e2, e2e3×e1e2 = e3e1,

imply

(a1b2−a2b1)e2e3− (a1b3−a3b1)e3e1 +(a2b3−a3b2)e1e2 = 0.

This shows that two commuting elements ofR2
3,0 are colinear and that the abelian

subalgebras ofR2
3,0 are of dimension 1. If we writeϕ( f1) = 1

2uB andϕ( f2) = 1
2vB

for someu,v ∈ R and B ∈ S2
3,0, we see that the morphisms fromR2 to R2

3,0 are
parameterized by two real numbers and one unit bivector, andare given by

ϕu,v,B : (x,y) 7→ 1
2
(ux+vy)B

Consequently, the group morphisms fromR2 to Spin(3) are the morphisms̃ϕu,v,B

with
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ϕ̃u,v,B : (x,y) 7→ e
1
2 (ux+vy)B

•

Let us recall what group is Spin(4). Everyτ in Spin(4) is of the form

τ = u+ Iv

= (a1+be1e2 +ce2e3 +de3e1)+ I(a′1+b′e1e2 +c′e2e3 +d′e3e1)

whereI denotes the pseudoscalar ofR4,0 and the following relations hold:

uu+vv= 1 uv+vu = 0

The morphismχ : Spin(4)−→ Spin(3)× Spin(3) with

χ(u+ Iv) = (u+v,u−v)

is an isomorphism. An alternative description of Spin(4) relies on the following fact:
the morphismψ : H1×H1 −→ SO(4) defined by

(τ,ρ) 7−→ (v 7−→ τvρ)

(wherev is a vector ofR4 considered as a quaternion) is a universal covering of
SO(4) (see [12]). This means that Spin(4) is isomorphic toH1×H1. We will use
this remark later on to compare our transform to Sangwine’s and Bülow’s ones.

Proposition 2. The group morphisms fromR2 to Spin(4) are the morphisms̃φu,v,B,w,z,C

that send(x,y) to

e
1
8 [x(u+w)+y(v+z)][B+C+I(B−C)] e

1
8 [x(u−w)+y(v−z)][B−C+I(B+C)]

with u, v, w, z real and B, C two elements ofS2
3,0.

Proof. The group law of Spin(3)× Spin(3) being
(
(a,b),(c,d)

)
→ (ac,bd)

the group morphisms fromR2 to Spin(3)× Spin(3) are the morphisms̃ϕu,v,B,w,z,C

defined by

ϕ̃u,v,B,w,z,C : (x,y) 7→
(

e
1
2 (ux+vy)B,e

1
2 (wx+zy)C

)

with u, v, w, z real andB, C two elements ofS2
3,0.

By χ−1, the group morphisms fromR2 to Spin(4) are thẽφu,v,B,w,z,C that send(x,y)
to

e
1
2 (ux+vy)B +e

1
2 (wx+zy)C

2
+ I

e
1
2 (ux+vy)B−e

1
2 (wx+zy)C

2
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However, this writing is not convenient to determine group morphisms to SO(4)
since it doesn’t provide explicitly the rotations inR4 thatφ̃u,v,B,w,z,C generates by its
action onR1

4,0. The solution comes from an “orthogonalization” of the correspond-
ing Lie algebras morphism fromR2 to R2

4,0, namely the linear map

φu,v,B,w,z,C(X,Y) = T(0,0) φ̃u,v,B,w,z,C(X,Y)

whereT denotes the linear tangent map. By definition,

φu,v,B,w,z,C(X,Y) =
d
dt

(
φ̃u,v,B,w,z,C(exp(t(X,Y)))

)
∣∣∣
t=0

The exponential map ofR2 being the identity map, we get

φu,v,B,w,z,C(X,Y) =
d
dt

(
φ̃u,v,B,w,z,C(t(X,Y))

)
∣∣∣
t=0

=
d
dt

(e
1
2 (uX+vY)B +e

1
2 (wX+zY)C

2
+ I

e
1
2 (uX+vY)B−e

1
2(wX+zY)C

2

)
∣∣∣
t=0

=
(uX+vY)B+(wX+zY)C

4
+ I

(uX+vY)B− (wX+zY)C
4

The “orthogonalization” of the morphismφu,v,B,w,z,C consists in decomposing the
bivectorφu,v,B,w,z,C(X,Y) for eachX,Y into commuting bivectors whose squares are
real. The corresponding spinor is written as a product of commuting spinors of the
form eFi with F2

i < 0. These ones represent rotations of angle−F2
i in the oriented

planes given by theFi ’s. In our case, the bivectorφu,v,B,w,z,C(X,Y) is decomposed
into F1 +F2 where

F1 =
1
8

[
(X(u+w)+Y(v+z))(B+C+ I(B−C))

]

F2 =
1
8

[
(X(u−w)+Y(v−z))(B−C+ I(B+C))

]

(see the Appendix for details). The group morphismsφ̃u,v,B,w,z,C from R2 to Spin(4)
can then be written as

φ̃u,v,B,w,z,C(x,y) = e[
(ux+vy)B+(wx+zy)C

4 +I (ux+vy)B−(wx+zy)C
4 ]

= e
1
8 [(x(u+w)+y(v+z))(B+C+I(B−C))] e

1
8 [(x(u−w)+y(v−z))(B−C+I(B+C))]

•
This is the convenient form to describe group morphisms fromR2 to SO(4).

To conclude this part, let us remark that the expression of the morphisms̃φu,v,B,w,z,C
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may be simplified. Indeed, whenB andC describeS2
3,0 ⊂ R4,0, the unit bivectors

1
4
(B+C+ I(B−C))

decribeS2
4,0.

Moreover, if we put

D =
1
4
(B+C+ I(B−C))

then we have
1
4
(B−C+ I(B+C)) = ID

Therefore, the morphisms̃φu,v,B,w,z,C are in fact parametrized by four real numbers
and one unit bivectorD ∈ S2

4,0, and may be written

Φ̃u,v,w,z,D(x,y) = e
1
2 [(x(u+w)+y(v+z))D] e

1
2 [(x(u−w)+y(v−z))ID]

3.2 The cases n=3,4: The Clifford Fourier transform

From the computation of group morphisms fromR2 to Spin(4), we give an explicit
formula of the Clifford Fourier transform̂f of f ∈L2(R2,(R3,Q)) orL2(R2,(R4,Q)).

Definition 1. Let f ∈ L2(R2,(R3,Q)), resp.L2(R2,(R4,Q)) and denote byf the em-
bedding of f into the Clifford algebraCl(R4,Q ⊕1), resp.Cl(R4,Q). The Clifford
Fourier transform off is given by

f̂ (u,v,w,z,D) =
∫

R2
f (x,y)⊥Φ̃u,v,w,z,D(−x,−y)dxdy

=

∫

R2
e

1
2 [(x(u+w)+y(v+z))ID]e

1
2 [(x(u−w)+y(v−z))D] f (x,y)

e−
1
2 [(x(u+w)+y(v+z))D]e−

1
2 [(x(u−w)+y(v−z))ID]dxdy

•

Decomposingf as f|| + f⊥ with respect to the plane generated by the bivectorD,

we get f̂ (u,v,w,z,D) =

∫

R2
f||(x,y)e

[−(x(u+w)+y(v+z))D]dxdy+
∫

R2
f⊥(x,y)e[−(x(u+w)+y(v+z))ID]dxdy
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Indeed, the plane generated byID represents the orthogonal inR4 of the plane
generated byD.

Proposition 3. The Clifford Fourier transform is left-invertible. Its inverse is the
map̌ given by

ǧ(a,b) =
∫

R4×S2
4,0

g(u,v,w,z,D)⊥Φ̃u,v,w,z,D(a,b)dudvdwdzdν

whereν is a unit measure onS2
4,0.

Proof. We have to verify that◦̌ (̂ f ) = f , i.e. ◦̌ (̂ f )(λ ,µ) = f (λ ,µ) ∀(λ ,µ)∈R2.

ˇ◦ (̂ f )(λ ,µ) =

=

∫

R4×S2
4,0

[∫

R2
f||(x,y)e

[−(x(u+w)+y(v+z))D]dxdy
]
e[(λ (u+w)+µ(v+z))D]dudvdwdzdν

(1)

+

∫

R4×S2
4,0

[∫

R2
f⊥(x,y)e[−(x(u+w)+y(v+z))ID]dxdy

]
e[(λ (u+w)+µ(v+z))ID]dudvdwdzdν

(2)
It is sufficient to prove that (1)= f||(λ ,µ).

(1) =

∫

R4×S2
4,0

∫

R2
f||(x,y)e

[(λ−x)(u+w)+(µ−y)(v+z)]Ddxdydudvdwdzdν

=

∫

R4×S2
4,0

∫

R2
f||(x,y)e

u(λ−x)Dew(λ−x)Dev(µ−y)Dez(µ−y)Ddxdydudvdwdzdν

=
∫

R2

∫

R3×S2
4,0

f||(x,y)
(∫

R
eu(λ−x)Ddu

)
ew(λ−x)Dev(µ−y)Dez(µ−y)Ddwdvdzdν dxdy

=
∫

R2

∫

R3×S2
4,0

f||(x,y)δλ ,x

(∫

R
ew(λ−x)Ddw

)
ev(µ−y)Dez(µ−y)Ddvdzdν dxdy

=

∫

R2

∫

R2×S2
4,0

f||(x,y)δλ ,xδλ ,x

(∫

R
ev(µ−y)Ddv

)
dzdν dxdy

=

∫

R2

∫

R×S2
4,0

f||(x,y)δλ ,xδλ ,xδµ,y

(∫

R
ez(µ−y)Ddz

)
dν dxdy

=

∫

R2

∫

S2
4,0

f||(x,y)δλ ,xδλ ,xδµ,yδµ,y dν dxdy

=

∫

R2
f||(x,y)δλ ,xδλ ,xδµ,yδµ,y dxdy= f||(λ ,µ)

•
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4 Application to color image filtering

4.1 Clifford Fourier transform of color images

For the applications we have in mind to color image filtering,we define a partial
Clifford Fourier transform, i.e. we deal with a subset of theset of unitary group rep-
resentations ofR2 of dimension 4. The subset we consider will depend of the colors
we aim at filtering.
More precisely, we restrict to the set of group morphismsΦ̃u,v,0,0,D where the bivec-
tor D is fixed.

Definition 2. Clifford Fourier transform with respect to a bivector.
Let f ∈ L2(R2,(R3,Q)), resp.L2(R2,(R4,Q)) and denote byf the embedding off
into the Clifford algebraCl(R4,Q ⊕1), resp.Cl(R4,Q). The Clifford Fourier trans-
form of f with respect to the bivectorD is defined by

f̂D(u,v) =

∫

R2
f (x,y)⊥Φ̃u,v,0,0,D(−x,−y)dxdy

=
∫

R2
e

1
2 (xu+yv)IDe

1
2 (xu+yv)D f (x,y)e−

1
2 (xu+yv)De−

1
2 (xu+yv)IDdxdy

•
It follows the definition of the Clifford Fourier transform of a color image.

Definition 3. Clifford Fourier transform of a color image.
Let I be a color image. We associate toI a function f ∈ L2(R2,(R3,Q)) defined by

f (x,y) = r(x,y)e1 +g(x,y)e2+b(x,y)e3 +0e4

wherer, g andb correspond to the red, green and blue levels.
The Clifford Fourier transform ofI with respect toQ andD is theCl(R4,Q⊕ 1)-
valued function̂IQ,D defined by

ÎQ,D(u,v) = f̂D(u,v) =

∫

R2
f (x,y)⊥Φ̃u,v,0,0,D(−x,−y)dxdy

•
Thus given a color image, we define a set of associated Clifford Fourier transforms
parametrized by the set of definite positive quadratic formsonR3 and unit bivectors
in R4,0.

In the same way as for the Clifford Fourier transform inL2(R3,Q) andL2(R4,Q),
we can show that the Clifford Fourier transform of a color image is invertible.

Proposition 4. Let f ∈ L2(R2,(R3,Q)) and D be a unit bivector in Cl(R4,Q⊕1).
Then, the Clifford Fourier transform of f with respect to D isinvertible. Its inverse
is the map̌defined by
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ǧ(x,y) =

∫

R2
g(u,v)⊥Φ̃u,v,0,0,D(x,y)dudv

Proof. Decomposingf with respect to the plane generated byD as

f = f‖ + f⊥

we have

f̂D(u,v) =

∫

R2
( f‖(x,y)+ f⊥(x,y))⊥Φ̃u,v,0,0,D(−x,−y)dxdy

This can be written
f̂D(u,v) = f̂D‖(u,v)+ f̂D⊥(u,v)

where
f̂D‖(u,v) =

∫

R2
f‖(x,y)⊥Φ̃u,v,0,0,D(−x,−y)dxdy

=

∫

R2
f‖(x,y)e

−(ux+vy)Ddxdy

and
f̂D⊥(u,v) =

∫

R2
f⊥(x,y)⊥Φ̃u,v,0,0,D(−x,−y)dxdy

=

∫

R2
f⊥(x,y)e−(ux+vy)IDdxdy.

Let us remark that each one of the two integrals may be identified with the Fourier
transform of a function fromR2 to C. Then, we deduce that there exists an inversion
formula (left and right) for the Clifford Fourier transform̂fD given by

f (x,y) =

∫

R2
f̂D(u,v)⊥Φ̃u,v,0,0,D(x,y)dudv

Indeed, the right term equals
∫

R2
( f̂D‖(u,v)+ f̂D⊥(u,v))⊥Φ̃u,v,0,0,D(x,y)dudv

=

∫

R2
f̂D‖(u,v)e(ux+vy)Ddudv+

∫

R2
f̂D⊥(u,v)e(ux+vy)IDdudv (3)

Each one of these integrals may be identified with the inversion formula of the
Fourier transform of a function fromR2 to C, hence

(3) = f‖(x,y)+ f⊥(x,y)

= f (x,y).

The following proposition is useful for applications and inparticular for applica-
tions to the filtering of frequencies developed in the next section. It gives an integral
representation of any 3D-valued signal defined on the plane by 3D-valued cosinu-
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soidal signals. This representation is obtained from the Clifford Fourier transform
with respect to some bivector. In this proposition we show that the representation is
invariant with respect to the choice of the bivector. In the discrete case, we obtain a
decomposition of the signal as a sum of cosinusoidal signals.

Proposition 5. With the previous notations, if B and D are elements ofS2
4,0, we have

f̂B(u,v)⊥Φ̃u,v,0,0,B(x,y)+ f̂B(−u,−v)⊥Φ̃−u,−v,0,0,B(x,y)

= f̂D(u,v)⊥Φ̃u,v,0,0,D(x,y)+ f̂D(−u,−v)⊥Φ̃−u,−v,0,0,D(x,y)

Moreover, the e4 component of this expression is null.

Proof. Simple computations show that

f̂B(u,v)⊥Φ̃u,v,0,0,B(x,y)+ f̂B(−u,−v)⊥Φ̃−u,−v,0,0,B(x,y) (4)

=

∫

R2
e−

xu+yv
2 (B+IB)e

λu+µv
2 (B+IB) f (λ ,µ)e−

λu+µv
2 (B+IB)e

xu+yv
2 (B+IB)dλdµ

+

∫

R2
e

xu+yv
2 (B+IB)e−

λu+µv
2 (B+IB) f (λ ,µ)e

λu+µv
2 (B+IB)e−

xu+yv
2 (B+IB)dλdµ

=

∫

R2
2cos(u(x−λ )+v(y− µ)) f‖(λ ,µ)dλdµ

+

∫

R2
2cos(u(x−λ )+v(y− µ)) f⊥(λ ,µ)dλdµ .

Hence
(4) =

∫

R2
2cos(u(x−λ )+v(y− µ)) f (λ ,µ)dλdµ .

•

This proposition justifies the fact that the filters used are symmetric with respect to
the transformation(u,v) 7→ (−u,−v).

4.2 Color image filtering

We now present applications to color image filtering. The useof the Fourier trans-
form is motivated by the well known fact that non trivial filters in the spatial do-
main may be implemented efficiently with masks in the Fourierdomain. Although
it seems natural to believe that the results on grey level images may be generalized,
there are not so many works dedicated to the specific case of color images. Let us
mention the reference [14] where an attempt is made through the use of an adhoc
quaternionic transform. The mathematical construction wepropose appears to be
well founded since it explains the fundamental role of bivectors and scalar product
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in terms of group actions. As explained before, the possibility to choose the bivec-
tor D and the quadratic formQ is an asset allowing a wider range of applications.
Indeed, Sangwine and al. proposal can be written in our formalism by considering
appropriateD andQ.

The applications we propose in this paper are based on the following fact:

( f̂D)|| = (̂ f||)D
and ( f̂D)⊥ = (̂ f⊥)D

In other words, the part of the Clifford Fourier transform off that is parallel toD
corresponds to the standard Fourier transform of the part off that is parallel toD.
The same principle holds for the orthogonal part.

Our purpose is to apply some low pass, high pass and directional filters on theD-
parallel part, resp.D-orthogonal part, leaving theD-parallel part, resp.D-orthogonal
unmodified. The choice of the bivectorD and the quadratic formQ (that determines
theD-orthogonal part) will depend on the colors we aim at filtering. Then, we show
the result of such filters using the inversion formula of the Clifford Fourier trans-
form.

There is an other way to decompose a colorα, that is with respect to its lumi-
nance and chrominance parts, respectively denoted bylα andvα . Embedding the
color space RGB into the Clifford algebraR4,0 by

i(r,g,b) = re1 +ge2+be3

the first corresponds to the projection of the color on the axis generated by the unit
vector (e1 + e2 + e3)/

√
3, and the latter to its projection on the orthogonal plane

in e1e2e3, called the chrominance plane, represented by the unit bivector (e1e2 −
e1e3 + e2e3)/3. In what follows we make use of the following fact too: everyhue
can be represented as an equivalence class of bivectors ofR4,0. More precisely, we
have the following result.

Proposition 6. Let T be the set of bivectors

T = {(e1 +e2+e3)∧ i(α), α ∈ RGB}

with the following equivalence relation:

B≃C ⇐⇒ B = λC for λ > 0

Then, there is a bijection between T/ ≃ and the set of hues.

Proof. We have
(e1 +e2+e3)∧ i(α) = (e1 +e2 +e3)vα

wherevα is the projection ofα on the chrominance. Then, there is a bijection be-
tweenT/≃ and the set(e1+e2+e3)v for v a unit vector in the chrominance plane.
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This latter being in bijection with the set of different hues, we conclude that there
exists a bijection betweenT/ ≃ and the set of hues. •

Fig. 1 Original images : Fourier house (left), Flowers (right)

Figure 1 shows the original images used for these experiments1. Left imageI is a
modified color version of the Fourier house containing red, desatured red, green,
cyan stripes in various directions, a uniform red circle anda red square with lower
luminance. Right imageJ is a natural image taken from the berkeley image segmen-
tation database [10].

Fig. 2 ÎQ1,e1e4 : Log-modulus (left) and directional cut filtering (right) for the red color

1 Available at http://mia.univ-larochelle.fr/→ Production→ Démos
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Figure 2 (left) is the centered log-modulus of theD-parallel part ofÎQ1,D where
Q1 is the quadratic form such thatQ1 ⊕ 1 is given by the identity matrix I4 in the
basis(e1,e2,e3,e4), andD the bivectore1e4. Figure 2 (right) is the result of a di-
rectional cut filter aroundπ/2 which removes of vertical frequencies. Let us point
out that horizontal green stripes are not modified since green color 255e2 belongs to
ID = e2e3.

Fig. 3 Low pass filterings on̂IQ1,e1e4 (left) and onÎQ1, 1√
2
(e2+e3)e1

(right) for respectively red color

and red hue

Figure 3 shows the difference between a low pass filter in theD-parallel part of
ÎQ1,e1e4 (left) and theD-parallel part̂IQ1,

1√
2
(e2+e3)e1

(right). The first one consists in

removing high frequencies of the red components of the image, whereas the second
one consists in removing high frequencies of the red hue partof the image.
On the left image, we can see that both green and cyan stripes are not modified.
As in the previous case, this comes from the fact that both green color and cyan
color 255e2 + 255e3 belong toID. The result is different on the right image. The
unit bivector 1√

2
(e2 + e3)e1 = 1√

2
(e1 + e2 + e3)∧e1 represents the red hue, that’s

why the cyan stripes are blurred. Indeed, unit bivectors representing cyan and red
hues are opposite, therefore they generate the same plane. Green stripes are no more
invariant to the low pass filter since the green axise2 is not orthogonal to the bivector

1√
2
(e2 +e3)e1.
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Fig. 4 Ĵ
Q1,

vα∧e4
‖vα∧e4‖

: Low pass (left) and high pass (right) filters withα = (96,109,65)

On Figure 4, the colorα has been chosen to match with the color of the green leaves.
As the low pass filter (left) removes green high frequencies,the center of flowers
containing yellow high frequencies turns red. On the right image, background pix-
els corresponding to green low frequencies appear almost grey.

To conclude this part, we propose to compare the results of two low pass filters
on theD-orthogonal part with respect to the same bivectorD = e1e4 but changing
the quadratic form. As a consequence, the bivectorID differs in the two cases. For
the first one (Figure 5, left image), we takeQ1, whereas for the second one (Figure
5, right image), we construct the quadratic formQ2 such thatQ2 is given by I4 in
the basis(e1,

1√
2
(e1 + e2),

i(α)
‖i(α)‖ ,e4). In other words, we orthogonalize the red, the

yellow and the color of leaves. They correspond to the main colors that are present
in the image.
On the left image, the unit bivectorID is e2e3. Hence, the low pass filter removes
green and blue high frequencies but preserves red high frequencies. This explains
why the image turns red. On the right image, the unit bivectorID is (e1+e2)√

2
i(α)

‖i(α)‖ ,
then it contains the colors of the background and inside the flowers. Therefore, the
low pass filter removes all the high frequencies in the image except the ones of the
red petals.

This last application shows the great applicability of the quadratic form.

5 Related works

To conclude this paper, we show how to recover the hypercomplex Fourier transform
of S. Sangwine and the quaternionic Fourier transform of T. Bülow in the Clifford
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Fig. 5 Low pass in theID part : ĴQ1,Ie1e4 (left) andĴQ2,Ie1e4(right)

algebras context, using the appropriate morphism fromR2 to Spin(4). First of all,
let us recall the definitions of these Fourier transforms.

5.1 The hypercomplex Fourier transform

In [5], the authors define the discrete hypercomplex Fouriertransform. It can be
extended toR2 as follows. Letf : R2 →H, then its hypercomplex Fourier transform
is given by

F(u,v) =

∫

R2
e−µ(xu+yv) f (x,y)dxdy

whereµ ∈ H0∩H1.
There is a freedom in the choice ofµ in the hypercomplex Fourier transform as
we have a freedom in the choice of the bivectorD in the Clifford Fourier trans-
form for color images. In fact, they have the same role, i.e. they decompose the
four-dimensional spaceR4 into two orthogonal two-dimensional subspaces and de-
compose the Fourier transform into two standard Fourier transforms.
This is shown in the following proposition.

Proposition 7. Letµ = µ1i+µ2 j +µ3k be a unit quaternion. Let f∈L2(R2,(R4,Q))
where Q is the quadratic form represented by I4 in the basis(e1,e2,e3,e4), and let
C be the unit bivector e4∧ (µ1e1 + µ2e2 + µ3e3). Then,f̂C given by

f̂C(u,v) =

∫

R2
f (x,y)⊥Φ̃u,v,0,0,C(−x,−y)dxdy

=

∫

R2
e

1
2(xu+yv)ICe

1
2 (xu+yv)C f (x,y)e−

1
2 (xu+yv)Ce−

1
2 (xu+yv)ICdxdy
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corresponds to the hypercomplex Fourier transform of f seenas aH-valued function
under the identification2

e1 ↔ i e2 ↔ j e3 ↔ k e4 ↔ 1,

Proof. We have to determine the four-dimensional rotation that is generated by the
action of the unit quaternioneµφ onH given by

q 7−→ eµφ q

It is explained in [5] that this rotation may be decomposed asthe sum of two two-
dimensional rotations of angle−φ in the planes generated by(1,µ) and its orthog-
onal (with respect to the euclidean quadratic form).
Therefore, we can identify this rotation with the action of the spinor

e−
φ
2 (C+IC)

on the four-dimensional spaceR1
4,0, and the action of group morphisms(x,y) 7−→

eµ(xu+yv) from R2 to H1 on H with the action of group morphisms(x,y) 7−→
e−

1
2(xu+yv)(C+IC) from R2 to Spin(4) onR1

4,0. •

Remark 4.To the best of our knowledge, the authors restrict for their applications to
µ taken as the grey axis, i.e.

µ =
1√
3
(i + j +k)

In other words, the Fourier transform they propose is decomposed as a standard
Fourier transform of the luminance part and a standard Fourier transform of the
chrominance part.

5.2 The quaternionic Fourier transform

The quaternionic Fourier transform of a functionf : R2 →R is the quaternion valued
functionF ( f ) defined by

F ( f )(y1,y2) =

∫

R2
exp(−2π iy1x1) f (x1,x2)exp(−2π jy2x2)dx1dx2.

The link between this Fourier transform and the one we propose is given by the next
result.

Proposition 8. Let f ∈ L2(R2;Re4) where(e1,e2,e3,e4) is the basis ofR4 that gen-
eratesR4,0. The Clifford Fourier transform of f defined by

2 The product law needs not to be respected since we just use an isomorphism of vector spaces
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f̂C(2πy1,0,0,2πy2) =

∫

R2
f (x1,x2)⊥Φ̃2πy1,0,0,2πy2,C(−x1,−x2)dx1dx2

where C is the bivector

−1
4
(e1 +e2)(e3−e4)

corresponds to the quaternionic Fourier transform of f seenas aH-valued function
under the following identification3

e1 ↔ i e2 ↔ j e3 ↔ k e4 ↔ 1,

Proof. We have to determine one of the two elements of Spin(3)× Spin(3) that
generate the following rotation inH :

f (x1,x2) 7→ exp(−2π iy1x1) f (x1,x2)exp(−2π jy2x2)

Simple computations show that the rotation

f (x1,x2) 7→ exp(−2π iy1x1) f (x1,x2)

can be written inR1
4,0 as

f (x1,x2) 7→ e−πx1y1(e4e1+e2e3) f (x1,x2)e
πx1y1(e4e1+e2e3)

In the same way,
f (x1,x2) 7→ f (x1,x2)exp(−2π jy2x2)

corresponds to

f (x1,x2) 7→ e−πx2y2(e4e2+e1e3) f (x1,x2)eπx2y2(e4e2+e1e3)

By associativity, this shows that

exp(−2π iy1x1) f (x1,x2)exp(−2π jy2x2) = e−τe−ρ f (x1,x2)e
ρeτ

where
τ = πx2y2(e4e2 +e1e3)

and
ρ = πx1y1(e4e1 +e2e3).

By definition,

χ(eρeτ) = χ(eπx1y1 e4e1)χ(eπx1y1 e2e3)χ(eπx2y2 e4e2)χ(eπx2y2 e1e3).

From simple computations, we get

3 The product law needs not to be respected since we just use an isomorphism of vector spaces
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χ(eρeτ) = (e2πx1y1 e2e3,e2πx2y2 e1e3)

and conclude therefore that

(x1,x2) 7→ (e2πx1y1 e2e3,e2πx2y2 e1e3)

is the morphism̃φ2πy1,0,e2e3,0,2πy2,e1e3.

From Section 3, this latter may be rewritteñΦ2πy1,0,0,2πy2,
1
4 (e1+e2)(e3−e4))

.
Indeed, we have

1
4

(
e2e3 +e1e3 + I(e2e3−e1e3)

)
=

1
4

(
e2e3 +e1e3−e1e4−e2e4

)

=
1
4

(
e1(e3−e4)+e2(e3−e4)

)
=

1
4

(
(e1 +e2)(e3−e4)

)

•

6 Conclusion

We proposed in this paper a definition of Clifford Fourier transform that is moti-
vated by group actions considerations. We showed how to generalize the notion of
characters to obtain a transformation which is parameterized by a quadratic form on
R4 and a unit bivector in the corresponding Clifford algebra. We have treated in this
context applications to color image processing. The spectral analysis we have per-
formed throws a new light on the work of S. Sangwine and al. From a mathematical
point of view, we associated the Clifford Fourier transformof a color image with
the action of group morphisms̃Φu,v,0,0,D from R2 to Spin(4), parametrized by two
real numbers (the frequencies) and where the bivectorD is fixed. More generally,
we defined a Clifford Fourier transform that is associated with the action of all the
group morphisms̃Φu,v,w,z,D, parametrized by four real numbers and one unit bivec-
tor. This transform has the nice property of being left-invertible. Further work will
be devoted to find applications of this transform, that should take more into account
relations between colors in the image. Others applicationsto 4 channels images (like
color/infrared images) should be investigated too.
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Appendix

A. Lie groups representations and Fourier transforms

From the groups theory approach, the basic structure we needto define Fourier
transforms is locally compact unimodular groups. Let us start by the definition of
the dual of a topological groupG, that is the set of the equivalence classes of its
unitary irreducible representations, denoted byĜ. We refer to [16] for details.

Definition 4. Group representation.
Let G be a topological group andV be a topological vector space overR or C.
A continuous linear representation(ϕ ,V) from G to V is a group morphism

ϕ : g 7→ ϕ(g)

from G to GL(V) such that the map

(a,g) 7→ ϕ(g)(a)

from V ×G to V is continuous. •

In general,V is an Hilbert space. IfV is finite-dimensional, then the representation
is said to be finite, and the dimension ofV is called the degree of the representation.

Definition 5. Irreducible representation.
A subspaceW of V is said to be invariant byϕ if ϕ(g)(W) ⊂W,∀g∈ G.
Then, the representationϕ is said to be irreducible ifW and{0} are the only sub-
spaces ofV that are invariant byϕ . •

Definition 6. Equivalent representations.
Let (ϕ1,V1) and(ϕ2,V2) be two linear representations of the same groupG. We say
that they are equivalent if there exists an isomorphismγ : V1 →V2 such that

γ ◦ϕ1(g) = ϕ2(g)◦ γ, ∀g∈ G

•

From now on,V is aC-vector space equipped with a hermitian form<, >.

Definition 7. Unitary representation.
The representationϕ is unitary with respect to<, > if

< ϕ(g)(a),ϕ(g)(b) >=< a,b > ∀a,b∈V ∀g∈ G

•

We now restrict to locally compact unimodular groups. On such groups, we can
construct a measure that is invariant with respect to both left and right translations.
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It a called a Haar measure. From a Haar measure is defined a Haarintegral of the
group.

Proposition 9. Let G be a locally compact unimodular group, andν denotes a Haar
measure. Then, for f∈ L2(G;C) and h∈ G, we have

∫

G
f (g)dν(g) =

∫

G
f (gh)dν(g) =

∫

G
f (hg)dν(g)

•

Remark 5.Locally compact abelian groups and compact groups are unimodular.

Definition 8. Fourier transform on locally compact unimodular groups.
Let G be a locally compact unimodular group with Haar measureν. The Fourier
transform off ∈ L2(G;C) is the mapf̂ defined onĜ by

f̂ (ϕ) =

∫

G
f (g)ϕ(g−1)dν(g)

•

Theorem 1. Inversion formula of the Fourier transform.
f̂ (ϕ) is a Hilbert-Schmidt operator over the space of the representationϕ . There is
a measure over̂G denoted bŷν such thatf̂ ∈ L2(Ĝ;C) and f 7→ f̂ is an isometry.
Moreover, the following inverse formula holds:

f (g) =

∫

Ĝ
Trace( f̂ (ϕ)ϕ(g))dν̂(ϕ)

•

Let us now have a closer look on Lie groups. We refer to [7] for an introduction to
differential geometry.

Definition 9. Lie group and Lie algebra.
A real C∞ Lie group is a topological group endowed with a structure of realC∞-
manifold. The Lie algebra ofG is (isomorphic to) the tangent space ofG at the
neutral elemente: TeG. It is usually denoted byg. It is equipped with an algebra
structure[ , ] overR, hence the map(X,Y) 7→ [X,Y] from g× g to g is R-bilinear.
Moreover it satisfies

[X,X] = 0 ∀X ∈ g

and
[X, [Y,Z]]+ [Y, [Z,X]]+ [Z, [X,Y]] = 0 ∀X,Y,Z ∈ g

•

Definition 10. Exponential map.
Let G be aC∞ Lie group. The exponential map ofG is the map fromg to G



24 Thomas Batard, Michel Berthier and Christophe Saint-Jean

exp: X 7−→ f (1)

where f : R → G satisfies

f (t +s) = f (t) f (s) ∀t,s∈ R

and
f ′(0) = X

f is called a one-parameter subgroup. •
To compute group morphisms fromR2 to Spin(3) and Spin(4), we use the following
result on Lie groups morphisms.

Proposition 10.Let G and H be two C∞ Lie groups, and expG,expH be their respec-
tive exponential maps. Letφ : G→ H be a Lie group morphism. The linear tangent
map ofφ at g, denoted by Tgφ , is the linear map from TgG to Tφ(g)H given by

Tgφ(X) =
d
dt

φ(gexpG(tX))|t=0

Then, if we note e the neutral element of G we have

φ(expG(X)) = expH(Teφ(X)) (5)

•
The mapTeφ is a Lie algebra morphism, i.e. it satisfies

Teφ([X,Y]) = [Teφ(X),Teφ(Y)] ∀X,Y ∈ g

From (5), we deduce that if the groupG is connected and the exponential map ofG
is onto, then the Lie group morphisms fromG to H are determined by Lie algebras
morphisms fromg to h.

B. Clifford algebras

Let V be a vector space of finite dimensionn over R equipped with a quadratic
form Q. Formally speaking, the Clifford algebraCl(V,Q) is the solution of the fol-
lowing universal problem. We search a couple(Cl(V,Q), iQ) whereCl(V,Q) is an
R-algebra andiQ : V −→Cl(V,Q) is R-linear satisfying:

(iQ(v))2 = Q(v).1

for all v in V (1 denotes the unit ofCl(V,Q)) such that for eachR-algebraA and
eachR-linear mapf : V −→ A with

( f (v))2 = Q(v).1

for all v in V (1 denotes the unit ofA), then there exists a unique morphism
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g : Cl(V,Q) −→ A

of R-algebras such thatf = g◦ iQ.

The solution is unique up to isomorphisms and is given as the (non commutative)
quotient

T(V)/(v⊗v−Q(v).1)

of the tensor algebra ofV by the ideal generated byv⊗v−Q(v).1, wherev belongs
to V (see [12] for a proof).

It is well known that there exists a unique anti-automorphismt onCl(V,Q) such that

t(iQ(v)) = iQ(v)

for all v in V. It is called reversion and usually denoted byx 7−→ x†, x in Cl(V,Q).
In the same way there exists a unique automorphismα onCl(V,Q) such that

α(iQ(v)) = −iQ(v)

for all v in V. In the rest of this paper we writev for iQ(v) (according to the fact that
iQ embedsV in Cl(V,Q)).

As a vector spaceCl(V,Q) is of dimension 2n onR and a basis is given by the set

{ei1ei2 · · ·eik , i1 < i2 < .. . < ik, k∈ {1, . . . ,n}}

and the unit 1. An element of degreek

∑
i1<···<ik

αi1...ikei1ei2 · · ·eik

is called ak-vector. A 0-vector is a scalar ande1e2 · · ·en is called the pseudoscalar.
We will denote〈x〉k the component of degreek of an elementx of Cl(V,Q).

The inner product ofxr of degreer andys of degrees is defined by

xr ·ys = 〈xrys〉|r−s|

if r andsare positive and by
xr ·ys = 0

otherwise.

The outer product ofxr of degreer andys of degrees is defined by

xr ∧ys = 〈xrys〉r+s

These products extend by linearity onCl(V,Q). Clearly, if a andb are vectors ofV,
then the inner product ofa andb coincides with the scalar product defined byQ.
When it is defined (for example whenx is a versor andQ is positive) we denote

‖x‖ =
√

xx†
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and say thatx is a unit ifxx† = ±1.

In the following, we deal in particular with the Clifford algebra of the EuclideanRn

denoted byRn,0. Rk
n,0 is the subspace of elements of degreek andR∗

n,0 is the group

of elements that admit an inverse inRn,0. We will denote byS2
n,0 the set of elements

of R2
n,0 of norm 1.

Let a be a vector inRn,0 andB be thek-vectora1∧a2∧·· ·∧ak, then the orthogonal
projection ofa on thek-plane generated by theai ’s is the vector

PB(a) = (a ·B)B−1

The vector
a− (a ·B)B−1 = (a∧B)B−1

is called the rejection ofa onB.

C. The spinor group Spin(n)

It is defined by

Spin(n) =

{
2k

∏
i=1

ai , ai ∈ R1
n,0, ‖ai‖ = 1

}

or equivalently

Spin(n) = {x∈ Rn,0, α(x) = x, xx† = 1,xvx−1 ∈ R1
n,0 ∀v∈ R1

n,0}

It is well known that Spin(n) is a connected compact Lie group that universally
covers SO(n) (n≥ 3). One can verify that Spin(3) is the group

{a1+be1e2 +ce2e3 +de3e1, a2 +b2+c2+d2 = 1}

and is isomorphic to the groupH1 of unit quaternions. It is also a classical result that
Spin(4) is isomorphic to Spin(3)×Spin(3) (see [9] for more information on spinors
in R3 andR4).

The Lie algebra of Spin(n) is R2
n,0 with Lie bracket

A×B= AB−BA

As the exponential map from its Lie algebra to Spin(n) is onto (see [7] for a proof),
every spinor can be written as

S=
∞

∑
i=0

1
i!

Ai

for some bivectorA.

From Hestenes and Sobczyk [8], we know that everyA in R2
n,0 can be written as
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A = A1 +A2+ · · ·+Am

wherem≤ n/2 and
A j = ‖A j‖a jb j , j ∈ {1, . . . ,m}

with
{a1, . . . ,am,b1, . . . ,bm}

a set of orthonormal vectors. Thus

A jAk = AkA j = Ak∧A j

wheneverj 6= k and
A2

k = −‖Ak‖2 < 0

This means that the planes encoded byAk andA j are orthogonal and implies that

eA1+A2+···+Am = eAσ(1)eAσ(2) . . .eAσ(m)

for all σ in the permutation groupS(m). Actually, asA2
k is negative we have

eAi = cos(‖Ai‖)+sin(‖Ai‖)
Ai

‖Ai‖

The corresponding rotation
Ri : x 7−→ e−Ai xeAi

acts in the oriented plane defined byAi as a plane rotation of angle 2‖Ai‖. The vec-
tors orthogonal toAi are invariant underRi .
It then appears that any elementR of SO(n) is a composition of commuting sim-
ple rotations, in the sense that they have only one invariantplane. The vectors left
invariant byR are those of the orthogonal subspace toA. If m = n/2 this latter is
trivial. The previous decomposition is not unique if‖Ak‖ = ‖A j‖ for some j andk
with j 6= k. In this case infinitely many planes are left invariant byR.
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