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Clifford Fourier Transform for Color Image

Processing

Thomas Batard, Michel Berthier and Christophe Saint-Jean

Abstract The aim of this paper is to define a Clifford Fourier transform that is suit-

able for color image spectral analysis. There have been many attempts to define

such a transformation using quaternions or Clifford algebras. We focus here on a

geometric approach using group actions. The idea is to generalize the usual defi-

nition based on the characters of abelian groups by considering group morphisms

from R
2 to spinor groups Spin(3) and Spin(4). The transformation we propose is

parameterized by a bivector, the choice of which is related to the application to be

treated. A general definition for 4D signal defined on the plane is also given; for

particular choice of spinors it coincides with the definition of T. Bülow.

1 Introduction

During the last years several attempts have been made to generalize the classical

approach of scalar signal processing with the Fourier transform to higher dimen-

sional signals. The reader will find a detailed overview of the related works at the

beginning of [1]. We only mention in this introduction some of the approaches in-

vestigated by several authors.

Motivated by the spectral analysis of color images, S. Sangwine and T. Ell have

proposed in [12] and [5] a generalization based on the use of quaternions: a color

corresponds to an imaginary quaternion and the imaginary complex i is replaced by
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the unit quaternion µ coding the grey axis. A quaternionic definition is also given

by T. Bülow and G. Sommer in the context of analytic signals, for signals defined

on the plane and with values in the algebra H of quaternions [3]. Concerning ana-

lytic signals, let us mention the work of M. Felsberg who makes use of the Clifford

algebras R2,0 and R3,0 to define an appropriate Clifford Fourier transform [6].

A generalization in the Clifford algebras context appears also in J. Ebling and G.

Scheuermann [4]. The authors mainly use their transformation to analyze frequen-

cies of vector fields. Using the same Fourier kernel, B. Mawardi and E. Hitzer obtain

an uncertainty principle for R3,0 multivector functions [10]. The reader may find

in [1] definitions of Clifford Fourier transform and Clifford Gabor filters based on

the Dirac operator and Clifford analysis.

One could ask the reason why to propose a new generalization. An important thing

when dealing with Fourier transform is its link with group representations. We then

recall in section 2 the usual definition of the Fourier transform of a function defined

on an abelian Lie group by means of the characters of the group. The definition

we propose in section 4 relies mainly on the generalization of the notion of char-

acters, that is why we study in section 3 the group morphisms from R
2 to Spin(3)

and Spin(4). These morphisms help to understand the behavior of the Fourier trans-

form with respect to well chosen spinors. We treat in section 5 three applications

corresponding to specific bivectors of R3,0. They consist in filtering frequencies ac-

cording to color, hue and chrominance part of a given color. In section 6, a definition

of the Clifford Fourier transform of a 4D signal on R
2 is proposed that coincides,

for a particular choice of spinors, with the definition of T. Bülow [2].

2 Fourier transform and group actions

Let us recall briefly some basic ideas related to the group approach of the definition

of the Fourier transform. Details can be found in [15], see also [14] for examples of

applications to Fourier descriptors.

Let G be a Lie group. The Pontryagin dual of G, denoted Ĝ, is the set of equivalence

classes of unitary irreducible representations of G. It appears that if G is abelian,

every irreducible unitary representation of G is of dimension 1, i. e. is a continous

group morphism from G in S1. This is precisely the definition of a character. It is

well known that the characters of R, resp. R
2, are given by

x 7−→ eiax

for a in R, resp. by

(x,y) 7−→ ei(ux+vy)

with u and v real. This shows that R̂ = R and R̂
2 = R

2. The characters of SO(2) are

the group morphisms

θ 7−→ einθ
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for n ∈ Z and the corresponding Pontryagin dual is Z. In the general case (provided

that G is unimodular), the Fourier transform of a function f ∈ L2(G;C) is defined

on Ĝ by

f̂ (ϕ) =
∫

G
f (x)ϕ(x−1)dν(x)

(for ν a well chosen invariant measure on G). Applying this formula to the case

G = R, resp. G = SO(2), leads to the usual definition of the Fourier transform, resp.

Fourier coefficients.

Let us mention that if f is a real function on R, then its Fourier transform can be

written in the Clifford algebra language as

f̂ (a) =
∫

R

[cos(ax/2)1+ sin(ax/2)e1e2]( f (x)e1 +0e2)

[cos(−ax/2)1+ sin(−ax/2)e1e2]dx

using the fact that Spin(2) = {a1 +be1e2, a2 +b2 = 1} is isomorphic to the group

S1 of unit complex numbers. We can write this last formula in the following form:

f̂ (a) =
∫

R

( f (x)e1 +0e2)⊥ϕa(−x)dx

where ϕa is the morphism from R to Spin(2) that sends x to exp[(ax/2)(e1e2)] and

⊥ denotes the action v⊥s = s−1vs of Spin(2) on R
2, and more generally the action

of Spin(n) on R
n. Starting from these elementary observations, we now proceed to

generalize this construction for R
3 valued functions of R

2.

3 Morphisms of R
2 with values in Spin(3) and Spin(4)

We are looking for a generalization of the action of a character on the values of a

real function. This can be done by replacing morphisms

ϕ : R
2 −→ S1 = Spin(2)

by morphisms

ϕ : R
2 −→ Spin(3)

More precisely, let Rn,0, resp. R
k
n,0, denote the Clifford algebra of R

n with the eu-

clidean quadratic form, resp. the subspace of elements of degree k of Rn,0. As usual

we identify R
n with R

1
n,0. Let also α denote the unique automorphism of Rn,0 such

that α(v) = −v for all v in R
1
n,0. The group Spin(n) is defined as

Spin(n) = {x ∈ Rn,0, α(x) = x, ‖x‖ = 1, xvx−1 ∈ R
1
n,0, ∀v ∈ R

1
n,0}
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(see [11] for details). It can be shown that Spin(n) is a connected compact Lie group

that universally covers SO(n) (for n ≥ 3). Moreover its Lie algebra is R
2
n,0 with Lie

bracket
1

2
(A×B) =

1

2
(AB−BA)

As the exponential map from R
2
n,0 to Spin(n) is onto (see [7] for a proof), every

spinor can be written as

S =
∞

∑
i=0

1

i!
Ai

for some bivector A. In the following S
2
n,0 denotes the set of elements of R

2
n,0 of

norm 1. One can verify that Spin(3) is the group

Spin(3) = {a1+be1e2 + ce2e3 +de3e1, a2 +b2 + c2 +d2 = 1}

and is isomorphic to the group of unit quaternions.

Proposition 1. The group morphisms from R
2 to Spin(3) are given by

(x,y) 7−→ e(ux+vy)B

where B belongs to S
2
3,0 and u and v are real.

Proof. We have to determine the abelian subalgebras of the Lie algebra spin(3) =
R

2
3,0 of the Lie group Spin(3). More precisely, as the exponential map of R

2 is onto,

group morphisms from R
2 to Spin(3) are given by Lie algebra morphisms from the

abelian Lie algebra R2 of R
2 to spin(3). Taking two generators ( f1, f2) of R2, any

morphism ϕ from R2 to spin(3) satisfies:

ϕ( f1)×ϕ( f2) = 0.

We deduce that Im(ϕ) is an abelian subalgebra of R
2
3,0 of dimension ≤ 2. If a =

a1e1e2 + a2e3e1 + a3e2e3 and b = b1e1e2 + b2e3e1 + b3e2e3 satisfy a× b = 0, then

the structure relations of R
2
3,0, i. e.

e1e2 × e3e1 = e2e3, e3e1 × e2e3 = e1e2, e2e3 × e1e2 = e3e1,

imply

(a1b2 −a2b1)e2e3 − (a1b3 −a3b1)e3e1 +(a2b3 −a3b2)e1e2 = 0.

This shows that two commuting elements of R
2
3,0 are colinear and that the abelian

subalgebras of R
2
3,0 are of dimension 1. If we write ϕ( f1) = uB and ϕ( f2) = vB

for some u,v ∈ R and B ∈ S
2
3,0, we see that the morphisms from R2 to R

2
3,0 are

parameterized by two real numbers and one unit bivector, and are given by

ϕu,v,B : (x,y) 7→ (ux+ vy)B
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Consequently, the group morphisms from R
2 to Spin(3) are the morphisms ϕ̃u,v,B

with

ϕ̃u,v,B : (x,y) 7→ e(ux+vy)B

•
In section 4, we define a Fourier transform starting from these group morphisms. As

we want to split this transformation to be able to apply the FFT algorithm, we need

to read the action of Spin(3) in Spin(4). Let us recall what group is Spin(4). Every

τ in Spin(4) is of the form

τ = u+ Iv

= (a1+be1e2 + ce2e3 +de3e1)+ I(a′1+b′e1e2 + c′e2e3 +d′e3e1)

where I denotes the pseudoscalar of R4,0 and the following relations hold:

uu+ vv = 1 uv+ vu = 0

The morphism χ : Spin(4) 7−→ Spin(3)×Spin(3) with

χ(u+ Iv) = (u+ v,u− v)

is an isomorphism. An alternative description of Spin(4) relies on the following

fact: the morphism ψ : H1 ×H1 −→ SO(4) defined by

(τ,ρ) 7−→ (v 7−→ τvρ)

(where v is a vector of R
4 considered as a quaternion) is a universal covering of

SO(4) (see [11]). This means that Spin(4) is isomorphic to H1×H1. We will use this

remark later on to compare our transform to Bülow’s one. We consider every spinor

τ of Spin(3) as an element of Spin(4) by associating to τ the spinor χ−1(τ,1).

Proposition 2. 1 The group morphism ϕ̃u,v,B from R
2 to Spin(3) defines a group

morphism from R
2 to Spin(4) that can be written

φ̃u,v,B,0,0,C : (x,y) 7→ e
1
2 (ux+vy)(B+IB)

Proof. The group law of Spin(3)×Spin(3) being

(
(a,b),(c,d)

)
→ (ac,bd)

the group morphisms from R
2 to Spin(3)× Spin(3) are the morphisms ϕ̃u,v,B,w,z,C

defined by

ϕ̃u,v,B,w,z,C : (x,y) 7→
(

e(ux+vy)B,e(wx+zy)C
)

with u, v, w, z real and B, C two elements of S
2
3,0. Let us verify that χ−1(ϕ̃u,v,B,1) =

ϕ̃u,v,B,0,0,C for any C, that maps (x,y) to

1 Notations are justified by the more general result stated in proposition 5
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1

2
[cos(ux+ vy)+ sin(ux+ vy)B+1+ cos(ux+ vy)I + sin(ux+ vy)IB− I],

is precisely φ̃u,v,B,0,0,C. An easy computation shows that

χ−1(ϕ̃u,v,B,1) = cos(
ux+ vy

2
)cos(

ux+ vy

2
)+ sin(

ux+ vy

2
)cos(

ux+ vy

2
)B

+cos(
ux+ vy

2
)sin(

ux+ vy

2
)IB− sin(

ux+ vy

2
)sin(

ux+ vy

2
)I.

Clearly

χ−1(ϕ̃u,v,B,1) = e
1
2 (ux+vy)B e

1
2 (ux+vy)IB = e

1
2 (ux+vy)(B+IB)

since B and IB commute. •
Proposition 5 of section 6 describes the general form of a group morphism from

R
2 to Spin(4) written as a product of exponentials. We are now ready to give the

definition of the transformation we propose.

4 Fourier transform of color images

A color image is considered as a function f ∈ L2(R2;R1
4,0) defined by:

f (x,y) = r(x,y)e1 +g(x,y)e2 +b(x,y)e3 +0e4

where r, g and b correspond to the red, green and blue levels.

There is an other way to decompose a color, that is with respect to its lumi-

nance and chrominance parts. The first corresponds to the projection of the color

to the axis generated by e1 + e2 + e3, and the latter to its projection on the or-

thogonal plane, called the chrominance plane, represented by the unit bivector

(e1e2 − e1e3 + e2e3)/3. In what follows we make use of the following fact too:

every hue can be represented in the RGB cube as an equivalence class of bivectors

of R3,0. More precisely, we have the following result.

Proposition 3. Let T be the set of bivectors

T = {(e1 + e2 + e3)∧α, α ∈ RGB}

with the following equivalence relation:

B ≃C ⇐⇒ B = λC for λ > 0

Then, there is a bijection between T/ ≃ and the set of hues.

Proof. We have

(e1 + e2 + e3)∧α = (e1 + e2 + e3)vα
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where vα is the projection of α on the chrominance. Then, there is a bijection be-

tween T/ ≃ and the set (e1 +e2 +e3)v for v a unit vector in the chrominance plane.

This latter being in bijection with the set of different hues, we conclude that there

exists a bijection between T/ ≃ and the set of hues. •

Definition 1. Clifford Fourier transform of a color image. Let f be a color image

and B be an element of S
2
3,0. The Clifford Fourier transform of f with respect to B

is the R
1
4,0 valued function

f̂B(u,v) =
∫

R2
f (x,y)⊥ φ̃u,v,B,0,0,C(−x,−y)dxdy

•

Given a bivector B of S
2
3,0, every color image f can be decomposed as

f = fB‖ + fB⊥

where fB‖ , resp. fB⊥ , is the B-parallel part, resp. the IB-parallel part (i.e. the B-

orthogonal part in R
4) of f . This leads to

f̂B(u,v) =
∫

R2
( fB‖(x,y)+ fIB‖(x,y))⊥ φ̃u,v,B,0,0,C(−x,−y)dxdy

that can be written

f̂B(u,v) = f̂B‖(u,v)+ f̂B⊥(u,v)

where

f̂B‖(u,v) =
∫

R2
fB‖(x,y)⊥ φ̃u,v,B,0,0,C(−x,−y)dxdy

=
∫

R2
fB‖(x,y)⊥e

−(ux+vy)B
2 dxdy

and

f̂B⊥(u,v) =
∫

R2
fIB‖(x,y)⊥ φ̃u,v,B,0,0,C(−x,−y)dxdy

=
∫

R2
fIB‖(x,y)⊥e

−(ux+vy)IB
2 dxdy.

Let us remark that each of the two integrals may be identified with the Fourier

transform of a function from R
2 to C. Then, we deduce that there exists an inversion

formula for the Clifford-Fourier transform f̂B given by

f (x,y) =
∫

R2
f̂B(u,v)⊥ φ̃u,v,B,0,0,C(x,y)dudv

Indeed, the right term equals

∫

R2
( f̂B‖(u,v)+ f̂IB‖(u,v))⊥ φ̃u,v,B,0,0,C(x,y)dudv
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=
∫

R2
f̂B‖(u,v)⊥e

(ux+vy)B
2 dudv+

∫

R2
f̂IB‖(u,v)⊥e

(ux+vy)IB
2 dudv (1)

Each of these integrals may be identified with the inversion formula of the Fourier

transform of a function from R
2 to C, hence

(1) = fB‖(x,y)+ fIB‖(x,y)

= f (x,y).

The following proposition will be useful for the applications to the filtering of fre-

quencies developed in the next section. It justifies the fact that the filters used are

symmetric with respect to the transformation (u,v) 7→ (−u,−v).

Proposition 4. With the previous notations, if B and D are elements of S
2
3,0, we have

f̂B(u,v)⊥ φ̃u,v,B,0,0,C(x,y)+ f̂B(−u,−v)⊥ φ̃−u,−v,B,0,0,C(x,y)

= f̂D(u,v)⊥ φ̃u,v,D,0,0,C(x,y)+ f̂D(−u,−v)⊥ φ̃−u,−v,D,0,0,C(x,y)

Moreover, the e4 component of this expression is null.

Proof. Simple computations show that

f̂B(u,v)⊥ φ̃u,v,B,0,0,C(x,y)+ f̂B(−u,−v)⊥ φ̃−u,−v,B,0,0,C(x,y) (2)

=
∫

R2
e−

xu+yv
2 (B+IB)e

λu+µv
2 (B+IB) f (λ ,µ)e−

λu+µv
2 (B+IB)e

xu+yv
2 (B+IB)dλdµ

+
∫

R2
e

xu+yv
2 (B+IB)e−

λu+µv
2 (B+IB) f (λ ,µ)e

λu+µv
2 (B+IB)e−

xu+yv
2 (B+IB)dλdµ

=
∫

R2
2cos(u(x−λ )+ v(y−µ)) fB‖(λ ,µ)dλdµ

+
∫

R2
2cos(u(x−λ )+ v(y−µ)) fIB‖(λ ,µ)dλdµ.

Hence

(2) =
∫

R2
2cos(u(x−λ )+ v(y−µ)) f (λ ,µ)dλdµ.

•

5 Applications

We now present applications to color image filtering. The use of the Fourier trans-

form is motivated by the well known fact that non trivial filters in the spatial do-

main may be implemented efficiently with masks in the Fourier domain. Although

it seems natural to believe that the results on grey level images may be generalized,
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there are not so many works dedicated to the specific case of color images. Let us

mention the reference [13] where an attempt is made through the use of an adhoc

quaternionic transform. The mathematical construction we propose appears to be

well founded since it explains the fundamental role of bivectors in terms of group

actions. As explained before, the possibility to choose the bivector B is an asset

allowing a wider range of applications. Indeed, Sangwine and al. proposal can be

written in our formalism by considering an appropriate B.

Recall that µ = (e1 + e2 + e3)/
√

3 is the unit vector coding the grey axis and α de-

notes a given color in the RGB cube. In what follows, we treat three different cases

and consider the bivector B of S
2
3,0 proportional to Bc = α ∧ e4, Bh = α ∧ µ and

Br = vα ∧ e4 (vα is the projection of α on the chrominance)2. The corresponding

Clifford Fourier transforms are denoted respectively by f̂c (w.r.t to color), f̂h (w.r.t

to hue) and f̂r (w.r.t to the chrominance part of α). In this paper, we restrict our-

selves to apply low pass, high pass and directional filters only on the B-parallel part

leaving the IB-parallel part unmodified.

Fig. 1 Original images : Fourier house (left), Flowers (right)

Comments on Figure 1

Figure 1 shows the original images used for these experiments3. Left image is a

modified color version of the Fourier house containing red, desatured red, green,

cyan stripes in various directions, a uniform red circle and a red square with lower

luminance. Right image is a natural image taken from the berkeley image segmen-

tation database [9].

2 Replacing B by IB when we deal with Bc and Br we can suppose that B ∈ S
2
3,0

3 Available at http://mia.univ-larochelle.fr/ → Production → Démos
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Fig. 2 f̂c : Log-modulus (left) and directional cut filtering (right) for the red color

Comments on Figure 2

Figure 2 (left) is the centered log-modulus of the parallel part of f̂c taking α =
255e1. Figure 2 (right) is the result of a directional cut filter around π/2 which re-

moves of vertical frequencies. Let us point out that horizontal green stripes are not

modified since green color 255e2 belongs to IBc.

Fig. 3 Low pass filterings on f̂c (left) and on f̂h (right) for respectively red color and red hue

Comments on Figure 3

Figure 3 shows the difference between f̂c (left) and f̂h (right) via a low pass filter

with α = 255e1. As the bivector Bh is built from µ , the luminance of all colors of

the right image is lowered. In contrast, the luminance of green and cyan pixels of the

left image remains untouched since these colors are orthogonal to the red one. The
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cyan stripes on the right image are blurred since the cyan and red hues are colinear.

Fig. 4 f̂r : Low pass (left) and high pass (right) filters with α = 96e1 +109e2 +65e3

Comments on Figure 4

Let us remark first that the transform f̂r preserves the luminance of all colors. The

color α has been chosen to match with the color of the green leaves. As low pass

filter (left) removes green high frequencies, the center of flowers containing yellow

high frequencies turns red. On the right image, background pixels corresponding to

green low frequencies appear almost grey.

6 Clifford Fourier transform for 4D signals defined on the plane

The aim of this section is to give an analog of definition 1 for 4D signals defined on

the plane. This requires an analog of proposition 2.

Proposition 5. The group morphisms from R
2 to Spin(4) are the morphisms φ̃u,v,B,w,z,C

that send (x,y) to

e
1
4 [x(u+w)+y(v+z)][B+C+I(B−C)] e

1
4 [x(u−w)+y(v−z)][B−C+I(B+C)]

with u, v, w, z real and B, C two elements of S
2
3,0.

Proof. From the proof of proposition 2, we know that the group morphisms from

R
2 to Spin(4) are the φ̃u,v,B,w,z,C that send (x,y) to

e(ux+vy)B + e(wx+zy)C

2
+ I

e(ux+vy)B − e(wx+zy)C

2
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However, this writing is not convenient to determine representations in SO(4) since

it doesn’t provide explicitly the rotations in R
4 that φ̃u,v,B,w,z,C generates. The so-

lution comes from an “orthogonalization” of the corresponding Lie algebras mor-

phism from R2 to R
2
4,0, namely the linear map

φu,v,B,w,z,C(X ,Y ) = T(0,0) φ̃u,v,B,w,z,C(X ,Y )

where T denotes the linear tangent map. By definition,

φu,v,B,w,z,C(X ,Y ) =
d

dt

(
φ̃u,v,B,w,z,C(exp(t(X ,Y )))

)
∣∣∣

t=0

The exponential map of R
2 being the identity map, we get

φu,v,B,w,z,C(X ,Y ) =
d

dt

(
φ̃u,v,B,w,z,C(t(X ,Y ))

)
∣∣∣

t=0

=
d

dt

(e(uX+vY )B + e(wX+zY )C

2
+ I

e(uX+vY )B − e(wX+zY )C

2

)
∣∣∣

t=0

=
(uX + vY )B+(wX + zY )C

2
+ I

(uX + vY )B− (wX + zY )C

2

The “orthogonalization” of the morphism φu,v,B,w,z,C consists in decomposing the

bivector φu,v,B,w,z,C(X ,Y ) for each X ,Y into commuting bivectors whose squares are

real. The corresponding spinor is written as a product of commuting spinors of the

form eFi with F2
i < 0. These ones represent rotations of angle −F2

i in the oriented

planes given by the Fi’s. In our case, the bivector φu,v,B,w,z,C(X ,Y ) is decomposed

into F1 +F2 where

F1 =
1

4

[
(X(u+w)+Y (v+ z))(B+C + I(B−C))

]

F2 =
1

4

[
(X(u−w)+Y (v− z))(B−C + I(B+C))

]

(see [8] for details). The group morphisms φ̃u,v,B,w,z,C from R
2 to Spin(4) can then

be written as

φ̃u,v,B,w,z,C(x,y) = e[
(ux+vy)B+(wx+zy)C

2 +I
(ux+vy)B−(wx+zy)C

2 ]

= e
1
4 [(x(u+w)+y(v+z))(B+C+I(B−C))] e

1
4 [(x(u−w)+y(v−z))(B−C+I(B+C))]

•
This is the convenient form to describe group morphisms from R

2 to SO(4).

To conclude this paper, we show how to recover the quaternionic Fourier transform

of T. Bülow in the Clifford algebras context, using the appropriate morphism from
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R
2 to Spin(4). First, let us recall the definition of this quaternionic Fourier trans-

form.

The quaternionic Fourier transform of a function f : R
2 →R is the quaternion valued

function F ( f ) defined by

F ( f )(y1,y2) =
∫

R2
exp(−2πiy1x1) f (x1,x2)exp(−2π jy2x2)dx1dx2.

The general definition we propose is the following one.

Definition 2. Let f ∈ L2(R2;R1
4,0) and B and C be elements of S

2
3,0. The Clifford

Fourier transform of f with respect to B and C is defined by

f̂B,C(u,v,w,z) =
∫

R2
f (x,y)⊥φ̃u,v,B,w,z,C(−x,−y)dxdy

•
The link between these two transforms is given by the next result.

Proposition 6. Let f ∈ L2(R2;R). The Clifford Fourier transform of f defined by

f̂e2e3,e1e3
(2πy1,0,0,2πy2) =

∫

R2
f (x1,x2)⊥ φ̃2πy1,0,e2e3,0,2πy2,e1e3

(−x1,−x2)dx1dx2

corresponds to the quaternionic Fourier transform of f seen as a H-valued function

under the following identification4

e1 ↔ i e2 ↔ j e3 ↔ k e4 ↔ 1,

Proof. We have to determine one of the two elements of Spin(3)× Spin(3) that

generate the following rotation in H :

f (x1,x2) 7→ exp(−2πiy1x1) f (x1,x2)exp(−2π jy2x2)

Simple computations show that the rotation

f (x1,x2) 7→ exp(−2πiy1x1) f (x1,x2)

can be written in R
1
4,0 as

f (x1,x2) 7→ eπx1y1(e4e1+e2e3) f (x1,x2)e
−πx1y1(e4e1+e2e3)

In the same way,

f (x1,x2) 7→ f (x1,x2)exp(−2π jy2x2)

corresponds to

4 The product law needs not to be respected since we just use an isomorphism of vector spaces
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f (x1,x2) 7→ eπx2y2(e4e2+e1e3) f (x1,x2)e−πx2y2(e4e2+e1e3)

By associativity, this shows that

exp(−2πiy1x1) f (x1,x2)exp(−2π jy2x2) = eτ eρ f (x1,x2)e
−ρ e−τ

where

τ = πx2y2(e4e2 + e1e3)

and

ρ = πx1y1(e4e1 + e2e3).

By definition,

χ(eτ eρ) = χ(eπx2y2 e4e2)χ(eπx2y2 e1e3)χ(eπx1y1 e4e1)χ(eπx1y1 e2e3).

From simple computations, we get

χ(eτ eρ) = (e2πx1y1 e2e3 ,e2πx2y2 e1e3)

and conclude therefore that

(x1,x2) 7→ (e2πx1y1 e2e3 ,e2πx2y2 e1e3)

is the morphism φ̃2πy1,0,e2e3,0,2πy2,e1e3
. •

7 Conclusion

We proposed in this paper a definition of Clifford Fourier transform that is moti-

vated by group actions considerations. We showed how to generalize the notion of

characters to obtain a transformation which is parameterized by one or two bivec-

tors of the Clifford algebra R3,0. We have treated in this context applications to color

image processing. The spectral analysis we have performed throws a new light on

the work of S. Sangwine and al. Further work will be devoted to some mathematical

improvements. We will show in particular how to choose a metric on the RGB cube

so as to gain more efficiency in the filtering with respect to hue. Others applications

to 4 channels images (like color/infrared images) are currently investigated.
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3. Bülow, T., Sommer, G.: The hypercomplex signal - a novel approach to the multidimensional

analytic signal. IEEE Transactions on Signal Processing 49, 11, 2844–2852 (2001)

4. Ebling, J., Scheuermann, G.: Clifford Fourier Transform on Vector Fields. IEEE Transactions

on Visualization and Computer Graphics 11, 4, 2844–2852 (July/August 2005)

5. Ell, T.A., Sangwine, S.: Hypercomplex Fourier Transforms of Color Images. IEEE Transac-

tions on Image Processing 16, 1, 5–18 (2007)

6. Felsberg, M.: Low-level image processing with the structure multivector. Ph.D. thesis, Kiel

(2002)

7. Helgason, S.: Differential geometry, Lie groups and symmetric spaces. Academic Press Lon-

don (1978)

8. Hestenes, D., Sobczyk, G.: Clifford algebra to geometric calculus. D. Reidel, Dordrecht

(1984)

9. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images

and its application to evaluating segmentation algorithms and measuring ecological statistics.

In: Proc. 8th Int’l Conf. Computer Vision, vol. 2, pp. 416–423 (2001)

10. Mawardi B. et Hitzer, E.: Clifford Fourier transformation and uncertainty principle for the

Clifford algebra cl3,0. Adv. App. Cliff. Alg. 16, 1, 41–61 (2006)

11. Postnikov, M.: Leçons de Géométrie. Groupes et algèbres de Lie. Mir (1982)
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