Clifford Fourier Transform for Color Image Processing

Thomas Batard, Michel Berthier, Christophe Saint-Jean

To cite this version:

Thomas Batard, Michel Berthier, Christophe Saint-Jean. Clifford Fourier Transform for Color Image Processing. Bayro-Corrochano, Eduardo; Scheuermann, Gerik. Geometric Algebra Computing, Springer Verlag, pp.135-162, 2010, Engineering and Computer Science. hal-00332912v3

HAL Id: hal-00332912
 https://hal.science/hal-00332912v3

Submitted on 29 Jun 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Clifford Fourier Transform for Color Image Processing

Thomas Batard, Michel Berthier and Christophe Saint-Jean

Abstract

The aim of this paper is to define a Clifford Fourier transform that is suitable for color image spectral analysis. There have been many attempts to define such a transformation using quaternions or Clifford algebras. We focus here on a geometric approach using group actions. The idea is to generalize the usual definition based on the characters of abelian groups by considering group morphisms from \mathbb{R}^{2} to spinor groups $\operatorname{Spin}(3)$ and $\operatorname{Spin}(4)$. The transformation we propose is parametrized by a bivector and a quadratic form, the choice of which is related to the application to be treated. A general definition for 4D signal defined on the plane is also given; for particular choices of spinors it coincides with the definitions of S. Sangwine and T. Bülow.

1 Introduction

During the last years several attempts have been made to generalize the classical approach of scalar signal processing with the Fourier transform to higher dimensional signals. The reader will find a detailed overview of the related works at the beginning of [1]. We only mention in this introduction some of the approaches investigated by several authors.
Motivated by the spectral analysis of color images, S. Sangwine and T. Ell have proposed in [13] and [5] a generalization based on the use of quaternions: a color

Thomas Batard
Lab. MIA, La Rochelle University, France, e-mail: tbatar01 @univ-lr.fr

Michel Berthier
Lab. MIA, La Rochelle University, France, e-mail: michel.berthier@univ-lr.fr

Christophe Saint-Jean
Lab. MIA, La Rochelle University, France, e-mail: christophe.saintjean@univ-lr.fr
corresponds to an imaginary quaternion and the imaginary complex i is replaced by the unit quaternion μ coding the grey axis. A quaternionic definition is also given by T. Bülow and G. Sommer in the context of analytic signals, for signals defined on the plane and with values in the algebra \mathbb{H} of quaternions [3]. Concerning analytic signals, M. Felsberg makes use of the Clifford algebras $\mathbb{R}_{2,0}$ and $\mathbb{R}_{3,0}$ to define an appropriate Clifford Fourier transform [6].
A generalization in the Clifford algebras context appears also in J. Ebling and G. Scheuermann [4]. The authors mainly use their transformation to analyze frequencies of vector fields. Using the same Fourier kernel, B. Mawardi and E. Hitzer obtain an uncertainty principle for $\mathbb{R}_{3,0}$ multivector functions [11]. The reader may find in [1] definitions of Clifford Fourier transform and Clifford Gabor filters based on the Dirac operator and Clifford analysis.
One could ask the reason why to propose a new generalization. An important thing when dealing with Fourier transform is its link with group representations. We then recall in section 2 the usual definition of the Fourier transform of a function defined on an abelian Lie group by means of the characters of the group. The definition we propose in section 3 relies mainly on the generalization of the notion of characters, that is why we study the group morphisms from \mathbb{R}^{2} to $\operatorname{Spin}(3)$ and $\operatorname{Spin}(4)$. These morphisms help to understand the behavior of the Fourier transform with respect to well chosen spinors. We treat in section 4 three applications corresponding to specific bivectors of $\mathbb{R}_{4,0}$. They consist in filtering frequencies according to color, hue and chrominance part of a given color. In section 5, we show that for particular choices of group morphisms and under well chosen identification with quaternions, the Clifford Fourier transform we propose coincides with the definitions of S. Sangwine [5] and T. Bülow [2].

2 Fourier transform and group actions

Let us recall briefly some basic ideas related to the group approach of the definition of the Fourier transform. Details can be found in the Appendix, see also [15] for examples of applications to Fourier descriptors.
Let G be a Lie group. The Pontryagin dual of G, denoted \widehat{G}, is the set of equivalence classes of unitary irreducible representations of G. It appears that if G is abelian, every irreducible unitary representation of G is of dimension 1, i.e. is a continuous group morphism from G to S^{1}. This is precisely the definition of a character. It is well known that the characters of \mathbb{R}^{m} are given by

$$
\left(x_{1}, \cdots, x_{m}\right) \longmapsto e^{i\left(u_{1} x_{1}+\cdots+u_{m} x_{m}\right)}
$$

with $u_{1}, u_{2}, \cdots, u_{m}$ real. This shows that $\widehat{\mathbb{R}^{m}}=\mathbb{R}^{m}$. The characters of $\mathrm{SO}(2)$ are the group morphisms

$$
\theta \longmapsto e^{i n \theta}
$$

for $n \in \mathbb{Z}$ and the corresponding Pontryagin dual is \mathbb{Z}. The characters of $\mathbb{Z} / n \mathbb{Z}$ are the groups morphisms

$$
u \longmapsto e^{i \frac{2 \pi k u}{n}}
$$

for $k \in \mathbb{Z} / n \mathbb{Z}$, from which we deduce that $\mathbb{Z} / n \mathbb{Z}$ is its own Pontryagin dual.
In the general case (provided that G is unimodular), the Fourier transform of a function $f \in L^{2}(G ; \mathbb{C})$ is defined on \widehat{G} by

$$
\widehat{f}(\varphi)=\int_{G} f(x) \varphi\left(x^{-1}\right) d v(x)
$$

(for v a well chosen invariant measure on G). Applying this formula to the case $G=\mathbb{R}^{m}$, resp. $G=\mathrm{SO}(2)$, resp. $G=\mathbb{Z} / n \mathbb{Z}$ leads to the usual definition of the Fourier transform, resp. Fourier coefficients, resp. discrete Fourier transform.

Traditionally, the Fourier transform in $L^{2}\left(\mathbb{R}^{m},\left(\mathbb{R}^{n},\| \|_{2}\right)\right)$ is defined by n standard Fourier transforms in $L^{2}\left(\mathbb{R}^{m}, \mathbb{R}\right)$ on each one of the components, embedding \mathbb{R} into \mathbb{C}. Using group representations theory, we are able to define Fourier transforms that treat jointly the different components.

From now on, we deal with the abelian group $G=\left(\mathbb{R}^{2},+\right)$ since this paper is devoted to image processing applications.

Let us make some crucial remarks about the case $n=2$.
Let f be a real or complex valued function defined on \mathbb{R}^{2}. Its Fourier transform is given by

$$
\widehat{f}(a, b)=\int_{\mathbb{R}^{2}} f(x, y) e^{-i(a x+b y)} d x d y
$$

Identifying \mathbb{C} with $\left(\mathbb{R}^{2},\| \| \|_{2}\right)$, we have $S^{1}=\mathrm{SO}(2)$ and the action of S^{1} on \mathbb{C}, given by the complex multiplication, corresponds to the action of the group $\mathrm{SO}(2)$ on $\left(\mathbb{R}^{2},\| \|_{2}\right)$. Hence, we can define a Fourier transform in $L^{2}\left(\mathbb{R}^{2},\left(\mathbb{R}^{2},\| \|_{2}\right)\right)$ using the action of group morphisms from \mathbb{R}^{2} to $\mathrm{SO}(2)$ on $\left(\mathbb{R}^{2},\| \|_{2}\right)$. These ones are real unitary representations of the group \mathbb{R}^{2} of dimension 2 .

The Fourier transform of $f \in L^{2}\left(\mathbb{R}^{2},\left(\mathbb{R}^{2},\| \|_{2}\right)\right)$ defined above can be written in the Clifford algebra language. Indeed, from the embedding of $\left(\mathbb{R}^{2},\| \| \|_{2}\right)$ into $\mathbb{R}_{2,0}, f$ may be viewed as a $\mathbb{R}_{2,0}^{1}$-valued function

$$
f(x, y)=f_{1}(x, y) e_{1}+f_{2}(x, y) e_{2}
$$

where $e_{1}^{2}=e_{2}^{2}=1$ and $e_{1} e_{2}=-e_{2} e_{1}$. From this point of view, the Fourier transform of f is given by

$$
\widehat{f}(a, b)=\int_{\mathbb{R}^{2}}\left[\cos ((a x+b y) / 2) 1+\sin ((a x+b y) / 2) e_{1} e_{2}\right]\left(f_{1}(x, y) e_{1}+f_{2}(x, y) e_{2}\right)
$$

$$
\left[\cos (-(a x+b y) / 2) 1+\sin (-(a x+b y) / 2) e_{1} e_{2}\right] d x d y
$$

using the fact that the action of $\operatorname{Spin}(2)$ on $\mathbb{R}_{2,0}^{1}$ corresponds to the action of $\mathrm{SO}(2)$ on $\left(\mathbb{R}^{2},\| \| \|_{2}\right)$ (see Appendix). We can write this last formula in the following form:

$$
\widehat{f}(a, b)=\int_{\mathbb{R}^{2}}\left(f_{1}(x, y) e_{1}+f_{2}(x, y) e_{2}\right) \perp \varphi_{a, b}(-x,-y) d x d y
$$

where $\varphi_{a, b}$ is the morphism from \mathbb{R}^{2} to $\operatorname{Spin}(2)$ that sends (x, y) to $\exp [((a x+$ by) $\left./ 2)\left(e_{1} e_{2}\right)\right]$ and \perp denotes the action $v \perp s=s^{-1} v s$ of $\operatorname{Spin}(2)$ on $\mathbb{R}_{2,0}^{1}$, and more generally the action of $\operatorname{Spin}(\mathrm{n})$ on $\mathbb{R}_{n, 0}^{1}$.

Note that group morphisms from \mathbb{R}^{2} to $\operatorname{Spin}(2)$ followed by the action on $\mathbb{R}_{2,0}^{1}$ correspond to the action of group morphisms from \mathbb{R}^{2} to $\operatorname{SO}(2)$ on $\left(\mathbb{R}^{2},\| \| \|_{2}\right)$. In other words, they are real unitary representations of \mathbb{R}^{2} of dimension 2 too.

Remark 1. As in the standard case, where the Fourier transform of a real valued function is defined by embedding \mathbb{R} into \mathbb{C}, we define here the Fourier transform of a real valued function by embedding \mathbb{R} into \mathbb{R}^{2}.

Starting from these elementary observations, we now proceed to generalize this construction for \mathbb{R}^{n}-valued functions defined in \mathbb{R}^{2}. In other words, we are looking for a generalization of the action of group morphisms to $\mathrm{SO}(2)$ on the values of a $\left(\mathbb{R}^{2},\| \| \|_{2}\right)$-valued function.

3 Clifford Fourier transform in $L^{2}\left(\mathbb{R}^{2},\left(\mathbb{R}^{n}, Q\right)\right)$

Let $f \in L^{2}\left(\mathbb{R}^{2},\left(\mathbb{R}^{n}, Q\right)\right)$ where Q is a positive definite quadratic form. We propose to associate the Fourier transform of f with the action of the following group morphisms on the values of f, depending on the parity of n.

If n is even, then we consider the morphisms

$$
\varphi: \mathbb{R}^{2} \longrightarrow \mathrm{SO}(Q)
$$

If n is odd, then we embed $\left(\mathbb{R}^{n}, Q\right)$ into $\left(\mathbb{R}^{n+1}, Q \oplus 1\right)$ and consider the morphisms

$$
\varphi: \mathbb{R}^{2} \longrightarrow \mathrm{SO}(Q \oplus 1)
$$

Thus the generalization we propose is based on the computation of real unitary representations of dimension n or $n+1$ of the abelian group \mathbb{R}^{2}. The main fact is that we no more consider equivalent classes of representations. This means in particular that the Fourier transform we define depends on the positive definite quadratic form of \mathbb{R}^{n}.

Remark 2. Recall that up to a change of the basis, a positive definite quadratic form is given by the identity matrix. Thus, f may always be viewed as a $\left(\mathbb{R}^{p},\| \|_{2}\right)$-valued function (p denotes n if n is even and $n+1$ if n is odd). As a consequence of the change of the basis, $\mathrm{SO}(Q)$ become $\mathrm{SO}(p)$ and group morphisms from \mathbb{R}^{2} to $\mathrm{SO}(Q)$ become group morphisms from \mathbb{R}^{2} to $\mathrm{SO}(p)$.

As for the case of \mathbb{R}^{2}-valued functions, we can rewrite the Fourier transform in the Clifford algebra language, using the fact that the action of $\operatorname{Spin}(p)$ on $\mathbb{R}_{p, 0}^{1}$ corresponds to the action of $\operatorname{SO}(p)$ on \mathbb{R}^{p}. Moreover, it appears to be much more easier to compute group morphisms to $\operatorname{Spin}(p)$ rather than group morphisms to the matrix group $\mathrm{SO}(p)$.

If n is even, then from the embedding of \mathbb{R}^{n} into $\mathbb{R}_{n, 0}, f$ may be viewed as a $\mathbb{R}_{n, 0^{-}}^{1}$ valued function:

$$
f(x, y)=f_{1}(x, y) e_{1}+f_{2}(x, y) e_{2}+\cdots+f_{n}(x, y) e_{n}
$$

where $e_{i}^{2}=1$ and $e_{i} e_{j}=-e_{j} e_{i}$. Denoting by φ a group morphism from \mathbb{R}^{2} to $\operatorname{Spin}(n)$, we define the Clifford-Fourier transform of f by

$$
\widehat{f}(\varphi)=\int_{\mathbb{R}^{2}} \varphi(x, y) f(x, y) \varphi(-x,-y) d x d y=\int_{\mathbb{R}^{2}} f(x, y) \perp \varphi(-x,-y) d x d y
$$

If n is odd, we first embed \mathbb{R}^{n} into \mathbb{R}^{n+1}. Then, from the embedding of \mathbb{R}^{n+1} into $\mathbb{R}_{n+1,0}, f$ may be viewed as a $\mathbb{R}_{n+1,0}^{1}$-valued function:

$$
f(x, y)=f_{1}(x, y) e_{1}+f_{2}(x, y) e_{2}+\cdots+f_{n}(x, y) e_{n}+0 e_{n+1}
$$

where $e_{i}^{2}=1$ and $e_{i} e_{j}=-e_{j} e_{i}$. Denoting by φ a group morphism from \mathbb{R}^{2} to $\operatorname{Spin}(n+1)$, we define the Clifford-Fourier transform of f by

$$
\widehat{f}(\varphi)=\int_{\mathbb{R}^{2}} \varphi(x, y) f(x, y) \varphi(-x,-y) d x d y=\int_{\mathbb{R}^{2}} f(x, y) \perp \varphi(-x,-y) d x d y
$$

Remark 3. If n is even, the Clifford Fourier transform of f is a $\mathbb{R}_{n, 0}^{1}$-valued function. If n is odd, the Clifford Fourier transform of f is a $\mathbb{R}_{n+1,0}^{1}$-valued function.

Remark 4. For $\mathrm{Q}=1$ on \mathbb{R}, the Fourier transforms we define correspond to the standard Fourier transforms of \mathbb{R}-valued functions.

From now on, we deal with the case $n=3$ since this paper is devoted to color image processing. However, we have seen above that we treat the cases $n=3$ and $n=4$ in the same manner, by computing group morphisms from \mathbb{R}^{2} to $\operatorname{Spin}(4)$.

3.1 The cases $n=3,4$: Group morphisms from \mathbb{R}^{2} to Spin(4)

This part is devoted to the computation of group morphisms from \mathbb{R}^{2} to $\operatorname{Spin}(4)$.

Using the fact that the group $\operatorname{Spin}(4)$ is isomorphic to the group $\operatorname{Spin}(3) \times \operatorname{Spin}(3)$, we first compute group morphisms from \mathbb{R}^{2} to $\operatorname{Spin}(3)$.

One can verify that $\operatorname{Spin}(3)$ is the group

$$
\operatorname{Spin}(3)=\left\{a 1+b e_{1} e_{2}+c e_{2} e_{3}+d e_{3} e_{1}, a^{2}+b^{2}+c^{2}+d^{2}=1\right\}
$$

and is isomorphic to the group of unit quaternions.
Proposition 1. The group morphisms from \mathbb{R}^{2} to Spin(3) are given by

$$
(x, y) \longmapsto e^{\frac{1}{2}(u x+v y) B}
$$

where B belongs to $\mathbb{S}_{3,0}^{2}$, the set of unit bivectors in $\mathbb{R}_{3,0}$ (see Appendix), and u and v are real.

Proof. We have to determine the abelian subalgebras of the Lie algebra $\mathfrak{s p i n}(3)=$ $\mathbb{R}_{3,0}^{2}$ of the Lie group $\operatorname{Spin}(3)$. More precisely, as the exponential map of \mathbb{R}^{2} is onto, group morphisms from \mathbb{R}^{2} to $\operatorname{Spin}(3)$ are given by Lie algebra morphisms from the abelian Lie algebra \mathfrak{R}^{2} of \mathbb{R}^{2} to $\mathfrak{s p i n}(3)$. Taking two generators $\left(f_{1}, f_{2}\right)$ of \mathfrak{R}^{2}, any morphism φ from \mathfrak{R}^{2} to $\mathfrak{s p i n}(3)$ satisfies:

$$
\varphi\left(f_{1}\right) \times \varphi\left(f_{2}\right)=0
$$

We deduce that $\operatorname{Im}(\varphi)$ is an abelian subalgebra of $\mathbb{R}_{3,0}^{2}$ whose dimension is inferior or equal to 2 . If $a=a_{1} e_{1} e_{2}+a_{2} e_{3} e_{1}+a_{3} e_{2} e_{3}$ and $b=b_{1} e_{1} e_{2}+b_{2} e_{3} e_{1}+b_{3} e_{2} e_{3}$ satisfy $a \times b=0$, then the structure relations of $\mathbb{R}_{3,0}^{2}$, i. e.

$$
e_{1} e_{2} \times e_{3} e_{1}=e_{2} e_{3}, \quad e_{3} e_{1} \times e_{2} e_{3}=e_{1} e_{2}, \quad e_{2} e_{3} \times e_{1} e_{2}=e_{3} e_{1}
$$

imply

$$
\left(a_{1} b_{2}-a_{2} b_{1}\right) e_{2} e_{3}-\left(a_{1} b_{3}-a_{3} b_{1}\right) e_{3} e_{1}+\left(a_{2} b_{3}-a_{3} b_{2}\right) e_{1} e_{2}=0
$$

This shows that two commuting elements of $\mathbb{R}_{3,0}^{2}$ are colinear and that the abelian subalgebras of $\mathbb{R}_{3,0}^{2}$ are of dimension 1 . If we write $\varphi\left(f_{1}\right)=\frac{1}{2} u B$ and $\varphi\left(f_{2}\right)=\frac{1}{2} v B$ for some $u, v \in \mathbb{R}$ and $B \in \mathbb{S}_{3,0}^{2}$, we see that the morphisms from \mathfrak{R}^{2} to $\mathbb{R}_{3,0}^{2}$ are parameterized by two real numbers and one unit bivector, and are given by

$$
\varphi_{u, v, B}:(x, y) \mapsto \frac{1}{2}(u x+v y) B .
$$

Consequently, the group morphisms from \mathbb{R}^{2} to $\operatorname{Spin}(3)$ are the morphisms $\widetilde{\varphi}_{u, v, B}$ with

$$
\widetilde{\varphi}_{u, v, B}:(x, y) \mapsto e^{\frac{1}{2}(u x+v y) B} .
$$

Let us recall what group is $\operatorname{Spin}(4)$. Every τ in $\operatorname{Spin}(4)$ is of the form

$$
\begin{gathered}
\tau=u+I v \\
=\left(a 1+b e_{1} e_{2}+c e_{2} e_{3}+d e_{3} e_{1}\right)+I\left(a^{\prime} 1+b^{\prime} e_{1} e_{2}+c^{\prime} e_{2} e_{3}+d^{\prime} e_{3} e_{1}\right)
\end{gathered}
$$

where I denotes the pseudoscalar of $\mathbb{R}_{4,0}$ and the following relations hold:

$$
u \bar{u}+v \bar{v}=1 \quad u \bar{v}+v \bar{u}=0 .
$$

The morphism $\chi: \operatorname{Spin}(4) \longrightarrow \operatorname{Spin}(3) \times \operatorname{Spin}(3)$ with

$$
\chi(u+I v)=(u+v, u-v)
$$

is an isomorphism. An alternative description of $\operatorname{Spin}(4)$ relies on the following fact: the morphism $\psi: \mathbb{H}_{1} \times \mathbb{H}_{1} \longrightarrow \mathrm{SO}(4)$ defined by

$$
(\tau, \rho) \longmapsto(v \longmapsto \tau v \bar{\rho})
$$

(where v is a vector of \mathbb{R}^{4} considered as a quaternion) is a universal covering of $\mathrm{SO}(4)$ (see [12]). This means that $\operatorname{Spin}(4)$ is isomorphic to $\mathbb{H}_{1} \times \mathbb{H}_{1}$. We will use this remark later on to compare our transform to Sangwine's and Bülow's ones.

Proposition 2. The group morphisms from \mathbb{R}^{2} to Spin(4) are the morphisms $\widetilde{\phi}_{u, v, B, w, z, C}$ that send (x, y) to

$$
e^{\frac{1}{8}[x(u+w)+y(v+z)][B+C+I(B-C)]} e^{\frac{1}{8}[x(u-w)+y(v-z)][B-C+I(B+C)]}
$$

with u, v, w, z real and B, C two elements of $\mathbb{S}_{3,0}^{2}$.
Proof. The group law of $\operatorname{Spin}(3) \times \operatorname{Spin}(3)$ being

$$
((a, b),(c, d)) \rightarrow(a c, b d)
$$

the group morphisms from \mathbb{R}^{2} to $\operatorname{Spin}(3) \times \operatorname{Spin}(3)$ are the morphisms $\widetilde{\varphi}_{u, v, B, w, z, C}$ defined by

$$
\widetilde{\varphi}_{u, v, B, w, z, C}:(x, y) \mapsto\left(e^{\frac{1}{2}(u x+v y) B}, e^{\frac{1}{2}(w x+z y) C}\right)
$$

with u, v, w, z real and B, C two elements of $\mathbb{S}_{3,0}^{2}$.
By χ^{-1}, the group morphisms from \mathbb{R}^{2} to $\operatorname{Spin}(4)$ are the $\widetilde{\phi}_{u, v, B, w, z, C}$ that send (x, y) to

$$
\frac{e^{\frac{1}{2}(u x+v y) B}+e^{\frac{1}{2}(w x+z y) C}}{2}+I \frac{e^{\frac{1}{2}(u x+v y) B}-e^{\frac{1}{2}(w x+z y) C}}{2}
$$

However, this writing is not convenient to determine group morphisms to $\mathrm{SO}(4)$ since it doesn't provide explicitly the rotations in \mathbb{R}^{4} that $\widetilde{\phi}_{u, v, B, w, z, C}$ generates by its action on $\mathbb{R}_{4,0}^{1}$. The solution comes from an "orthogonalization" of the corresponding Lie algebras morphism from \mathfrak{R}^{2} to $\mathbb{R}_{4,0}^{2}$, namely the linear map

$$
\phi_{u, v, B, w, z, C}(X, Y)=T_{(0,0)} \widetilde{\phi}_{u, v, B, w, z, C}(X, Y)
$$

where T denotes the linear tangent map. By definition:

$$
\phi_{u, v, B, w, z, C}(X, Y)=\left.\frac{d}{d t}\left(\widetilde{\phi}_{u, v, B, w, z, C}(\exp (t(X, Y)))\right)\right|_{t=0}
$$

The exponential map of \mathbb{R}^{2} being the identity map, we get

$$
\begin{gathered}
\phi_{u, v, B, w, z, C}(X, Y)=\left.\frac{d}{d t}\left(\widetilde{\phi}_{u, v, B, w, z, C}(t(X, Y))\right)\right|_{t=0} \\
=\left.\frac{d}{d t}\left(\frac{e^{\frac{1}{2} t(u X+v Y) B}+e^{\frac{1}{2} t(w X+z Y) C}}{2}+I \frac{e^{\frac{1}{2} t(u X+v Y) B}-e^{\frac{1}{2} t(w X+z Y) C}}{2}\right)\right|_{t=0} \\
=\frac{(u X+v Y) B+(w X+z Y) C}{4}+I \frac{(u X+v Y) B-(w X+z Y) C}{4}
\end{gathered}
$$

The orthogonalization of the morphism $\phi_{u, v, B, w, z, C}$ consists in decomposing the bivector $\phi_{u, v, B, w, z, C}(X, Y)$ for each X, Y into commuting bivectors whose squares are real. The corresponding spinor is written as a product of commuting spinors of the form $e^{F_{i}}$ with $F_{i}^{2}<0$. These ones represent rotations of angle $-F_{i}^{2}$ in the oriented planes given by the F_{i} 's. In our case, the bivector $\phi_{u, v, B, w, z, C}(X, Y)$ is decomposed into $F_{1}+F_{2}$ where

$$
\begin{aligned}
& F_{1}=\frac{1}{8}[(X(u+w)+Y(v+z))(B+C+I(B-C))] \\
& F_{2}=\frac{1}{8}[(X(u-w)+Y(v-z))(B-C+I(B+C))]
\end{aligned}
$$

(see the Appendix for details). The group morphisms $\widetilde{\phi}_{u, v, B, w, z, C}$ from \mathbb{R}^{2} to $\operatorname{Spin}(4)$ can then be written as

$$
\begin{gathered}
\widetilde{\phi}_{u, v, B, w, z, C}(x, y)=e^{\left[\frac{(u x+v y) B+(w x+z y) C}{4}+I \frac{(u x+v y) B-(w x+z y) C}{4}\right]} \\
=e^{\frac{1}{8}[(x(u+w)+y(v+z))(B+C+I(B-C))]} e^{\frac{1}{8}[(x(u-w)+y(v-z))(B-C+I(B+C))]}
\end{gathered}
$$

This is the convenient form to describe group morphisms from \mathbb{R}^{2} to $\mathrm{SO}(4)$.
To conclude this part, let us remark that the expression of the morphisms $\widetilde{\phi}_{u, v, B, w, z, C}$ may be simplified. Indeed, when B and C describe $\mathbb{S}_{3,0}^{2} \subset \mathbb{R}_{4,0}$, the unit bivectors

$$
D=\frac{1}{4}(B+C+I(B-C)) \quad I D=\frac{1}{4}(B-C+I(B+C))
$$

describe $\mathbb{S}_{4,0}^{2}$, the set of unit bivectors in $\mathbb{R}_{4,0}$.
Therefore, the morphisms $\widetilde{\phi}_{u, v, B, w, z, C}$ are parametrized by four real numbers and one unit bivector $D \in \mathbb{S}_{4,0}^{2}$, and may be written

$$
\widetilde{\Phi}_{u, v, w, z, D}(x, y)=e^{\frac{1}{2}[(x(u+w)+y(v+z)) D]} e^{\frac{1}{2}[(x(u-w)+y(v-z)) I D]} .
$$

3.2 The cases $n=3,4$: The Clifford Fourier transform

From the computation of group morphisms from \mathbb{R}^{2} to $\operatorname{Spin}(4)$, we give an explicit formula of the Clifford Fourier transform \widehat{f} of $f \in L^{2}\left(\mathbb{R}^{2},\left(\mathbb{R}^{3}, Q\right)\right)$ or $L^{2}\left(\mathbb{R}^{2},\left(\mathbb{R}^{4}, Q\right)\right)$.
Definition 1. Let $f \in L^{2}\left(\mathbb{R}^{2},\left(\mathbb{R}^{3}, Q\right)\right)$, resp. $L^{2}\left(\mathbb{R}^{2},\left(\mathbb{R}^{4}, Q\right)\right)$ and denote by f the embedding of f into the Clifford algebra $C l\left(\mathbb{R}^{4}, Q \oplus 1\right)$, resp. $C l\left(\mathbb{R}^{4}, Q\right)$. The Clifford Fourier transform of f is given by

$$
\begin{aligned}
& \widehat{f}(u, v, w, z, D)=\int_{\mathbb{R}^{2}} f(x, y) \perp \widetilde{\Phi}_{u, v, w, z, D}(-x,-y) d x d y \\
& =\int_{\mathbb{R}^{2}} e^{\frac{1}{2}[(x(u+w)+y(v+z)) D]} e^{\frac{1}{2}[(x(u-w)+y(v-z)) I D]} f(x, y) \\
& e^{-\frac{1}{2}[(x(u+w)+y(v+z)) D]} e^{-\frac{1}{2}[(x(u-w)+y(v-z)) I D]} d x d y .
\end{aligned}
$$

Decomposing f as $f_{\|}+f_{\perp}$ with respect to the plane generated by the bivector D, we get $\widehat{f}(u, v, w, z, D)=$

$$
\int_{\mathbb{R}^{2}} f_{\|}(x, y) e^{[-(x(u+w)+y(v+z)) D]} d x d y+\int_{\mathbb{R}^{2}} f_{\perp}(x, y) e^{[-(x(u-w)+y(v-z)) I D]} d x d y
$$

Indeed, the plane generated by $I D$ represents the orthogonal of the plane generated by D in \mathbb{R}^{4}.

Proposition 3. The Clifford Fourier transform is left-invertible. Its inverse is the map` given by

$$
\check{g}(a, b)=\int_{\mathbb{R}^{4} \times \mathbb{S}_{4,0}^{2}} g(u, v, w, z, D) \perp \widetilde{\Phi}_{u, v, w, z, D}(a, b) d u d v d w d z d v
$$

where v is a unit measure on $\mathbb{S}_{4,0}^{2}$.
Proof. We have to verify that ${ }^{\vee}{ }^{\circ}(f)(\lambda, \mu)=f(\lambda, \mu)$ for all $(\lambda, \mu) \in \mathbb{R}^{2}$.

$$
\begin{gather*}
\wedge_{\circ}(f)(\lambda, \mu)= \\
=\int_{\mathbb{R}^{4} \times \mathbb{S}_{4,0}^{2}}\left[\int_{\mathbb{R}^{2}} f_{\|}(x, y) e^{[-(x(u+w)+y(v+z)) D]} d x d y\right] e^{[(\lambda(u+w)+\mu(v+z)) D]} d u d v d w d z d v \\
+\int_{\mathbb{R}^{4} \times \mathbb{S}_{4,0}^{2}}\left[\int_{\mathbb{R}^{2}} f_{\perp}(x, y) e^{[-(x(u-w)+y(v-z)) I D]} d x d y\right] e^{[(\lambda(u-w)+\mu(v-z)) I D]} d u d v d w d z d v \tag{2}
\end{gather*}
$$

It is sufficient to prove that $(1)=f_{\|}(\lambda, \mu)$.

$$
\begin{gathered}
(1)=\int_{\mathbb{R}^{4} \times \mathbb{S}_{4,0}^{2}} \int_{\mathbb{R}^{2}} f_{\|}(x, y) e^{[(\lambda-x)(u+w)+(\mu-y)(v+z)] D} d x d y d u d v d w d z d v \\
=\int_{\mathbb{R}^{4} \times \mathbb{S}_{4,0}^{2}} \int_{\mathbb{R}^{2}} f_{\|}(x, y) e^{u(\lambda-x) D} e^{w(\lambda-x) D} e^{v(\mu-y) D} e^{z(\mu-y) D} d x d y d u d v d w d z d v \\
=\int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{3} \times \mathbb{S}_{4,0}^{2}} f_{\|}(x, y)\left(\int_{\mathbb{R}} e^{u(\lambda-x) D} d u\right) e^{w(\lambda-x) D} e^{v(\mu-y) D} e^{z(\mu-y) D} d w d v d z d v d x d y \\
=\int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2} \times \mathbb{S}_{4,0}^{2}} f_{\| \mid}(x, y) \delta_{\lambda, x}\left(\int_{\mathbb{R}} e^{w(\lambda-x) D} d w\right) e^{v(\mu-y) D} e^{z(\mu-y) D} d v d z d v d x d y \\
=\int_{\mathbb{R}^{2}} \int_{\mathbb{R} \times \mathbb{S}_{4,0}^{2}} f_{\|}(x, y) \delta_{\lambda, x} \delta_{\lambda, x}\left(\int_{\mathbb{R}} e^{v(\mu-y) D} d v\right) d z d v d x d y \\
=\int_{\mathbb{R}^{2}} \int_{\mathbb{S}_{4,0}^{2}} f_{\| \mid}(x, y) \delta_{\lambda, x} \delta_{\lambda, x} \delta_{\mu, y}\left(\int_{\mathbb{R}} e^{z(\mu-y) D} d z\right) d v d x d y \\
=\int_{\mathbb{R}^{2}} \int_{\mathbb{S}_{4,0}^{2}} f_{\| \mid}(x, y) \delta_{\lambda, x} \delta_{\lambda, x} \delta_{\mu, y} \delta_{\mu, y} d v d x d y \\
=\int_{\mathbb{R}^{2}} f_{\|}(x, y) \delta_{\lambda, x} \delta_{\lambda, x} \delta_{\mu, y} \delta_{\mu, y} d x d y=f_{\|}(\lambda, \mu)
\end{gathered}
$$

4 Application to color image filtering

4.1 Clifford Fourier transform of color images

For the applications we have in mind to color image filtering, we define a partial Clifford Fourier transform, i.e. we deal with a subset of the set of unitary group representations of \mathbb{R}^{2} of dimension 4 . The subset we consider will depend of the colors we aim at filtering.
More precisely, we restrict the definition 1 to the set of group morphisms $\widetilde{\Phi}_{u, v, 0,0, D}$ where the bivector D is fixed.

Definition 2. Clifford Fourier transform with respect to a bivector. Let $f \in L^{2}\left(\mathbb{R}^{2},\left(\mathbb{R}^{3}, Q\right)\right)$, resp. $L^{2}\left(\mathbb{R}^{2},\left(\mathbb{R}^{4}, Q\right)\right)$ and denote by f the embedding of f into the Clifford algebra $\operatorname{Cl}\left(\mathbb{R}^{4}, Q \oplus 1\right)$, resp. $C l\left(\mathbb{R}^{4}, Q\right)$. The Clifford Fourier transform of f with respect to the bivector D is defined by

$$
\begin{gathered}
\widehat{f}_{D}(u, v)=\int_{\mathbb{R}^{2}} f(x, y) \perp \widetilde{\Phi}_{u, v, 0,0, D}(-x,-y) d x d y \\
=\int_{\mathbb{R}^{2}} e^{\frac{1}{2}(x u+y v) I D} e^{\frac{1}{2}(x u+y v) D} f(x, y) e^{-\frac{1}{2}(x u+y v) D} e^{-\frac{1}{2}(x u+y v) I D} d x d y .
\end{gathered}
$$

It follows the definition of the Clifford Fourier transform of a color image.
Definition 3. Clifford Fourier transform of a color image.
Let I be a color image. We associate to I a function $f \in L^{2}\left(\mathbb{R}^{2},\left(\mathbb{R}^{3}, Q\right)\right)$ defined by

$$
f(x, y)=r(x, y) e_{1}+g(x, y) e_{2}+b(x, y) e_{3}+0 e_{4}
$$

where r, g and b correspond to the red, green and blue levels. The Clifford Fourier transform of I with respect to Q and D is the $C l\left(\mathbb{R}^{4}, Q \oplus 1\right)$ valued function $\widehat{I}_{Q, D}$ defined by

$$
\widehat{I}_{Q, D}(u, v)=\widehat{f}_{D}(u, v)=\int_{\mathbb{R}^{2}} f(x, y) \perp \widetilde{\Phi}_{u, v, 0,0, D}(-x,-y) d x d y .
$$

Thus, given a color image, we define a set of associated Clifford Fourier transforms parametrized by the set of positive definite quadratic forms on \mathbb{R}^{3} and unit bivectors in $\mathbb{R}_{4,0}$.

As the Clifford Fourier transform in $L^{2}\left(\mathbb{R}^{3}, Q\right)$ and $L^{2}\left(\mathbb{R}^{4}, Q\right)$, we can show that the Clifford Fourier transform of a color image is invertible.

Proposition 4. Let $f \in L^{2}\left(\mathbb{R}^{2},\left(\mathbb{R}^{3}, Q\right)\right)$ and D be a unit bivector in $C l\left(\mathbb{R}^{4}, Q \oplus 1\right)$. Then, the Clifford Fourier transform of f with respect to D is invertible. Its inverse is the map defined by

$$
\check{g}(x, y)=\int_{\mathbb{R}^{2}} g(u, v) \perp \widetilde{\Phi}_{u, v, 0,0, D}(x, y) d u d v .
$$

Proof. Decomposing f with respect to the plane generated by D as $f=f_{\|}+f_{\perp}$ we have

$$
\widehat{f}_{D}(u, v)=\int_{\mathbb{R}^{2}}\left(f_{\|}(x, y)+f_{\perp}(x, y)\right) \perp \widetilde{\Phi}_{u, v, 0,0, D}(-x,-y) d x d y
$$

This can be written

$$
\widehat{f}_{D}(u, v)=\widehat{f}_{D_{\|}}(u, v)+\widehat{f}_{D_{\perp}}(u, v)
$$

where

$$
\begin{aligned}
\widehat{f}_{D_{\|}}(u, v) & =\int_{\mathbb{R}^{2}} f_{\|}(x, y) \perp \widetilde{\Phi}_{u, v, 0,0, D}(-x,-y) d x d y \\
& =\int_{\mathbb{R}^{2}} f_{\|}(x, y) e^{-(u x+v y) D} d x d y
\end{aligned}
$$

and

$$
\begin{aligned}
\widehat{f}_{D_{\perp}}(u, v) & =\int_{\mathbb{R}^{2}} f_{\perp}(x, y) \perp \widetilde{\Phi}_{u, v, 0,0, D}(-x,-y) d x d y \\
& =\int_{\mathbb{R}^{2}} f_{\perp}(x, y) e^{-(u x+v y) I D} d x d y .
\end{aligned}
$$

Let us remark that each one of the two integrals may be identified with the Fourier transform of a function from \mathbb{R}^{2} to \mathbb{C}. Then, we deduce that there exists an inversion formula (left and right) for the Clifford Fourier transform \widehat{f}_{D} given by

$$
f(x, y)=\int_{\mathbb{R}^{2}} \widehat{f}_{D}(u, v) \perp \widetilde{\Phi}_{u, v, 0,0, D}(x, y) d u d v
$$

Indeed, the right term equals

$$
\begin{gather*}
\int_{\mathbb{R}^{2}}\left(\widehat{f}_{D_{\|}}(u, v)+\widehat{f}_{D_{\perp}}(u, v)\right) \perp \widetilde{\Phi}_{u, v, 0,0, D}(x, y) d u d v \\
=\int_{\mathbb{R}^{2}}{\widehat{D_{\|}}}_{D_{\|}}(u, v) e^{(u x+v y) D} d u d v+\int_{\mathbb{R}^{2}}{\widehat{D_{D}}}_{\perp}(u, v) e^{(u x+v y) I D} d u d v \tag{3}
\end{gather*}
$$

Each one of these integrals may be identified with the inversion formula of the Fourier transform of a function from \mathbb{R}^{2} to \mathbb{C}, hence

$$
(3)=f_{\|}(x, y)+f_{\perp}(x, y)=f(x, y)
$$

The following proposition is useful for applications and in particular for applications to the frequencies filtering developed in the next section. It gives an integral representation of any 3D-valued signal defined on the plane by 3D-valued cosinu-
soidal signals. This representation is obtained from the Clifford Fourier transform with respect to some bivector. In this proposition we show that the representation is invariant with respect to the choice of the bivector. In the discrete case, we obtain a decomposition of the signal as a sum of cosinusoidal signals.

Proposition 5. Using the previous notations, if B and D are elements of $\mathbb{S}_{4,0}^{2}$, we have

$$
\begin{aligned}
& \widehat{f}_{B}(u, v) \perp \widetilde{\Phi}_{u, v, 0,0, B}(x, y)+\widehat{f}_{B}(-u,-v) \perp \widetilde{\Phi}_{-u,-v, 0,0, B}(x, y) \\
= & \widehat{f}_{D}(u, v) \perp \widetilde{\Phi}_{u, v, 0,0, D}(x, y)+\widehat{f}_{D}(-u,-v) \perp \widetilde{\Phi}_{-u,-v, 0,0, D}(x, y)
\end{aligned}
$$

Moreover, the e_{4} component of this expression is null.
Proof. Simple computations show that

$$
\begin{gather*}
\widehat{f}_{B}(u, v) \perp \widetilde{\Phi}_{u, v, 0,0, B}(x, y)+\widehat{f}_{B}(-u,-v) \perp \widetilde{\Phi}_{-u,-v, 0,0, B}(x, y) \tag{4}\\
=\int_{\mathbb{R}^{2}} e^{-\frac{x u+y v}{2}(B+I B)} e^{\frac{\lambda u+\mu v}{2}(B+I B)} f(\lambda, \mu) e^{-\frac{\lambda u+\mu v}{2}(B+I B)} e^{\frac{x u+y v}{2}(B+I B)} d \lambda d \mu \\
+\int_{\mathbb{R}^{2}} e^{\frac{x u+y v}{2}(B+I B)} e^{-\frac{\lambda u+\mu v}{2}(B+I B)} f(\lambda, \mu) e^{\frac{\lambda u+\mu v}{2}(B+I B)} e^{-\frac{x u+y v}{2}(B+I B)} d \lambda d \mu \\
=\int_{\mathbb{R}^{2}} 2 \cos (u(x-\lambda)+v(y-\mu)) f_{\|}(\lambda, \mu) d \lambda d \mu \\
+\int_{\mathbb{R}^{2}} 2 \cos (u(x-\lambda)+v(y-\mu)) f_{\perp}(\lambda, \mu) d \lambda d \mu .
\end{gather*}
$$

Hence

$$
(4)=\int_{\mathbb{R}^{2}} 2 \cos (u(x-\lambda)+v(y-\mu)) f(\lambda, \mu) d \lambda d \mu
$$

This proposition justifies the fact that these filters are symmetric with respect to the transformation $(u, v) \mapsto(-u,-v)$.

4.2 Color image filtering

We now present applications to color image filtering. The use of the Fourier transform is motivated by the well known fact that non trivial filters in the spatial domain may be implemented efficiently with masks in the Fourier domain. Although it seems natural to believe that the results on grey level images may be generalized, there are not so many works dedicated to the specific case of color images. Let us mention the reference [14] where an attempt is made through the use of an ad hoc quaternionic transform. The mathematical construction we propose appears to be well founded since it explains the fundamental role of bivectors and scalar products in terms of group actions. As explained before, the possibility to choose the bivector D and the quadratic form Q is an asset allowing a wider range of applications.

Indeed, Sangwine et al. proposal can be written in our formalism by considering appropriate D and Q.

The applications proposed in this paper are based on the following fact:

$$
\left(\widehat{f_{D}}\right)_{\|}=\widehat{\left(f_{\|}\right)_{D}} \quad \text { and } \quad\left(\widehat{f_{D}}\right)_{\perp}=\widehat{\left(f_{\perp}\right)_{D}}
$$

In other words, the part of the Clifford Fourier transform of f that is parallel to D corresponds to the standard Fourier transform of the part of f that is parallel to D. The same principle holds for the orthogonal part.

We use low pass, high pass and directional filters on the D-parallel part, resp. D-orthogonal part, leaving the D-parallel part, resp. D-orthogonal unmodified. The choice of the bivector D and the quadratic form Q (that determines the D-orthogonal part) will depend on the colors we aim at filtering. Then, we show the action of such filters using the inversion formula of the Clifford Fourier transform.

There is an other way to decompose a color $\alpha=(r, g, b)$, that is with respect to its luminance and chrominance parts, respectively denoted by l_{α} and v_{α}. Embedding the color space RGB into the Clifford algebra $\mathbb{R}_{4,0}$ by

$$
i_{\alpha}=r e_{1}+g e_{2}+b e_{3}+0 e_{4},
$$

the former corresponds to the projection of i_{α} on the axis generated by the unit vector $\left(e_{1}+e_{2}+e_{3}\right) / \sqrt{3}$, the latter its projection on the orthogonal plane in $e_{1} e_{2} e_{3}$, called the chrominance plane, represented by the unit bivector $\left(e_{1} e_{2}-e_{1} e_{3}+\right.$ $\left.e_{2} e_{3}\right) / 3$. In what follows we make use of the following fact too: every hue can be represented as an equivalence class of bivectors of $\mathbb{R}_{4,0}$. More precisely, we have the following result.

Proposition 6. Let T be the set of bivectors

$$
T=\left\{\left(e_{1}+e_{2}+e_{3}\right) \wedge i_{\alpha}, \alpha \in R G B\right\}
$$

with the following equivalence relation:

$$
B \simeq C \Longleftrightarrow B=\lambda C \quad \text { for } \lambda>0
$$

Then, there is a bijection between T / \simeq and the set of hues.
Proof. We have

$$
\left(e_{1}+e_{2}+e_{3}\right) \wedge i_{\alpha}=\left(e_{1}+e_{2}+e_{3}\right) v_{\alpha}
$$

Then, there is a bijection between T / \simeq and the set $\left(e_{1}+e_{2}+e_{3}\right) v$ for v a unit vector in the chrominance plane. This latter being in bijection with the set of different hues, we conclude that there exists a bijection between T / \simeq and the set of hues.

Fig. 1 Original images

Fig. 1 shows the original images used for these experiments ${ }^{1}$. Fig. 1(a) H is a modified color version of the Fourier house containing red, desatured red, green, cyan stripes in various directions, a uniform red circle and a red square with lower luminance. Fig. 1(b) F is a natural image taken from the Berkeley image segmentation database [10].

Fig. 2 The Clifford-Fourier transform $\widehat{H}_{Q_{1}, e_{1} e_{4}}$

[^0]Fig. 2(a) is the centered log-modulus of the D-parallel part of $\widehat{H}_{Q_{1}, D}$ where Q_{1} is the quadratic form such that $Q_{1} \oplus 1$ is given by the identity matrix I_{4} in the basis ($e_{1}, e_{2}, e_{3}, e_{4}$), and D the bivector $e_{1} e_{4}$. Fig. 2(b) is the result of a directional cut filter around $\pi / 2$ which removes of vertical frequencies. Let us point out that horizontal green stripes are not altered since green color $255 e_{2}$ belongs to $I D=e_{2} e_{3}$.

Fig. 3 Low pass filtering

Fig. 3 shows the difference between a low pass filter in the D-parallel part of $\widehat{H}_{Q_{1}, e_{1} e_{4}}$ (Fig. 3(a)) and the D-parallel part $\widehat{H}_{Q_{1}, \frac{1}{\sqrt{2}}\left(e_{2}+e_{3}\right) e_{1}}$ (Fig. 3(b)). The first one consists in removing high frequencies of the red components of the image, whereas the second one consists in removing high frequencies of the red hue part of the image. In Fig. 3(a), we can see that both green and cyan stripes are not modified. As in the previous case, this comes from the fact that both green color and cyan color $255 e_{2}+255 e_{3}$ belong to $I D$. The result is different in Fig. 3(b). The unit bivector $\frac{1}{\sqrt{2}}\left(e_{2}+e_{3}\right) e_{1}=\frac{1}{\sqrt{2}}\left(e_{1}+e_{2}+e_{3}\right) \wedge e_{1}$ represents the red hue, involving that the cyan stripes are blurred. Indeed, unit bivectors representing cyan and red hues are opposite, therefore they generate the same plane. Green stripes are no more invariant to the low pass filter since the green axis e_{2} is not orthogonal to the bivector $\frac{1}{\sqrt{2}}\left(e_{2}+e_{3}\right) e_{1}$.

Fig. 4 The Clifford-Fourier transform $\widehat{F}_{Q_{1}, \frac{v_{\alpha} \wedge e_{4}}{\left\|v_{\alpha} \wedge e_{4}\right\|}}$, with $\alpha=(96,109,65)$

In Fig. 4, the color α has been chosen to match with the color of the background green leaves. As the low pass filter (Fig. 4(a)) removes green high frequencies, the center of flowers containing yellow high frequencies turns red. In Fig. 4(b), background pixels corresponding to green low frequencies appear almost grey.

To conclude this part, we propose to compare the results of two low pass filters on the D-orthogonal part with respect to the same bivector $D=e_{1} e_{4}$ but changing the quadratic form. As a consequence, the bivector $I D$ differs in the two cases. For the first one (Fig. 5(a)), we take Q_{1}, whereas for the second one (Fig. 5(b)), we construct the quadratic form Q_{2} such that Q_{2} is given by I_{4} in the basis $\left(e_{1}, \frac{1}{\sqrt{2}}\left(e_{1}+e_{2}\right), \frac{i_{\alpha}}{\left\|i_{\alpha}\right\|}, e_{4}\right)$. In other words, we orthogonalize the red, the yellow and the color of leaves which are the main colors in the image.

In Fig. 5(a), the unit bivector $I D$ is $e_{2} e_{3}$. Hence, the low pass filter removes green and blue high frequencies but preserves red high frequencies. This explains why the image turns red. In Fig. 5(b), the unit bivector $I D$ is $\frac{\left(e_{1}+e_{2}\right)}{\sqrt{2}} \frac{i_{\alpha}}{\left\|i_{\alpha}\right\|}$, then it contains the colors of the background and inside the flowers. Therefore, the low pass filter removes all the high frequencies in the image except the ones of the red petals.

For some specific applications, a fine tuning of the quadratic form Q should give better results.

Fig. 5 Low pass filters in the $I D$ part

5 Related works

To conclude this paper, we show how to recover the hypercomplex Fourier transform of S. Sangwine and the quaternionic Fourier transform of T. Bülow in the Clifford algebras context, using the appropriate morphism from \mathbb{R}^{2} to $\operatorname{Spin}(4)$. First of all, let us recall the definitions of these Fourier transforms.

5.1 The hypercomplex Fourier transform of Sangwine et al.

In [5], the authors define the discrete hypercomplex Fourier transform. It can be extended to \mathbb{R}^{2} as follows. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{H}$, then its hypercomplex Fourier transform is given by

$$
F(u, v)=\int_{\mathbb{R}^{2}} e^{-\mu(x u+y v)} f(x, y) d x d y
$$

where $\mu \in \mathbb{H}_{0} \cap \mathbb{H}_{1}$.
There is a freedom in the choice of μ in the hypercomplex Fourier transform as we have a freedom in the choice of the bivector D in the Clifford Fourier transform for color images. In fact, they have the same role, i.e. they decompose the four-dimensional space \mathbb{R}^{4} into two orthogonal two-dimensional subspaces and decompose the Fourier transform into two standard Fourier transforms.
This is shown in the following proposition.
Proposition 7. Let $\mu=\mu_{1} i+\mu_{2} j+\mu_{3} k$ be a unit quaternion. Let $f \in L^{2}\left(\mathbb{R}^{2},\left(\mathbb{R}^{4}, Q\right)\right)$ where Q is the quadratic form represented by I_{4} in the basis $\left(e_{1}, e_{2}, e_{3}, e_{4}\right)$, and let C be the unit bivector $e_{4} \wedge\left(\mu_{1} e_{1}+\mu_{2} e_{2}+\mu_{3} e_{3}\right)$. Then, \widehat{f}_{C} given by

$$
\begin{gathered}
\widehat{f}_{C}(u, v)=\int_{\mathbb{R}^{2}} f(x, y) \perp \widetilde{\Phi}_{u, v, 0,0, C}(-x,-y) d x d y \\
=\int_{\mathbb{R}^{2}} e^{\frac{1}{2}(x u+y v) I C} e^{\frac{1}{2}(x u+y v) C} f(x, y) e^{-\frac{1}{2}(x u+y v) C} e^{-\frac{1}{2}(x u+y v) I C} d x d y
\end{gathered}
$$

corresponds to the hypercomplex Fourier transform of f seen as $a \mathbb{H}$-valued function under the identification ${ }^{2}$

$$
e_{1} \leftrightarrow i \quad e_{2} \leftrightarrow j \quad e_{3} \leftrightarrow k \quad e_{4} \leftrightarrow 1
$$

Proof. We have to determine the four-dimensional rotation that is generated by the action of the unit quaternion $e^{\mu \phi}$ on \mathbb{H} given by

$$
q \longmapsto e^{\mu \phi} q .
$$

It is explained in [5] that this rotation may be decomposed as the sum of two twodimensional rotations of angle $-\phi$ in the planes generated by $(1, \mu)$ and its orthogonal (with respect to the euclidean quadratic form).
Therefore, we can identify this rotation with the action of the spinor

$$
e^{-\frac{\phi}{2}(C+I C)}
$$

on the four-dimensional space $\mathbb{R}_{4,0}^{1}$. As a consequence, the action of group morphisms $(x, y) \longmapsto e^{\mu(x u+y v)}$ from \mathbb{R}^{2} to \mathbb{H}_{1} on \mathbb{H} corresponds to the action of group morphisms $(x, y) \longmapsto e^{-\frac{1}{2}(x u+y v)(C+I C)}$ from \mathbb{R}^{2} to $\operatorname{Spin}(4)$ on $\mathbb{R}_{4,0}^{1}$.

Remark 5. To the best of our knowledge, the authors restrict for their applications to μ taken as the grey axis, i.e.

$$
\mu=\frac{1}{\sqrt{3}}(i+j+k)
$$

In other words, the Fourier transform they propose is decomposed as a standard Fourier transform of the luminance part and a standard Fourier transform of the chrominance part.

5.2 The quaternionic Fourier transform of Bülow

The quaternionic Fourier transform [2] of a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is the quaternion valued function $\mathscr{F}(f)$ defined by

$$
\mathscr{F}(f)\left(y_{1}, y_{2}\right)=\int_{\mathbb{R}^{2}} \exp \left(-2 \pi i y_{1} x_{1}\right) f\left(x_{1}, x_{2}\right) \exp \left(-2 \pi j y_{2} x_{2}\right) d x_{1} d x_{2}
$$

[^1]The link between this Fourier transform and the one proposed here is given by the next result.

Proposition 8. Let $f \in L^{2}\left(\mathbb{R}^{2} ; \mathbb{R} e_{4}\right)$ where $\left(e_{1}, e_{2}, e_{3}, e_{4}\right)$ is the basis of \mathbb{R}^{4} that generates $\mathbb{R}_{4,0}$. The Clifford Fourier transform of f defined by

$$
\begin{gathered}
\widehat{f}_{C}\left(2 \pi y_{1}, 0,0,2 \pi y_{2}\right)= \\
\int_{\mathbb{R}^{2}} f\left(x_{1}, x_{2}\right) \perp \widetilde{\Phi}_{2 \pi y_{1}, 0,0,2 \pi y_{2}, C}\left(-x_{1},-x_{2}\right) d x_{1} d x_{2}
\end{gathered}
$$

where C is the bivector

$$
-\frac{1}{4}\left(e_{1}+e_{2}\right)\left(e_{3}-e_{4}\right)
$$

corresponds to the quaternionic Fourier transform of f seen as a \mathbb{H}-valued function under the following identification ${ }^{3}$

$$
e_{1} \leftrightarrow i \quad e_{2} \leftrightarrow j \quad e_{3} \leftrightarrow k \quad e_{4} \leftrightarrow 1
$$

Proof. We have to determine one of the two elements of $\operatorname{Spin}(3) \times \operatorname{Spin}(3)$ that generate the following rotation in \mathbb{H} :

$$
f\left(x_{1}, x_{2}\right) \mapsto \exp \left(-2 \pi i y_{1} x_{1}\right) f\left(x_{1}, x_{2}\right) \exp \left(-2 \pi j y_{2} x_{2}\right) .
$$

Simple computations show that the rotation

$$
f\left(x_{1}, x_{2}\right) \mapsto \exp \left(-2 \pi i y_{1} x_{1}\right) f\left(x_{1}, x_{2}\right)
$$

can be written in $\mathbb{R}_{4,0}^{1}$ as

$$
f\left(x_{1}, x_{2}\right) \mapsto e^{-\pi x_{1} y_{1}\left(e_{4} e_{1}+e_{2} e_{3}\right)} f\left(x_{1}, x_{2}\right) e^{\pi x_{1} y_{1}\left(e_{4} e_{1}+e_{2} e_{3}\right)} .
$$

In the same way,

$$
f\left(x_{1}, x_{2}\right) \mapsto f\left(x_{1}, x_{2}\right) \exp \left(-2 \pi j y_{2} x_{2}\right)
$$

corresponds to

$$
f\left(x_{1}, x_{2}\right) \mapsto e^{-\pi x_{2} y_{2}\left(e_{4} e_{2}+e_{1} e_{3}\right)} f\left(x_{1}, x_{2}\right) e^{\pi x_{2} y_{2}\left(e_{4} e_{2}+e_{1} e_{3}\right)}
$$

By associativity, this shows that

$$
\exp \left(-2 \pi i y_{1} x_{1}\right) f\left(x_{1}, x_{2}\right) \exp \left(-2 \pi j y_{2} x_{2}\right)=e^{-\tau} e^{-\rho} f\left(x_{1}, x_{2}\right) e^{\rho} e^{\tau}
$$

where

$$
\tau=\pi x_{2} y_{2}\left(e_{4} e_{2}+e_{1} e_{3}\right)
$$

and

[^2]$$
\rho=\pi x_{1} y_{1}\left(e_{4} e_{1}+e_{2} e_{3}\right) .
$$

By definition,

$$
\chi\left(e^{\rho} e^{\tau}\right)=\chi\left(e^{\pi x_{1} y_{1} e_{4} e_{1}}\right) \chi\left(e^{\pi x_{1} y_{1} e_{2} e_{3}}\right) \chi\left(e^{\pi x_{2} y_{2} e_{4} e_{2}}\right) \chi\left(e^{\pi x_{2} y_{2} e_{1} e_{3}}\right)
$$

From simple computations, we get

$$
\chi\left(e^{\rho} e^{\tau}\right)=\left(e^{2 \pi x_{1} y_{1} e_{2} e_{3}}, e^{2 \pi x_{2} y_{2} e_{1} e_{3}}\right)
$$

and conclude therefore that

$$
\left(x_{1}, x_{2}\right) \mapsto\left(e^{2 \pi x_{1} y_{1} e_{2} e_{3}}, e^{2 \pi x_{2} y_{2} e_{1} e_{3}}\right)
$$

is the morphism $\widetilde{\phi}_{2 \pi y_{1}, 0, e_{2} e_{3}, 0,2 \pi y_{2}, e_{1} e_{3}}$.
From Section 3, this latter may be rewritten $\widetilde{\Phi}_{\left.2 \pi y_{1}, 0,0,2 \pi y_{2}, \frac{1}{4}\left(e_{1}+e_{2}\right)\left(e_{3}-e_{4}\right)\right)}$. Indeed, we have

$$
\begin{gathered}
\frac{1}{4}\left(e_{2} e_{3}+e_{1} e_{3}+I\left(e_{2} e_{3}-e_{1} e_{3}\right)\right)=\frac{1}{4}\left(e_{2} e_{3}+e_{1} e_{3}-e_{1} e_{4}-e_{2} e_{4}\right) \\
=\frac{1}{4}\left(e_{1}\left(e_{3}-e_{4}\right)+e_{2}\left(e_{3}-e_{4}\right)\right)=\frac{1}{4}\left(\left(e_{1}+e_{2}\right)\left(e_{3}-e_{4}\right)\right)
\end{gathered}
$$

6 Conclusion

We proposed in this paper a definition of Clifford Fourier transform that is motivated by group actions considerations. We defined a Clifford Fourier transform that is associated with the action of all the group morphisms $\widetilde{\Phi}_{u, v, w, z, D}$ from \mathbb{R}^{2} to $\operatorname{Spin}(4)$, parameterized by four real numbers and one unit bivector. This transform has the property of being left-invertible. For the particular case of a color image, we associate the Clifford Fourier transform with the action of group morphisms $\widetilde{\Phi}_{u, v, 0,0, D}$, specified by only two real numbers (the frequencies) and where the bivector D is fixed. This transform is parameterized by a quadratic form on \mathbb{R}^{4} and a unit bivector in the corresponding Clifford algebra. Some previous Fourier transforms based on quaternions are proved to be particular settings of ours. We have treated in this context an application to color image filtering. Future works will be devoted to find applications of the general transform, that should easily deal with relations between colors in the image. Applications to multispectral images such as color/infrared images will be also investigated.

Acknowledgments

This work is partially supported by the "Communauté d'agglomération de La Rochelle".

Appendix

A. Lie groups representations and Fourier transforms

From the groups theory approach, the basic structure we need to define Fourier transforms is locally compact unimodular groups. Let us start by the definition of the dual of a topological group G, that is the set of the equivalence classes of its unitary irreducible representations, denoted by \widehat{G}. We refer to [16] for details.

Definition 4. Group representation.
Let G be a topological group and V be a topological vector space over \mathbb{R} or \mathbb{C}. A continuous linear representation (φ, V) from G to V is a group morphism

$$
\varphi: g \mapsto \varphi(g)
$$

from G to $G L(V)$ such that the map

$$
(a, g) \mapsto \varphi(g)(a)
$$

from $V \times G$ to V is continuous.
In general, V is an Hilbert space. If V is finite-dimensional, then the representation is said to be finite, and the dimension of V is called the degree of the representation.

Definition 5. Irreducible representation.

A subspace W of V is said to be invariant by φ if $\varphi(g)(W) \subset W, \forall g \in G$.
Then, the representation φ is said to be irreducible if W and $\{0\}$ are the only subspaces of V that are invariant by φ.

Definition 6. Equivalent representations.
Let $\left(\varphi_{1}, V_{1}\right)$ and $\left(\varphi_{2}, V_{2}\right)$ be two linear representations of the same group G. We say that they are equivalent if there exists an isomorphism $\gamma: V_{1} \rightarrow V_{2}$ such that

$$
\gamma \circ \varphi_{1}(g)=\varphi_{2}(g) \circ \gamma, \quad \forall g \in G .
$$

From now on, V is a \mathbb{C}-vector space equipped with a hermitian form $<,>$.

Definition 7. Unitary representation.
The representation φ is unitary with respect to $<,>$ if

$$
<\varphi(g)(a), \varphi(g)(b)>=<a, b>\quad \forall a, b \in V \forall g \in G .
$$

We now restrict to locally compact unimodular groups. On such groups, we can construct a measure that is invariant with respect to both left and right translations. It a called a Haar measure. From a Haar measure is defined a Haar integral of the group.

Proposition 9. Let G be a locally compact unimodular group, and v denotes a Haar measure. Then, for $f \in L^{2}(G ; \mathbb{C})$ and $h \in G$, we have

$$
\int_{G} f(g) d v(g)=\int_{G} f(g h) d v(g)=\int_{G} f(h g) d v(g)
$$

Remark 6. Locally compact abelian groups and compact groups are unimodular.
Definition 8. Fourier transform on locally compact unimodular groups.
Let G be a locally compact unimodular group with Haar measure v. The Fourier transform of $f \in L^{2}(G ; \mathbb{C})$ is the map \hat{f} defined on \widehat{G} by

$$
\hat{f}(\varphi)=\int_{G} f(g) \varphi\left(g^{-1}\right) d v(g)
$$

Theorem 1. Inversion formula of the Fourier transform.
$\hat{f}(\varphi)$ is a Hilbert-Schmidt operator over the space of the representation φ. There is a measure over \widehat{G} denoted by \widehat{v} such that $\hat{f} \in L^{2}(\widehat{G} ; \mathbb{C})$ and $f \mapsto \hat{f}$ is an isometry. Moreover, the following inverse formula holds:

$$
f(g)=\int_{\widehat{G}} \operatorname{Trace}(\hat{f}(\varphi) \varphi(g)) d \widehat{v}(\varphi)
$$

Let us now have a closer look on Lie groups. We refer to [7] for an introduction to differential geometry.

Definition 9. Lie group and Lie algebra.
A real C^{∞} Lie group is a topological group endowed with a structure of real C^{∞} manifold. The Lie algebra of G is (isomorphic to) the tangent space of G at the neutral element $e: T_{e} G$. It is usually denoted by \mathfrak{g}. It can be made into an algebra over \mathbb{R} by considering the Lie bracket $[$,$] that satifies: (X, Y) \mapsto[X, Y]$ from $\mathfrak{g} \times \mathfrak{g}$ to \mathfrak{g} is \mathbb{R}-bilinear. Moreover it satisfies

$$
[X, X]=0 \quad \forall X \in \mathfrak{g}
$$

and

$$
[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0 \quad \forall X, Y, Z \in \mathfrak{g} .
$$

Definition 10. Exponential map.
Let G be a C^{∞} Lie group. The exponential map of G is the map from \mathfrak{g} to G

$$
\exp : X \longmapsto f(1)
$$

where $f: \mathbb{R} \rightarrow G$ satisfies

$$
f(t+s)=f(t) f(s) \quad \forall t, s \in \mathbb{R}
$$

and

$$
f^{\prime}(0)=X
$$

f is called a one-parameter subgroup.
To compute group morphisms from \mathbb{R}^{2} to $\operatorname{Spin}(3)$ and $\operatorname{Spin}(4)$, we use the following result on Lie groups morphisms.
Proposition 10. Let G and H be two C^{∞} Lie groups, and $\exp _{G}$, $\exp _{H}$ be the corresponding exponential maps. Let $\phi: G \rightarrow H$ be a Lie group morphism. The linear tangent map of ϕ at g, denoted by $T_{g} \phi$, is the linear map from $T_{g} G$ to $T_{\phi(g)} H$ given by

$$
T_{g} \phi(X)=\frac{d}{d t} \phi\left(g \exp _{G}(t X)\right)_{\left.\right|_{t=0}}
$$

Then, if we note e the neutral element of G we have

$$
\begin{equation*}
\phi\left(\exp _{G}(X)\right)=\exp _{H}\left(T_{e} \phi(X)\right) \tag{5}
\end{equation*}
$$

The map $T_{e} \phi$ is a Lie algebra morphism, i.e. it satisfies

$$
T_{e} \phi([X, Y])=\left[T_{e} \phi(X), T_{e} \phi(Y)\right] \quad \forall X, Y \in \mathfrak{g}
$$

From (5), we deduce that if the group G is connected and the exponential map of G is onto, then the Lie group morphisms from G to H are determined by Lie algebras morphisms from \mathfrak{g} to \mathfrak{h}.

B. Clifford algebras

Let V be a vector space of finite dimension n over \mathbb{R} equipped with a quadratic form Q. Formally speaking, the Clifford algebra $C l(V, Q)$ is the solution of the following universal problem. We search a couple $\left(C l(V, Q), i_{Q}\right)$ where $C l(V, Q)$ is an \mathbb{R}-algebra and $i_{Q}: V \longrightarrow C l(V, Q)$ is \mathbb{R}-linear satisfying:

$$
\left(i_{Q}(v)\right)^{2}=Q(v) .1
$$

for all v in V (1 denotes the unit of $C l(V, Q)$) such that for each \mathbb{R}-algebra A and each \mathbb{R}-linear map $f: V \longrightarrow A$ with

$$
(f(v))^{2}=Q(v) .1
$$

for all v in $V(1$ denotes the unit of $A)$, then there exists a unique morphism

$$
g: C l(V, Q) \longrightarrow A
$$

of \mathbb{R}-algebras such that $f=g \circ i_{Q}$.
The solution is unique up to isomorphisms and is given as the (non commutative) quotient

$$
T(V) /(v \otimes v-Q(v) .1)
$$

of the tensor algebra of V by the ideal generated by $v \otimes v-Q(v) .1$, where v belongs to V (see [12] for a proof).
It is well known that there exists a unique anti-automorphism t on $C l(V, Q)$ such that

$$
t\left(i_{Q}(v)\right)=i_{Q}(v)
$$

for all v in V. It is called reversion and usually denoted by $x \longmapsto x^{\dagger}, x$ in $C l(V, Q)$. In the same way there exists a unique automorphism α on $C l(V, Q)$ such that

$$
\alpha\left(i_{Q}(v)\right)=-i_{Q}(v)
$$

for all v in V. In this paper we write v for $i_{Q}(v)$ (according to the fact that i_{Q} embeds V in $C l(V, Q)$).
As a vector space $C l(V, Q)$ is of dimension 2^{n} on \mathbb{R} and a basis is given by the set

$$
\left\{e_{i_{1}} e_{i_{2}} \cdots e_{i_{k}}, \quad i_{1}<i_{2}<\ldots<i_{k}, \quad k \in\{1, \ldots, n\}\right\}
$$

and the unit 1 . An element of degree k

$$
\sum_{i_{1}<\cdots<i_{k}} \alpha_{i_{1} \cdots i_{k}} e_{i_{1}} e_{i_{2}} \cdots e_{i_{k}}
$$

is called a k-vector. A 0 -vector is a scalar and $e_{1} e_{2} \cdots e_{n}$ is called the pseudoscalar. We denote $\langle x\rangle_{k}$ the component of degree k of an element x of $C l(V, Q)$.
The inner product of x_{r} of degree r and y_{s} of degree s is defined by

$$
x_{r} \cdot y_{s}=\left\langle x_{r} y_{s}\right\rangle_{|r-s|}
$$

if r and s are positive and by

$$
x_{r} \cdot y_{s}=0
$$

otherwise.
The outer product of x_{r} of degree r and y_{s} of degree s is defined by

$$
x_{r} \wedge y_{s}=\left\langle x_{r} y_{s}\right\rangle_{r+s}
$$

These products extend by linearity on $C l(V, Q)$. Clearly, if a and b are vectors of V, then the inner product of a and b coincides with the scalar product defined by Q. When it is defined (for example when x is a versor and Q is positive) we denote

$$
\|x\|=\sqrt{x x^{\dagger}}
$$

and say that x is a unit if $x x^{\dagger}= \pm 1$.
In this paper, we deal in particular with the Clifford algebra of the Euclidean \mathbb{R}^{n} denoted by $\mathbb{R}_{n, 0} . \mathbb{R}_{n, 0}^{k}$ is the subspace of elements of degree k and $\mathbb{R}_{n, 0}^{*}$ is the group of elements that admit an inverse in $\mathbb{R}_{n, 0}$. We denote by $\mathbb{S}_{n, 0}^{2}$ the set of elements of $\mathbb{R}_{n, 0}^{2}$ of norm 1 .

Let a be a vector in $\mathbb{R}_{n, 0}$ and B be the k-vector $a_{1} \wedge a_{2} \wedge \cdots \wedge a_{k}$, then the orthogonal projection of a on the k-plane generated by the a_{i} 's is the vector

$$
P_{B}(a)=(a \cdot B) B^{-1}
$$

The vector

$$
a-(a \cdot B) B^{-1}=(a \wedge B) B^{-1}
$$

is called the rejection of a on B.

C. The spinor group Spin (n)

It is defined by

$$
\operatorname{Spin}(n)=\left\{\prod_{i=1}^{2 k} a_{i}, a_{i} \in \mathbb{R}_{n, 0}^{1},\left\|a_{i}\right\|=1\right\}
$$

or equivalently

$$
\operatorname{Spin}(n)=\left\{x \in \mathbb{R}_{n, 0}, \alpha(x)=x, x x^{\dagger}=1, x v x^{-1} \in \mathbb{R}_{n, 0}^{1} \forall v \in \mathbb{R}_{n, 0}^{1}\right\}
$$

It is well known that $\operatorname{Spin}(n)$ is a connected compact Lie group that universally covers $\mathrm{SO}(n)(n \geq 3)$. One can verify that $\operatorname{Spin}(3)$ is the group

$$
\left\{a 1+b e_{1} e_{2}+c e_{2} e_{3}+d e_{3} e_{1}, a^{2}+b^{2}+c^{2}+d^{2}=1\right\}
$$

and is isomorphic to the group \mathbb{H}^{1} of unit quaternions. It is also a classical result that $\operatorname{Spin}(4)$ is isomorphic to $\operatorname{Spin}(3) \times \operatorname{Spin}(3)$ (see [9] for more information on spinors in \mathbb{R}^{3} and \mathbb{R}^{4}).
The Lie algebra of $\operatorname{Spin}(n)$ is $\mathbb{R}_{n, 0}^{2}$ with Lie bracket

$$
A \times B=A B-B A
$$

As the exponential map from its Lie algebra to $\operatorname{Spin}(n)$ is onto (see [7] for a proof), every spinor can be written as

$$
S=\sum_{i=0}^{\infty} \frac{1}{i!} A^{i}
$$

for some bivector A.
From Hestenes and Sobczyk [8], we know that every A in $\mathbb{R}_{n, 0}^{2}$ can be written as

$$
A=A_{1}+A_{2}+\cdots+A_{m}
$$

where $m \leq n / 2$ and

$$
A_{j}=\left\|A_{j}\right\| a_{j} b_{j}, \quad j \in\{1, \ldots, m\}
$$

with

$$
\left\{a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{m}\right\}
$$

a set of orthonormal vectors. Thus

$$
A_{j} A_{k}=A_{k} A_{j}=A_{k} \wedge A_{j}
$$

whenever $j \neq k$ and

$$
A_{k}^{2}=-\left\|A_{k}\right\|^{2}<0
$$

This means that the planes encoded by A_{k} and A_{j} are orthogonal and implies that

$$
e^{A_{1}+A_{2}+\cdots+A_{m}}=e^{A_{\sigma(1)}} e^{A_{\sigma(2)}} \ldots e^{A_{\sigma(m)}}
$$

for all σ in the permutation group $\mathfrak{S}(m)$. Actually, as A_{k}^{2} is negative we have

$$
e^{A_{i}}=\cos \left(\left\|A_{i}\right\|\right)+\sin \left(\left\|A_{i}\right\|\right) \frac{A_{i}}{\left\|A_{i}\right\|}
$$

The corresponding rotation

$$
R_{i}: x \longmapsto e^{-A_{i}} x e^{A_{i}}
$$

acts in the oriented plane defined by A_{i} as a plane rotation of angle $2\left\|A_{i}\right\|$. The vectors orthogonal to A_{i} are invariant under R_{i}.
It then appears that any element R of $\mathrm{SO}(n)$ is a composition of commuting simple rotations, in the sense that they have only one invariant plane. The vectors left invariant by R are those of the orthogonal subspace to A. If $m=n / 2$ this latter is trivial. The previous decomposition is not unique if $\left\|A_{k}\right\|=\left\|A_{j}\right\|$ for some j and k with $j \neq k$. In this case infinitely many planes are left invariant by R.

References

1. Brackx, F., De Schepper, N., Sommen, F.: The Two-Dimensional Clifford-Fourier Transform. J Math Imaging Vis 26, 5-18 (2006)
2. Bülow, T.: Hypercomplex spectral signal representations for the processing and analysis of images. Ph.D. thesis, Kiel (1999)
3. Bülow, T., Sommer, G.: The hypercomplex signal - a novel approach to the multidimensional analytic signal. IEEE Transactions on Signal Processing 49, 11, 2844-2852 (2001)
4. Ebling, J., Scheuermann, G.: Clifford Fourier Transform on Vector Fields. IEEE Transactions on Visualization and Computer Graphics 11, 4, 2844-2852 (July/August 2005)
5. Ell, T.A., Sangwine, S.: Hypercomplex Fourier Transforms of Color Images. IEEE Transactions on Image Processing 16, 1, 5-18 (2007)
6. Felsberg, M.: Low-level image processing with the structure multivector. Ph.D. thesis, Kiel (2002)
7. Helgason, S.: Differential geometry, Lie groups and symmetric spaces. Academic Press London (1978)
8. Hestenes, D., Sobczyk, G.: Clifford algebra to geometric calculus. D. Reidel, Dordrecht (1984)
9. Lounesto, P.: Clifford algebras and Spinors. London Mathematical Society Lecture Notes Series. Cambridge University Press, Cambridge (1997)
10. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proc. 8th Int'l Conf. Computer Vision, vol. 2, pp. 416-423 (2001)
11. Mawardi B. et Hitzer, E.: Clifford Fourier transformation and uncertainty principle for the Clifford algebra $c l_{3,0}$. Adv. App. Cliff. Alg. 16, 1, 41-61 (2006)
12. Postnikov, M.: Leçons de Géométrie. Groupes et algèbres de Lie. Mir (1982)
13. Sangwine, S., Ell, T.A.: Hypercomplex Fourier Transforms of Color Images. In: IEEE International Conference on Image Processing (ICIP), vol. 1, pp. 137-140. Thessaloniki, Greece (2001)
14. Sangwine, S., Ell, T.A., Gatsheni, B.: Colour-dependent linear vector image filtering. In: Twelfth European Signal Processing Conference, EUSIPCO 2004, pp. 585-588. Vienna, Austria (2004)
15. Smach, F., Lemaître, C., Gauthier, J.P., Miteran, J., Atri, M.: Generalized Fourier Descriptors with Applications to Objects Recognition in SVM Context. J Math Imaging and Vision 30, 1, 43-71 (2008)
16. Vilenkin, N.J.: Special functions and the theory of group representations, Translations of Mathematical Monographs, vol. 22. American Mathematical Society, Providence, Rhode Island (1968)

Index

Bivector orthogonalization, 8, 27
Bivector representation of a hue, 14
Clifford-Fourier transform, 5, 9, 11
Dual of a group, 2, 22
Exponential map of a Lie group, 24
Fourier transform, 3, 23
Frequencies filtering, 14
Group morphism from \mathbb{R}^{2} to $\operatorname{Spin}(4), 7$

Group representation, 22
Hypercomplex Fourier transform, 18
Inverse Clifford-Fourier transform, 10, 12 Inverse Fourier transform, 23

Lie algebra morphism, 24
Lie algebra morphism from \mathfrak{R}^{2} to $\mathbb{R}_{4,0}^{2}, 8$
Quaternionic Fourier transform, 19
Spinor group, 6, 7, 26

[^0]: ${ }^{1}$ Available at http://mia.univ-larochelle.fr/ \rightarrow Production \rightarrow Démos

[^1]: ${ }^{2}$ The product law needs not to be respected since we just use an isomorphism of vector spaces.

[^2]: ${ }^{3}$ The product law needs not to be respected since we just use an isomorphism of vector spaces.

