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Clifford Fourier Transform for Color Image
Processing

Thomas Batard, Michel Berthier and Christophe Saint-Jean

Abstract The aim of this paper is to define a Clifford Fourier transfdahat is suit-
able for color image spectral analysis. There have been rateynpts to define
such a transformation using quaternions or Clifford algsbie focus here on a
geometric approach using group actions. The idea is to gérerthe usual defi-
nition based on the characters of abelian groups by consglgroup morphisms
from R? to spinor groups Spin(3) and Spin(4). The transformationpnapose is
parameterized by a bivector and a quadratic form, the chafigéhich is related to
the application to be treated. A general definition for 4Dhsiglefined on the plane
is also given; for particular choices of spinors it coingdeth the definitions of S.
Sangwine and T. Bulow.

1 Introduction

During the last years several attempts have been made taaljeeehe classical
approach of scalar signal processing with the Fourier foansto higher dimen-
sional signals. The reader will find a detailed overview & thlated works at the
beginning of [1]. We only mention in this introduction somketloe approaches in-
vestigated by several authors.

Motivated by the spectral analysis of color images, S. Samgwnd T. Ell have
proposed in [13] and [5] a generalization based on the useiategnions: a color
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corresponds to an imaginary quaternion and the imaginanpéexi is replaced by
the unit quaternioru coding the grey axis. A quaternionic definition is also given
by T. Bulow and G. Sommer in the context of analytic signfds signals defined
on the plane and with values in the algebfaf quaternions [3]. Concerning ana-
Iytic signals, let us mention the work of M. Felsberg who mealse of the Clifford
algebrafR, g andR3 g to define an appropriate Clifford Fourier transform [6].

A generalization in the Clifford algebras context appedss & J. Ebling and G.
Scheuermann [4]. The authors mainly use their transfoonat analyze frequen-
cies of vector fields. Using the same Fourier kernel, B. Mahand E. Hitzer obtain
an uncertainty principle foRz o multivector functions [11]. The reader may find
in [1] definitions of Clifford Fourier transform and ClifforGabor filters based on
the Dirac operator and Clifford analysis.

One could ask the reason why to propose a new generalizatiomportant thing
when dealing with Fourier transform is its link with grouppresentations. We then
recall in section 2 the usual definition of the Fourier tramsf of a function defined
on an abelian Lie group by means of the characters of the giithgdefinition we
propose in section 3 relies mainly on the generalizatiomefrtotion of characters,
that is why we study the group morphisms frdd to Spin(3) and Spin(4). These
morphisms help to understand the behavior of the Fourieistoam with respect
to well chosen spinors. We treat in section 4 three appboaticorresponding to
specific bivectors oR4 . They consist in filtering frequencies according to color,
hue and chrominance part of a given color. In section 5, wavghat for particular
choices of group morphisms and under well chosen idenficatith quaternions,
the Clifford Fourier transform we propose coincides with ttefinitions of S. Sang-
wine [5] and T. Bulow [2].

2 Fourier transform and group actions

Let us recall briefly some basic ideas related to the groupcemh of the definition
of the Fourier transform. Details can be found in the Appgndée also [15] for
examples of applications to Fourier descriptors. R

Let G be a Lie group. The Pontryagin dual@f denoteds, is the set of equivalence
classes of unitary irreducible representation$ofit appears that ifs is abelian,
every irreducible unitary representation®fis of dimension 1, i.e. is a continuous
group morphism fronG to S'. This is precisely the definition of a character. It is
well known that the characters &™ are given by

()(17 . ,Xm) — ei(U1X1+.4.+Ume)

with ug,up, - - -, um, real. This shows thak™ = R™. The characters of SO(2) are the
group morphisms _
0 — e|n9
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for n € Z and the corresponding Pontryagin dua¥isThe characters df/nZ are

the groups morphisms
i 21ku
u—s e~

for k € Z/nZ, from which we deduce th&/nZ is its own Pontryagin dual.

In the general case (provided tiats unimodular), the Fourier transform of a func-
tion f € L?(G;C) is defined orG by

(9) = [ 100 (x vy

(for v a well chosen invariant measure @). Applying this formula to the case
G=R"™ resp.G=S0(2), respG = Z/nZ leads to the usual definition of the Fourier
transform, resp. Fourier coefficients, resp. discret Fentransform.

From now on, we deal with the abelian gro(®?, +) since this paper is devoted to
applications to image processing.

Traditionally, the Fourier transform of a function that ialwed inR" is defined
by n standard Fourier transforms on each one of its componestaglgroup rep-
resentations theory, we are able to define Fourier transfoiiat unify the different
components.

Let us first treat the case= 2.
Let f be a real or complex valued function defined®f Its Fourier transform is
given by

~

fla,b) = /]R f(xy)e @ dxdy

Under the identification ofC with (R?,[|||2), we haveS'=SO(2) and the action
of St on C, given by the complex multiplication, corresponds to théioac of
the group SO(2) or(R?, ||||2). Therefore, we can define a Fourier transform in
L?(R?,(R?,||||2)) using the action of group morphisms froR®? to SO(2) on
(R?,]||l2). These one are real unitary representations of the gidugs dimension 2.

Let us make the following crucial remark:

the Fourier transform of € L2(R?, (R?,||||»)) defined above can be written in the
Clifford algebra language. Indeed, from the embeddingR#, ||||2) into Ry, f
may be viewed as R%’O-valued function

f(xy) = fi(x,y)er + f2(x,y)e2

Wheree% = % =1 ande;e; = —eper. From this point of view, the Fourier transform
of f is given by

~

flab) = [ lcos(ax+by)/2)1-+ sin((axct by) 2)ere] (fa(x y)ew + o(x.y)es)
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[cog —(ax-+ by)/2)1 + sin(— (ax+ by)/2)e;e;) dxdy

using the fact that the action of Spin(2) @jo corresponds to the action of SO(2)
on (R?,]|||2) (see Appendix). We can write this last formula in the follagiform:

~

flab) = [ (fuley)er-+ fax y)en) Lgap(~x ~y)dxdy

where ¢, 1, is the morphism fronR? to Spin(2) that send$x,y) to exgd((ax+
by)/2)(eiez)] and L denotes the actionls= s *vsof Spin(2) onR3 ,, and more

generally the action of Spin(n) d@,lw.

Note that group morphisms frof? to Spin(2) followed by the action dﬁ%’o cor-

respond to the action of group morphisms fréfAto SO(2) on(R?, ||||2). In other
words, they are real unitary representation®éfof dimension 2 too.

Remark 1As in the standard case, where the Fourier transform of avaaked
function is defined by embeddifRjinto C, we define here the Fourier transform of
a real valued function by embeddifginto R.

Starting from these elementary observations, we now pobtegeneralize this con-
struction forR"-valued functions defined oR?. In other words, we are looking
for a generalization of the action of group morphisms to S@f2the values of a
(R?,]|||2)-valued function.

3 Clifford Fourier transform in  L?(R?, (R",Q))

Let f € L2(R? (R",Q)). We propose to associate the Fourier transforni efith
the action of the following group morphisms on the values oflepending on the
parity of n.

If nis even, then we consider the morphisms
¢ : R? — SOQ)
If nis odd, then we embe@®", Q)) into (R™*, Q& 1) and consider the morphisms
¢ :R> — SOQ®1)

We deduce that ifiis even, then the Fourier transform bfs aR"-valued function,
whereas if is odd, the Fourier transform dfis aR"1-valued function.

Thus the generalization we propose is based on the compuitaitreal unitary rep-
resentations of dimensianor n+ 1 of the abelian grouf®?. The main fact is that



Clifford Fourier Transform for Color Image Processing 5

we no more consider equivalent classes of representafibissmeans in particular
that the Fourier transform we define depends on the defingiiy® quadratic form
of R".

Remark 2For Q=1 onR, the Fourier transforms we define correspond to the stan-
dard Fourier transforms d&-valued functions.

Remark 3Recall that up to a change of the basis, a definite positivdratia form

is given by the identity matrix. Therf,may always be viewed as®', ||||2)-valued
function{ denotes is nis even anch+ 1 if n is odd). As a consequence of the
change of the basis, SQ) become SO(l) and group morphisms fr@®A to SOQ)
become group morphisms froR? to SO().

As for the case oR2-valued functions, we can rewrite the Fourier transformhia t
Clifford algebra language, using the fact that the actioBmnh(l) onRﬁo correspond

to the action of SO(I) ofR!. This rewrite is motivated by the fact that it appears to
be much more easier to compute group morphisms to Spinfigratan group mor-
phisms to the matrix group SO(I).

If n is even, then from the embedding Bf into Ry, o, f may be viewed as Rﬁ,o—
valued function,

f(xy) = fa(x,y)er + fa(x,y)e2 +--- + fn(X,y)en

Wheree;2 =1 andeej = —ejg. Denoting by¢ a group morphism fronR? to
Spin(n), we define the Clifford-Fourier transform bby

f0) = [, 60y T(xy)o(—x—y)axdy= | 10y)Lo(~x—y)xdy

If n is odd, we first embed" into R"*1. Then, from the embedding &"*! into
Rnt1,0, f may be viewed as B% +170-valued function,

f(X,y) = f]_(X,y)e]_—|- fZ(Xay)e2+ R fn(X,y)en—l—Oen+1

Wheree;2 =1 andeej = —ejg. Denoting by¢ a group morphism fronR? to
Spin(n+1), we define the Clifford-Fourier transform oby

f(0) = [ 000 fxy)o(—x—yydxay= [ f(xy)Lo(~x—y)dxdy

From now on, we deal with the case n=3 since this paper is ddvotcolor image
processing. However, we have seen above that we treat teg 0a8 and n=4 in the
same manner, by computing group morphisms fidfrto Spin(4).
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3.1 The cases n=3,4: Group morphisms frdRt to Spin(4)

This part is devoted to the computation of group morphismsiR? to Spin(4).

Using the fact that the group Spin(4) is isomorphic to theugr8pin(3)x Spin(3),
we first compute group morphisms fraR? to Spin(3).

One can verify that Spin(3) is the group
Spin(3)= {al+ beie; + cees + deser, a2 +b*+ ¢ +d* =1}
and is isomorphic to the group of unit quaternions.
Proposition 1. The group morphisms froii? to Spin(3) are given by
(xy) s g2
where B belongs t§§10 and u and v are real.

Proof. We have to determine the abelian subalgebras of the Lie egen(3) =
R%,o of the Lie group Spin(3). More precisely, as the exponentiap ofR? is onto,
group morphisms fronR? to Spin(3) are given by Lie algebra morphisms from the
abelian Lie algebr&i? of R? to spin(3). Taking two generatoréfy, f) of )2, any
morphismg from 9.2 to spin(3) satisfies:

¢(f1) X ¢(f2) =0.

We deduce thatm(¢) is an abelian subalgebra & , of dimension< 2. If a =

a1616& + axese; + azexes andb = bieey + boesey + b:;ezeg satisfya x b= 0, then
the structure relations di%jo, i.e.

€16 X €36 = €63, €3€] X €263 = 1€, €263 X €167 = €361,
imply
(arhy — asby)ese3 — (a1hz — agby)eser + (axbz — aghy)ere = 0.

This shows that two commuting elements}RﬁO are colinear and that the abelian
subalgebras dR3 , are of dimension 1. If we writé (f;) = 3uBand¢(f,) = 3vB

for someu,v € R andB € §3,, we see that the morphisms frofi to R3, are
parameterized by two real numbers and one unit bivectoraamdiven by

1
duvs: (XY) — E(UX"‘ vy)B

Consequently, the group morphisms frd@a to Spin(3) are the morphisni, s
with
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Eﬁu.v,B C(xy) e%(“XJrVY)B

Let us recall what group is Spin(4). Everyin Spin(4) is of the form
T=U+lv
= (al+bee, +cees+deser) +1(a 1+ berer + Ceres + d'eser)
wherel denotes the pseudoscalafRfg and the following relations hold:
uu+w=1 uw+vi=0
The morphisny: Spin(4)— Spin(3)x Spin(3) with
X(Uu+Iv)=(u+v,u—v)

is an isomorphism. An alternative description of Spin(4ipseon the following fact:
the morphismyp : Hj x H; — SO(4) defined by

(T,p) — (vi— TVp)

(wherev is a vector ofR* considered as a quaternion) is a universal covering of
SO(4) (see [12]). This means that Spin(4) is isomorphitliox H1. We will use
this remark later on to compare our transform to SangwinetsBillow’s ones.

Proposition 2. The group morphisms frof®? to Spin(4) are the morphisn&gyv’gyw’zvc
that sendx,y) to

8 X(UHW)+Y(v+2)] [B+C+ (B—C)] o [X(U—W)+y(v—2)][B-C+ (B+C)]
with u, v, w, z real and B, C two elementsSgf,.
Proof. The group law of Spin(3x Spin(3) being
((ab),(c.d)) — (acbd)

the group morphisms fror? to Spin(3) x Spin(3) are the morphism, s wzc
defined by
au,V.B,vv.z,C L (X,y) — (e%(uxﬁ-vy)B’e% (W><+zy)c)

with u, v, w, zreal andB, C two elements oS%}O.

By x 1, the group morphisms frofR? to Spin(4) are the,yswzc that sendx,y)

to
g3 (Uxtvy)B _|_e%(wx+zwc @3 (WVY)B _ gF (wx+2y)C

| B
2 * 2
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However, this writing is not convenient to determine grouprphisms to SO(4)
since it doesn’t provide explicitly the rotationskf that@,vewzc generates by its
action onIR{}LO. The solution comes from an “orthogonalization” of the espond-

ing Lie algebras morphism fro®t* to Rﬁ.o, namely the linear map
QuBwzc(X,Y) = To0) Guyswzc(X,Y)

whereT denotes the linear tangent map. By definition,

d/~
Quemac(XY) = 2 (Quemec(EXpt(X.Y))))

t=0

The exponential map @&?2 being the identity map, we get

d/~
QuBnzc(%,Y) = o (s wzct(X.Y)))

t=0

d ,e3(uxX+vY)B + o3 (WX+2Y)C @3 (UX+VY)B _ o3 (WX+2Y)C
~dt ( 2 i 2 )

(UX+VY)B+ (WX +2zY)C | (UX+VY)B — (WX +2zY)C

4 + 4
The “orthogonalization” of the morphism, g wzc consists in decomposing the
bivectorq,vewzc(X,Y) for eachX,Y into commuting bivectors whose squares are
real. The corresponding spinor is written as a product of morting spinors of the
form € with Fi2 < 0. These ones represent rotations of ar%gl%,2 in the oriented
planes given by th&’s. In our case, the bivectap,vsw-c(X,Y) is decomposed
into F1 + F, where

t=0

Fi= g [(X(utw) +¥(v+2)(B+CH1(B-C))]
F = é [(X(u-w) +Y(v-2)(B-C+1(B+0))]

(see the Appendix for details). The group morphismgs wzc from R? to Spin(4)
can then be written as

aJ (X y) e[ (ux+vy)B-Z(wx+zy)C+| (ux+vy)B:1(wx+Zy)C]
Vv.BwzC\AY) =

— e8l(X(U+w)+y(v+2))(B+C+I(B-C))] o [(X(u-w)+y(v-2))(B-C+I(B+C))]

This is the convenient form to describe group morphisms fRfto SO(4).

To conclude this part, let us remark that the expressioneombrphismsﬁjyv’syw’zyc
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may be simplified. Indeed, whdéhandC describe&SiO C Ry, the unit bivectors
1
Z(B+C+I(B—C))

decribeS3 ..

Moreover, if we put
D= %(B+C+I(B—C))
then we have 1

Therefore, the morphisnﬁ,vg\,\,,z.c are in fact parametrized by four real numbers
and one unit bivectdd ¢ 840, and may be written

Buvmzn(X,y) = €3 [X(W+y(v+2)D] g (xu-w)-+y(v—2)ID)]

3.2 The cases n=3,4: The Clifford Fourier transform

From the computation of group morphisms frdA to Spin(4), we give an explicit
formula of the Clifford Fourier transforn of f € L?(R?, (R2,Q)) orL?(R?, (R*,Q)).

Definition 1. Let f € L?(R?, (R3,Q)), respL?(R?, (R*,Q)) and denote by the em-
bedding off into the Clifford algebraCl(R*,Q @1), resp.Cl(R*,Q). The Clifford
Fourier transform off is given by

fA(u,v,W,z, D)= /RZ f(X,Y)J-&’u,\/.vv,z.D(—Xa —y)dxdy

=)o

& 310xu+w)+y(v+2) Dl g 3 [(u—w)+9(v—2)ID] g gy

30wt w) +y(v+2)1D] 3 [(<u-w) +y(v-2)D) £ ( y)

N

Decomposingf as f| + f, with respect to the plane generated by the biveBtor
we getf(u,v,w,z,D) =

/ fH X,y)e X(u+w)+y(v+2)) dxdy+/ f(xy)€ (X(u+w)+y(v+2))ID] dxdy
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Indeed, the plane generated Hy represents the orthogonal i&* of the plane
generated byD.

Proposition 3. The Clifford Fourier transform is left-invertible. Its ievse is the
map given by

§la,b) = / 9(u,v,W,Z, D) L B ywzp(a,b)dudvdwdze
R“xSio

wherev is a unit measure o .

Proof. We have to verify that™(f) = f, i.e. o~ (f)(A,u) = f(A,u) Y(A,u) € R?

T (F)(A,m) =
— [ / £ (x, y)d~ (XU w (v 2)Dlg qu A (HW)+u(v+2)Dl 4y dvdwdz o
R4xS3, L/R?
1)
n / [/ £ (x y)e[—(x(u+w)+y(v+z))lD]dxd)% A (WHw)+u(v+2)ID 4, dv dwd z of
Rixs2, L2 7
(2)

Itis sufficient to prove that (13 (A, ).
(1):/ / fi|(x,y)el AW HE=Y) (v 21Pgx dy du dv dw d zd
R4xS3, JR2
:/ / fi (x,y)e" DMt —x)De/tyDkYDyx dy dudvdwdze
R4x83, JR2
:/ / i1 (x y)(/e“("‘X>Ddu)eW<’\‘X)De"<“‘y)Dez(“‘y>dedvdzd'dxdy
R? JR3xSZ I R
- / / £ (%) / @A -XDqw) e/ VP Yy dz b dxdly
R? JR3xS3 TNJR
— V(1—y)D
/]Rz /szsio fH(x,y)é,\.Xé,\.X(/Re dv)dzav dxdy
= (H-y)D
/Rz /Mio fH(x,y)aA’xéA,xa,J.y(/ReZ dz)dvdxdy
:/Rz /S2 £ 06Y) 3 1 xOyry Gy v dxcly
2,0

= [, 1Y)81 81 By By dxy= 1 (A, )
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4 Application to color image filtering

4.1 Clifford Fourier transform of color images

For the applications we have in mind to color image filtering, define a partial
Clifford Fourier transform, i.e. we deal with a subset of & of unitary group rep-
resentations dk? of dimension 4. The subset we consider will depend of thersolo
we aim at filtering. N

More precisely, we restrict to the set of group morphishgo o0p Where the bivec-
tor D is fixed.

Definition 2. Clifford Fourier transform with respect to a bivector.

Let f € L2(R?,(R3,Q)), resp.L?(R?, (R*,Q)) and denote by the embedding of
into the Clifford algebraCl(R*,Q @1), resp.ClI(R* Q). The Clifford Fourier trans-
form of f with respect to the bivectd is defined by

o~

fo(u,v) = /R L F(Y)L Puyoon(—x, —y)dxdy

_ e% (Xu+yv)ID e% (xu+yv)D ¢ (x,y)e" 1 (xu+yv)D e 1 (xu+yv)ID dxdy
R2

It follows the definition of the Clifford Fourier transfornfa color image.

Definition 3. Clifford Fourier transform of a color image.
Let| be a color image. We associatel ta functionf € L?(R?, (R*,Q)) defined by

f(xy) =r(x,y)er+9(x,y)e2 4 b(X,y)es + Oes

wherer, g andb correspond to the red, green and blue levels.
The Clifford Fourier transform of with respect toQ andD is theCI(R*, Q@ 1)-
valued functiorig p defined by

Too(uv) = fo(uv) = [ F(xy)L Buyoon(—x—y)dxdy
[ ]

Thus given a color image, we define a set of associated Gliffourier transforms
parametrized by the set of definite positive quadratic foom&2 and unit bivectors
in R4’0.

In the same way as for the Clifford Fourier transformLif{R3, Q) andL?(R* Q),
we can show that the Clifford Fourier transform of a color geas invertible.

Proposition 4. Let f € L2(R?,(R3,Q)) and D be a unit bivector in GR*, Q@ 1).
Then, the Clifford Fourier transform of f with respect to Difisertible. Its inverse
is the mapdefined by
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60cy) = [, 8(1.¥) L Buyoon(xy)dudv
Proof. Decomposing with respect to the plane generateddyas

we have

~

fo(v) = [ (1) 06y)+ 1Y) L Buyoop(—x—y)dxdy

This can be written R R R
fD(u7V) = fDH (U,V) + fDL (U,V)

where
fo (V) = [ 1()L Busoon(—x,—y)dxdy
— / | (x,y)e @ WPdxdy
R2

and
fo, (u,v) =/Rz fL(XY)L ®Puyo0p(—X% —Yy)dxdy

:/ fL(x,y)e‘wX*"y)'Ddxdy
R2

Let us remark that each one of the two integrals may be idedtifiith the Fourier
transform of a function froriR? to C. Then, we deduce that there exists an inversion
formula (left and right) for the Clifford Fourier transforrfy given by

f(xy) = /R To(u.v) L Buyoop(x y)dudv
Indeed, the right term equals

[, (u3) + fo, (1) L Busoop (x.y)dudy

:/ ﬂDH(U,v)e<u><+vy>Ddudv+/ fo, (u,v)eWPdudy (3)
R2 R2

Each one of these integrals may be identified with the ingar$ormula of the
Fourier transform of a function frok? to C, hence

(3) = fH (va) + fJ_(Xay)

= f(X,y)

The following proposition is useful for applications andparticular for applica-
tions to the filtering of frequencies developed in the negtise. It gives an integral
representation of any 3D-valued signal defined on the plgnglbvalued cosinu-
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soidal signals. This representation is obtained from th&#d@l Fourier transform
with respect to some bivector. In this proposition we shoat the representation is
invariant with respect to the choice of the bivector. In tiiscdete case, we obtain a
decomposition of the signal as a sum of cosinusoidal signals

Proposition 5. With the previous notations, if B and D are elemenﬁﬁty, we have
i (U,V) L Buyo08(X.Y) + fa(—u,—v) L ®_u_yo08(X.Y)

= To(U,V) L Puyoon(Y) + fo(—u,—v) L @y yo0p(%Y)
Moreover, the g component of this expression is null.

Proof. Simple computations show that
ﬁB(U,V)J— &)u,v,O,O,B(X7 y) + ﬂ%(_uv —-v)L ‘5—u,—v,0,0,B(Xa y) (4)

_ [ e MPBIB) 1P (BIB) 4 A, p)e AR (B+1B) X5 (B+1B) 4\ du
R2

KW (B4 IB) — AUTHY (B4 |B) F(A

T e 2 pye’ 5 (BBl BB g gy

)

_ /R2 2605(U(x— A) +V(y— 1)) (A, w)dAdu

+/RZZcos(u(x—)\)+v(y—u))fL()\,u)d)\du.
Hence
(4):/Rchos(u(x—)\)+v(y—u))f()\,u)d)\du.

This proposition justifies the fact that the filters used grametric with respect to
the transformatioriu,v) — (—u, —v).

4.2 Color image filtering

We now present applications to color image filtering. The ofsne Fourier trans-
form is motivated by the well known fact that non trivial filgein the spatial do-
main may be implemented efficiently with masks in the Foudi@main. Although
it seems natural to believe that the results on grey levefjgaanay be generalized,
there are not so many works dedicated to the specific casd@fiotages. Let us
mention the reference [14] where an attempt is made throgluse of an adhoc
quaternionic transform. The mathematical constructionpnegpose appears to be
well founded since it explains the fundamental role of bivezand scalar product
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in terms of group actions. As explained before, the possitith choose the bivec-
tor D and the quadratic forr® is an asset allowing a wider range of applications.
Indeed, Sangwine and al. proposal can be written in our fiismaby considering
appropriateD andQ.

The applications we propose in this paper are based on tlegvfop fact:

— o —

(fo)y=(f), and  (fo).=(f1)p

In other words, the part of the Clifford Fourier transform fothat is parallel tadD
corresponds to the standard Fourier transform of the pafttogt is parallel tdD.
The same principle holds for the orthogonal part.

Our purpose is to apply some low pass, high pass and diredtiitters on theD-
parallel part, respD-orthogonal part, leaving the-parallel part, respD-orthogonal
unmodified. The choice of the bivectbrand the quadratic forr® (that determines
the D-orthogonal part) will depend on the colors we aim at filtgrimhen, we show
the result of such filters using the inversion formula of tHéf@d Fourier trans-
form.

There is an other way to decompose a cadgrthat is with respect to its lumi-
nance and chrominance parts, respectively denoteld landv,. Embedding the
color space RGB into the Clifford algebRa, ¢ by

i(r,g,b) =re;+ge +be;

the first corresponds to the projection of the color on the geinerated by the unit
vector (e; + & + e3)/+/3, and the latter to its projection on the orthogonal plane
in e;epes, called the chrominance plane, represented by the unittuvée; e, —
eres + ee3)/3. In what follows we make use of the following fact too: evee
can be represented as an equivalence class of bivect®&gpMore precisely, we
have the following result.

Proposition 6. Let T be the set of bivectors
T={(e1+e+e3)Ai(a), a € RGB}
with the following equivalence relation:
B~C < B=AC forA >0

Then, there is a bijection betweenf T and the set of hues.

Proof. We have
(&1 +e+e3)Ai(a) = (e1+ e+ e3)vqy

wherevy is the projection ofr on the chrominance. Then, there is a bijection be-
tweenT / ~ and the sete; + e + e3) v for v a unit vector in the chrominance plane.
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This latter being in bijection with the set of different hygse conclude that there
exists a bijection betweeh/ ~ and the set of hues. °

Fig. 1 Original images : Fourier house (left), Flowers (right)

Figure 1 shows the original images used for these expershdrgft imagel is a
modified color version of the Fourier house containing regsadured red, green,
cyan stripes in various directions, a uniform red circle aned square with lower
luminance. Rightimagéis a natural image taken from the berkeley image segmen-
tation database [10].

Fig. 2 IAQLelal : Log-modulus (left) and directional cut filtering (righ®fthe red color

1 Available at http://mia.univ-larochelle.fe’> Production— Démos
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Figure 2 (left) is the centered log-modulus of tBeparallel part ofIAQLD where
Q is the quadratic form such thg @ 1 is given by the identity matrixylin the
basis(er, e, e3,€4), andD the bivectore es. Figure 2 (right) is the result of a di-
rectional cut filter aroundt/2 which removes of vertical frequencies. Let us point
out that horizontal green stripes are not modified sincergcedor 25%, belongs to

ID = ese3.

Fig. 3 Low pass filterings ofg, e,e, (left) and onIAQl (

T (right) for respectively red color

and red hue

Figure 3 shows the difference between a low pass filter inOkgarallel part of
10,.e,e, (l€ft) and theD-parallel parﬂAQl,%@ZJr%)el (right). The first one consists in
removing high frequencies of the red components of the imabereas the second
one consists in removing high frequencies of the red huegfdinie image.

On the left image, we can see that both green and cyan stripesoa modified.
As in the previous case, this comes from the fact that botergmlor and cyan
color 25%, + 2553 belong tolD. The result is different on the right image. The
unit bivector%2 (e +e3)er = % (e1 + e+ e3) A g represents the red hue, that's
why the cyan stripes are blurred. Indeed, unit bivectorseggnting cyan and red
hues are opposite, therefore they generate the same pleeen &ripes are no more
invariant to the low pass filter since the green agiss not orthogonal to the bivector

%2(924‘93)91.
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Fig. 4 J, vare, :Low pass (left) and high pass (right) filters with= (96,109 65)

[Va Aeyll

Q1,

On Figure 4, the coloor has been chosen to match with the color of the green leaves.
As the low pass filter (left) removes green high frequendies,center of flowers
containing yellow high frequencies turns red. On the righage, background pix-

els corresponding to green low frequencies appear almegt gr

To conclude this part, we propose to compare the results ofltw pass filters
on theD-orthogonal part with respect to the same bive@o£ e;e4 but changing
the quadratic form. As a consequence, the biveldodiffers in the two cases. For
the first one (Figure 5, left image), we take, whereas for the second one (Figure
5, right image), we construct the quadratic fo@p such thatQ, is given by | in

the basige, \%(eﬁr €), %,e@. In other words, we orthogonalize the red, the
yellow and the color of leaves. They correspond to the malarsdhat are present
in the image.

On the left image, the unit bivectdD is e;e3. Hence, the low pass filter removes
green and blue high frequencies but preserves red highdregjes. This explains

why the image turns red. On the right image, the unit bivetiiois (eljie” H:EggH’
then it contains the colors of the background and inside tvedils. Therefore, the
low pass filter removes all the high frequencies in the imagept the ones of the

red petals.

This last application shows the great applicability of thkadratic form.

5 Related works

To conclude this paper, we show how to recover the hypercextmurier transform
of S. Sangwine and the quaternionic Fourier transform of tlo® in the Clifford
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Fig. 5 Low pass in théD part : Jo, je,e, (I€ft) andJo, e,e, (right)

algebras context, using the appropriate morphism fifio Spin(4). First of all,
let us recall the definitions of these Fourier transforms.

5.1 The hypercomplex Fourier transform

In [5], the authors define the discrete hypercomplex Fouramsform. It can be
extended t@R? as follows. Letf : R? — H, then its hypercomplex Fourier transform
is given by

F(u,v) = /RZ e HXHWI £ (¢ y)dxdy

wherepu € Ho N Hyj.

There is a freedom in the choice gfin the hypercomplex Fourier transform as
we have a freedom in the choice of the bivedibin the Clifford Fourier trans-
form for color images. In fact, they have the same role, heytdecompose the
four-dimensional spacg* into two orthogonal two-dimensional subspaces and de-
compose the Fourier transform into two standard Fourigrsfieams.

This is shown in the following proposition.

Proposition 7. Letu = pii + Uz j + psk be a unit quaternion. Let & L?(R?, (R*,Q))
where Q is the quadratic form represented hyrl the basige, e, e3,€4), and let
C be the unit bivectorgn (u1e1 + poes + pses). Then,fc given by

~

fe(uy) = [, 1Y) L Buuooc(—x ~y)dxdy

_ / @3 (XUHW)IC o3 (xU+yVC ¢ xy)e" 3(xuty)Co—3 (UHVIC gy gy
R2
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corresponds to the hypercomplex Fourier transform of f seseaiHl-valued function
under the identificatioh

e i | e3—k gl

Proof. We have to determine the four-dimensional rotation thatisegated by the
action of the unit quaterniogt'? onH given by

q— e'%q

It is explained in [5] that this rotation may be decomposethassum of two two-
dimensional rotations of angle@ in the planes generated 9%, ) and its orthog-
onal (with respect to the euclidean quadratic form).

Therefore, we can identify this rotation with the action loé spinor

e—g(c+|0)

on the four-dimensional spadié}.o, and the action of group morphisnis y) ——
ey from R? to Hy on H with the action of group morphism&,y) —
e~ 2(urW(CHIC) from R2 to Spin(4) orRY . .

Remark 4To the best of our knowledge, the authors restrict for thejligations to
U taken as the grey axis, i.e.

H=liti+k

In other words, the Fourier transform they propose is deamsag as a standard
Fourier transform of the luminance part and a standard Eodransform of the
chrominance part.

5.2 The quaternionic Fourier transform

The quaternionic Fourier transform of a functibnR? — R is the quaternion valued
function.# (f) defined by

F(F)(y1,¥2) = /RZ exp(—2my1Xy) f (X1, X2)exp(—21Tjy2x2) dx dXp.

The link between this Fourier transform and the one we prejggiven by the next
result.

Proposition 8. Let f € L?(R?;Rey) where(ey, e, 3, €4) is the basis oR* that gen-
eratesR4 0. The Clifford Fourier transform of f defined by

2 The product law needs not to be respected since we just usemoiphism of vector spaces
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~

fC(ZHYl, Oa Oa ZHYZ) -

/R? f (X1, X2) L P2ny, 0.0.2my5.c(—X1, —X2) dxa0%
where C is the bivector

—%(e1+ez)(e3—e4)

corresponds to the quaternionic Fourier transform of f sasmaH-valued function
under the following identificatich

el e—j] es—k g«1

Proof. We have to determine one of the two elements of Spir{SJpin(3) that
generate the following rotation iH :

f(x1,X2) > exp(—21y1xq) f (X1, X2) €XP(—27T]y2%2)
Simple computations show that the rotation
f(x1,%2) — exp(—2miy1x1) f (X1, X2)
can be written iRy ; as

f(Xq,Xp) s & TPYL(C4CLTE283) f (0, ) @/Paa(€aerteoes)

In the same way,
f(x1,%2) — f(x1,%2)exXp(—27jy2x2)

corresponds to
f(xe,%) — oYz (esertees) ¢ (X1,X2) g™oY2(es€2+e1€3)
By associativity, this shows that

exp(—27y1x1) f (X1, %2) exp(—27Tjy2x2) = € 'e P f(xq, x2)e’e’

where

T = TXoY2(€4€2 + €163)
and

p = TiX1Y1(€4€1 + €2€3).
By definition,

X(epef) — X(enxlyle491)x(enxlyl ezes)x(enxzyzmez)x(eﬂxzyz 9193).

From simple computations, we get

3 The product law needs not to be respected since we just usemoiphism of vector spaces
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X(ePeT) _ (e2ﬂ><1y162937e2"><2y291€3)
and conclude therefore that

(X1,%2) — (927'0(1)/1 283 2T02y2 €1%)

is the morphismny, 0.e.e;,0,.27y5,e105-

From Section 3, this latter may be rewritt&gnyl 0021y, (er+e2) (e3—e2))°
Indeed, we have

1

4(eze3+eles+l(eze3—eles)) = 1(eze3+e1e3—ele4—eze4)

4
1

4((e1+ez)(es— e4))

= 7 (oo e renfes—e)) =

6 Conclusion

We proposed in this paper a definition of Clifford Fouriemiséorm that is moti-
vated by group actions considerations. We showed how torgiérethe notion of
characters to obtain a transformation which is parameddiy a quadratic form on
R* and a unit bivector in the corresponding Clifford algebra héve treated in this
context applications to color image processing. The spkatralysis we have per-
formed throws a new light on the work of S. Sangwine and alnFaomathematical
point of view, we associated the Clifford Fourier transfoofma color image with
the action of group morphism®y 0,0, from RR? to Spin(4), parametrized by two
real numbers (the frequencies) and where the biveta fixed. More generally,
we defined a Clifford Fourier transform that is associatethwhe action of all the
group morphismsby ywzp, parametrized by four real numbers and one unit bivec-
tor. This transform has the nice property of being left-iide. Further work will
be devoted to find applications of this transform, that stiéalke more into account
relations between colors in the image. Others applicatodschannels images (like
color/infrared images) should be investigated too.
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Appendix

A. Lie groups representations and Fourier transforms

From the groups theory approach, the basic structure we teeddfine Fourier
transforms is locally compact unimodular groups. Let ustdig the definition of
the dual of a topological grou@, that is the set of the equivalence classes of its
unitary irreducible representations, denoteddby\e refer to [16] for details.

Definition 4. Group representation.
Let G be a topological group and be a topological vector space ovior C.
A continuous linear representati¢f,V) from G toV is a group morphism

¢:9—¢(9)
from G to GL(V) such that the map

(a,9)— ¢(9)(a)
fromV x GtoV is continuous. °

In generalV is an Hilbert space. ¥ is finite-dimensional, then the representation
is said to be finite, and the dimension\bfs called the degree of the representation.

Definition 5. Irreducible representation.

A subspac&V of V is said to be invariant by if ¢ (g)(W) CW,Vge G.

Then, the representatighis said to be irreducible ¥V and{0} are the only sub-
spaces oY that are invariant by. °

Definition 6. Equivalent representations.
Let (¢1,V1) and(¢y,V>) be two linear representations of the same grGupVe say
that they are equivalent if there exists an isomorphjsria; — V, such that

yod1(9) = ¢2(9)oy, VgeG

From now ony is aC-vector space equipped with a hermitian form >.
Definition 7. Unitary representation.
The representatiog is unitary with respect tec, > if

<¢(9)(a),¢(9)(b) >=<ab> VabeVVvgeG

We now restrict to locally compact unimodular groups. Onhsgecoups, we can
construct a measure that is invariant with respect to bdttatel right translations.
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It a called a Haar measure. From a Haar measure is defined arttegnal of the
group.

Proposition 9. Let G be a locally compact unimodular group, andenotes a Haar
measure. Then, for &€ L?(G;C) and he G, we have

Lt@avie)= [ fanavig = | f(hgav(g

Remark 5Locally compact abelian groups and compact groups are uhitao

Definition 8. Fourier transform on locally compact unimodular groups.
Let G be a locally compact unimodular group with Haar measur&he Fourier
transform off € L?(G;C) is the mapf defined orG by

0= [ 1@e(@Hav(g

Theorem 1.Inversion formula of the Fourier transform.

f(¢) is a Hilbert-Schmidt operator over the space of the reprwmn ¢. Thereis
a measure oveG denoted by such thatf e L2(G C) and f— f is an isometry.
Moreover, the following inverse formula holds:

f(g) = [ Trace f(9)¢(@)dv(9)

Let us now have a closer look on Lie groups. We refer to [7] foirdroduction to
differential geometry.

Definition 9. Lie group and Lie algebra.
A real C* Lie group is a topological group endowed with a structureesfl €7-
manifold. The Lie algebra o6 is (isomorphic to) the tangent space Gfat the
neutral elemené TeG. It is usually denoted by. It is equipped with an algebra
structure[, ] overR, hence the mapX,Y) — [X,Y] from g x g to g is R-bilinear.
Moreover it satisfies

X,X]=0 VXeg

and
[X, [Y,Z]] + [Y7 [Z,X]] + [27 [XvY]] =0 VX,)Y,Z€g

Definition 10. Exponential map.
Let G be aC™ Lie group. The exponential map & is the map fromg to G
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exp: X +— f(1)
wheref : R — G satisfies
f(t+s) =1f(t)f(s) Wt,seR

and
f'(0) =X

f is called a one-parameter subgroup. .

To compute group morphisms froR? to Spin(3) and Spin(4), we use the following
result on Lie groups morphisms.

Proposition 10.Let G and H be two € Lie groups, and exg.expy be their respec-
tive exponential maps. Let: G — H be a Lie group morphism. The linear tangent
map ofg at g, denoted byglp, is the linear map fromglG to Ty H given by
d
Tg@(X) = §; P(9exXRs (X)),

Then, if we note e the neutral element of G we have

o(exps(X)) = expi(Te@(X)) (5)

The mapTe@ is a Lie algebra morphism, i.e. it satisfies
Tep([X,Y]) = [Te@(X), Tep(Y)] VX,Y € g

From (5), we deduce that if the gro@pis connected and the exponential mayiof
is onto, then the Lie group morphisms frg&to H are determined by Lie algebras
morphisms frony to b.

B. Clifford algebras

Let V be a vector space of finite dimensianover R equipped with a quadratic
form Q. Formally speaking, the Clifford algeb@ (V, Q) is the solution of the fol-
lowing universal problem. We search a coufp®(V,Q),iq) whereCl(V,Q) is an
R-algebra andg : V — CI(V, Q) is R-linear satisfying:

(io(v)>=Q(v).1

for all vin V (1 denotes the unit afl(V,Q)) such that for eactR-algebraA and
eachR-linear mapf : V — A with

forall vinV (1 denotes the unit &4), then there exists a unique morphism
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g:Cl(V,Q) — A

of R-algebras such thdt=goiq.
The solution is unique up to isomorphisms and is given asriba Ccommutative)
quotient

T(V)/(vev—Q(v).1)

of the tensor algebra &f by the ideal generated by v— Q(v).1, wherev belongs
toV (see [12] for a proof).

Itis well known that there exists a unique anti-automorpttiesnCl(V, Q) such that

t(ig(v)) =iq(v)

forall vin V. Itis called reversion and usually denotedsby— x', x in CI(V, Q).
In the same way there exists a unique automorptaisom Cl(V, Q) such that

a(iq(v)) = —ig(V)
forall vinV. In the rest of this paper we writefor ig(v) (according to the fact that
ig embeds/ in CI(V,Q)).
As a vector spac€l(V,Q) is of dimension 2 onR and a basis is given by the set
{a,8,---8,, 1<ix<...<iy, ke{l,...,n}}

and the unit 1. An element of degrke

ail.“ikalaz e ak

i1 <--<ik

is called ak-vector. A O-vector is a scalar argle; - - - &, is called the pseudoscalar.
We will denote(x)y the component of degréeof an elemenk of CI(V, Q).

The inner product ok, of degree andys of degreesis defined by
X+ Ys = (XYs)|r—g

if r ands are positive and by
X Ys=0

otherwise.
The outer product of, of degree andys of degreesis defined by
X AYs = (XYs)r+s

These products extend by linearity Gh(V, Q). Clearly, ifa andb are vectors o¥/,
then the inner product d andb coincides with the scalar product defined Qy
When it is defined (for example whetis a versor and) is positive) we denote

X[ = vxxt
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and say thaxis a unit if xx' = +1.

In the following, we deal in particular with the Clifford afyra of the EuclideaR"
denoted byR,, 0. Rﬁ.o is the subspace of elements of degkedR},  is the group

of elements that admit an inversely o. We will denote b}Sﬁ)o the set of elements
of R2, of norm 1.

Letabe a vector iR, o andB be thek-vectorag Aax A- - - A gy, then the orthogonal
projection ofa on thek-plane generated by tteg's is the vector

Pe(a) = (a-B)B

The vector
a—(a-BB1=(anB)B™?

is called the rejection od on B.
C. The spinor group Spin(n)
It is defined by
2
Spin(n) =y [a. & < Rpo llaill =1
1=
or equivalently
Spin(n) = {x € Rno, a(x) =x, xxX' = Lxvx ! € R} o W e RE o}

It is well known that Sping) is a connected compact Lie group that universally
covers SQOf) (n > 3). One can verify that Spin(3) is the group

{al+beje; + ceres+ desey, a2+ b?+c?+d? =1}
and is isomorphic to the grodfi* of unit quaternions. It is also a classical result that
Spin(4) is isomorphic to Spin(X)Spin(3) (see [9] for more information on spinors
in R® andR%).
The Lie algebra of Spim is R7 , with Lie bracket
AxB=AB-BA

As the exponential map from its Lie algebra to Spiyié onto (see [7] for a proof),

every spinor can be written as
i=0 '
for some bivectoA.

From Hestenes and Sobczyk [8], we know that evieity Rﬁ.o can be written as
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A=Ar+Ao+ - +An

wherem< n/2 and
Aj = [|Ajllajby, je{1,....m}

with
{al,...,am,bl,...,bm}
a set of orthonormal vectors. Thus

AjA = AA] = ACNA;

whenevel # k and
Az =—lIAd?> <0

This means that the planes encodedpyndA; are orthogonal and implies that
eA1+A2+"'+Am — eAa(l) eAa(Z) o eAa(m)
for all o in the permutation grou (m). Actually, asAﬁ is negative we have

. . A
e/ = cog(||A]]) +sin([|A |})
A
The corresponding rotation
R : X— e Axeh

acts in the oriented plane defined Byas a plane rotation of angld|&i||. The vec-
tors orthogonal t@\; are invariant undeRr;.

It then appears that any elemdRbf SO() is a composition of commuting sim-
ple rotations, in the sense that they have only one invagkame. The vectors left
invariant byR are those of the orthogonal subspaceé\tdf m = n/2 this latter is
trivial. The previous decomposition is not uniqué|&|| = ||A;|| for somej andk
with j # k. In this case infinitely many planes are left invariantfdy
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