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Abstract. 

Photoluminescence of polycrystalline hexagonal boron nitride (hBN) was measured by 

means of time- and energy-resolved spectroscopy methods. The observed bands are related 

to DAP transitions, impurities and structural defects. The excitation of samples by high-

energy photons above 5.4 eV enables a phenomenon of photostimulated luminescence 

(PSL), which is due to distantly trapped CB electrons and VB holes. These trapped charges 

are metastable and their reexcitation with low-energy photons results in anti-Stockes 

photoluminescence. The comparison of photoluminescence excitation spectra and PSL 

excitation spectra allows band analysis that supports the hypothesis of Frenkel-like exciton in 

hBN with a large binding energy. 
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I. Introduction. 

Optical and fluorescence properties of hexagonal boron nitride deserved particular 

interest during last decade since the first observation of an intense far-UV exciton emission1, 

2 making this material a candidate for use in new light-emitting devices. A successful 

synthesis of high-purity single crystal samples initially at high-P,T 1, 2 and later at atmospheric 

conditions 2 enabled this achievement. Accordingly, understanding of the electronic band and 

exciton structure of hBN becomes even more important issue as it serves a basic system for 

single-wall 3, 4 and multi-wall boron nitride nanotubes5-9. 

Despites of many efforts in the past, the electronic properties of hBN remain largely 

unknown. They have been earlier studied by luminescence 1, 10-17, optical reflectance and 

absorption 18-21, photoconductivity22, x-ray emission 23-25, inelastic x-ray scattering 26-28, x-ray 

absorption 25, 29, 30, or electron energy loss 31-33 spectroscopy. After all, a large spread of band 

gap energies reported in literature, ranging from 3.1 to 7.1 eV14, is currently explained by 

sample quality and related to experimental methods used. Recently, arguing on generally 

high luminosity of the free exciton luminescence, Watanabe et al 1 assumed that hBN is a 

direct band gap material. They have measured the band gap energy of 5.971 eV and inferred 

an exciton binding energy of 0.149 eV that corresponds to the Wannier exciton model. 

However this result is in a large disagreement with the most recent theoretical calculations 

using the so-called all electrons GW approximation 34, 35. They predict hBN to be an indirect 

band gap material with a band gap energy of 5.95 eV and a lowest direct interband 

transitions at 6.47 eV 34. Moreover, Arnaud et al. 34 has deduced a huge exciton binding 

energy of 0.72 eV and predicted that the low-lying exciton in hBN belongs to the Frenkel 

type. The intense free exciton luminescence observed in single crystal hBN is explained by a 

large oscillator strength of merged excitonic transitions 34.  

In view of many disagreements further confrontation between experiment and theory will 

continue. In these conditions, more experimental data concerning electronic and related 
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optical properties of hBN are highly required. In particularly, energy- and time-resolved 

photoluminescence methods provide valuable information about excitonic and interband 

transitions. Moreover, in polycrystalline samples energy transfer to impurities and defects 

may inhibit these intrinsic transitions and strongly affect the fluorescence spectra. However, 

the energy transfer is specific to excitation energy and the relevant excited states can be 

experimentally resolved. 

In the present article we report on detailed analysis of the defect-related intraband 

luminescence of hBN. Important information about intrinsic properties of hBN is obtained by 

combining two experimental approaches: time- and energy- resolved photoluminescence and 

photostimulated luminescence. The discussion is organized as follow. The experiment is 

described in section II and experimental results are presented on the section III. In section 

IV-A we discuss the nature of the observed luminescence bands. Finally, in section IV-B, 

careful comparison between photoluminescence excitation (PLE) and photostimulated 

luminescence (PSL) excitation spectra brings more precision to exciton and bandgap 

transitions of hexagonal BN. 

 

II. Experiment. 

 The samples were prepared from commercial hexagonal BN powders (Alfa 99.5%) 

compacted in pellets of size 8x8x1 mm3 at hydrostatic pressure of 0.6 GPa. The grit size of 

the hBN powder has been estimated by means of granulometry and transmission electron 

microscopy (JEM 100C JEOL). It ranged from 0.3 to 10 µm with an average particle size of 

3.1 µm corresponding to the maximum in the mass distribution curve. The samples were 

then heated at 800 K under vacuum for 12 hours to avoid organic impurities and traces of 

water.  
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 The luminescence properties of the samples were studied using VUV synchrotron-

radiation (SR) source of DORIS storage ring at HASYLAB (DESY, Hamburg). The facility of 

the SUPERLUMI station used in the experiments is described in details elsewhere 36. Briefly, 

samples were cooled down to 8K and irradiated by monochromatized SR (
o
A3.3λ∆ = ) under 

high vacuum (~10-9 mbar). The measurements of luminescence spectra were carried out 

using a visible 0.275-m triple-grating ARC monochromator equipped with a CCD detector or 

a photomultiplier operating in the photon- counting mode. The pulse structure of SR (130 ps, 

5 MHz repetition rate) enables time-resolved luminescence analysis at time-scale of 200 ns 

with sub-nanosecond temporal resolution. Spectra were recorded within a time gate τ∆  

delayed after the SR excitation pulse. Typically two time gates have been used 

simultaneously: a fast one of ns411 −=τ∆  and a slow one of ns200223 −=τ∆ . 

Complementary, luminescence decay curves were measured at fixed excitation and 

luminescence photon energies. The recorded spectra were corrected for the primary 

monochromator reflectivity and SR current.  

  The photostimulated luminescence (PSL) excitation spectra of pd-hBN samples were 

measured at the BL 52 beamline of MAX-lab synchrotron (Lund Sweden). The experiment 

built up by the Tartu group is described in ref 37, 38. At each excitation energy excE  the 

sample was irradiated by a fixed number of UV or VUV photons (2.5·106 counts) in the 

energy region of excE = 5-15 eV. After completing the dose, the irradiation was stopped and 

the phosphorescence decay was measured. When the phosphorescence intensity drops until 

almost zero (PM noise level) that typically happens after few minutes, the sample was 

activated by a bright spectroscopic source at hν=2.0±0.5 eV through a double-prisms 

monochromator DMR-4 and the time dependence of PSL intensity was recorded. The 

integral PSL intensity was taken as a measure of the number of recombined electron-hole 

pairs. 
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III. Results. 

 Under photoexcitation above 6 eV the luminescence spectra of hBN are composed of 

several luminescence bands (Figure 1). Basically, one broadband and one structured 

emissions between 3 and 4 eV, and two relatively narrow near bandgap emissions at 5.3 eV 

and 5.5 eV were distinguished. Two high-energy emissions were discussed in details in our 

recent publication17. They were assigned respectively to quasi donor-acceptor pairs (q-DAP) 

(5.3 eV band) and bound excitons (5.5 eV band). Below we complete the assignment of low-

energy luminescence. 

A – Luminescence around 4 eV in hBN powder samples. 

 The hBN powder sample is a strongly luminescent material, which luminescence 

spectra depend on excitation energy. The low-temperature luminescence spectra of hBN 

samples recorded with different excitation energies varying from 4 eV to 6.5 eV are 

presented in Figure 1. Under excitation below 5.0 eV a strong structured UV emission is 

observed. Four peaks, labeled (α), (β), (γ) and (δ), are clearly visible. A multiple Gaussian fit 

procedure results in the peak energies of 4.099 eV (α ), 3.912 eV (β), 3.731 eV (γ) and 3.539 

eV (δ). These four peaks are equally spaced in energy by ωg = 186 ± 1.4 meV. At room 

temperature these peaks are broadened, but no appreciable shift was detected. When the 

excitation energy exceeds 5.0 eV a very broad band (∆E~1 eV) centered at 3.9 eV appears 

and superimposes with the structured emission (Figure 1.c and d). However, the peaks of the 

structured emission can always been observed on the top of the broad band.  

 At excitation energy of 4.27 eV only the structured UV emission can be observed. The 

luminescence decay curves of its four peaks (α)-(δ) are shown in Figure 2 by curve (ε). At 

this excitation energy the broad band dominates the luminescence spectra. Although the 

probed energy Elum = 3.91 eV is in coincidence with the peak (β) of the structured emission, 

the decay curve appears to be multi-exponential and longer lifetime than that of the peak (β).  
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 The time-resolved photoluminescence method allows separating several contributions 

of superposed luminescence bands if their respective lifetimes are noticeably different. This 

is the case of the structured and continuous broadband emissions around 4 eV. Figure 3.a 

shows the total PLE spectrum measured at Elum = 3.73 eV. The last corresponds to the peak 

(γ) of the structured emission and is close to the maximum of the broadband emission. Two 

principal features can be distinguished in this spectrum: (i) a sharp onset at 4.09 eV followed 

by a decrease of the luminescence intensity until nearly zero at  Eexc = 4.9 eV, and (ii) a 

strong peak at 5.95 eV preceded by a weak structured footer that begins at 5.0 eV. The PLE 

spectra obtained with short and long time windows are displayed in Figure 3.b and c. The 

long time-window of ns200222 −=τ∆  selects long-lived excited states, which apparently are 

responsible for the broad emission band (Figure 3.c). The peak maximum at 5.95 eV strongly 

contributes to excitation of this band. This peak is blue-shifted with respect to that of the 

exciton absorption at 5.82 eV in hBN single crystal 1. Nevertheless, a weak luminescence at 

5.9 eV is also reported in hBN single crystal at low temperatures and assigned to another 

exciton series. The Stokes shift with respect to the excitation peak at 5.95 eV could results 

from inhomogeneities of the local field or dislocations such as stacking faults 1. Therefore we 

tentatively assign the peak at 5.95 eV to the excitation of higher exciton series. This excitonic 

peak is preceded by a weak and unstructured footer ranging from 5 eV to 5.5 eV and is 

followed by a broad continuum until 7.6 eV. Conversely, the PLE spectra obtained with the 

short time window ( ns411 −=τ∆ ) show contributions from both short and long decay 

luminescence components (Figure 3.b). Nevertheless, a comparison with the PLE spectra of 

the long component (Figure 3.c) allows firmly assigning the structured emission with the 

onset at 4.09 eV to a short-lived excited state. Moreover, we note a second weak excitation 

onset of the structured emission at Eexc = 5.2 eV. 

  Similar luminescence spectra to those depicted in Figure 1 have been recently 

reported on photoluminescence and cathodoluminescence experiments of commercial hBN 

powder 10, 39-48. However, in these publications, no distinctions were made between the 



 8

broadband and structured emissions. We now assign the structured UV emission to 

impurities (probably, C) and the broadband emission to deep donor-acceptor pair (DAP) of 

strongly localized center. These assignments will be discussed below in section IV-A. 

  B – Photostimulated luminescence in hBN powder samples. 

 The photostimulated luminescence arises from the trapping of free charge carriers in 

distant lattice sites with subsequent recombination of carriers released from these traps by a 

visible light 38. The charge separation and trapping can result from different excitation 

processes listed below and depicted in Figure 4: 

oo
exc heυh DADADA +→+++→++ +−+−+−                              (1) 

ooo
exc eυh DADADA +→++→++ −++−                                    (2) 

ooo
exc hυh DADADA +→++→++ +−+−                                    (3) 

oo
excυh DADA +→++ +−                                                    (4) 

The band-to-band transitions (Equation 1) or impurity-band ionization (Equations 2-3) are the 

most likely contributions to PSL. In these cases at least one of photoexcited charge carriers 

(e- or h+) becomes free and can migrate away from the point of excitation before being 

trapped by the acceptor or donor defects. Spatially closely trapped charges then annihilate 

giving rise to phosphorescence. In contrast, at rather large distance their lifetime becomes 

infinite and their recombination can only be possible after reactivation by light or thermally. 

The Figure 5 shows the phosphorescence decay curves ( eV913.=lumE ) for different photon 

excitation energies ranging from 5.4 eV to 5.9 eV. At 50.5≤excE  eV the phosphorescence 

decay curves are characterized by an almost mono-exponential decay with characteristic 

time of 8.5=τ  s (the dotted line in Figure 5 shows the PM dark noise). However, at 

60.5≥excE  eV another extremely long-lived component of low intensity appears which looks 
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like a plateau in Figure 5. We ascribe this long component to the recombination of charges 

trapped at large distance tending to infinity.  

The observed phosphorescence might also be related to the “dark” (dipole forbidden) 

exciton states theoretically predicted in hBN by Wirtz et al. 35. The authors suggested a 

coupling between the “white” (dipole allowed) and “dark” exciton states, which makes them 

appear in the absorption spectra of hBN monocrystals reported by Watanabe et al 1. 

However, we disregard their contribution in PSL experiments since the phosphorescence is 

already observed at 15.=excE  eV (Figure 5), which is well below the exciton energy in 

hBN. Moreover, PSL is related to the states with infinite lifetime (excited above 5.5 eV), 

which depopulation is only triggered by light. In contrast, the hypothetic “dark” states become 

accessible when the crystalline symmetry is broken through defects or limited sample quality: 

this is our case, since no free exciton emission has been observed. Accordingly, the singlet 

and triplet exciton are expected to be strongly coupled in our polycrystalline hBN samples 

and their lifetime is short (sub-nanosecond). In this case no long-lived exciton states are 

expected. 

The PSL excitation spectrum is represented by open circles in Figure 6. The full 

measured spectrum is shown in the insert of the figure for indicative purposes. In the 

following, we will discuss the PSL phenomenon specific to excitation energies ranging from 5 

to 7 eV. The signal shows up appreciably at 505.>excE  eV in correlation with the 

appearance of a long component of the phosphorescence decay (Figure 5). The PSL grows 

almost exponentially with the excitation energy until eVEE iexc 7.51 =≡  where it locally attains 

a maximum. At this energy the slope suddenly changes and the growth of the signal 

becomes much slower. Another local maximum of the PSL spectrum appears at 

eV10.62 =≡ iexc EE . Finally, for excitation energies above 6.2 eV the PSL signal increases 

progressively until 7 eV where a plateau is reached.  
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For the sake of the discussion we have superimposed in Figure 6 the PLE spectrum of 

the near band edge luminescence at eV35.=lumE . This emission was discussed in details 

in our previous publication17 and has been assigned to the radiative recombination of the so 

called quasi donor acceptor pair (q-DAP).  

 

IV.   Discussion. 

A – Luminescence of polycrystalline hBN samples 

 The structured UV luminescence ( Figure 1.a and b) has been reported in the past by 

numerous groups, either in cathodoluminescence 10, 43, 46, 47 or photoluminescence 

experiments 10, 14, 39-42, 44, 45, 47, 48. Some authors have assigned it to intrinsic luminescence of 

hBN molecular layers 47 or to phonons assisted band edge luminescence  42. However, 

recent experiments 1 and theoretical calculations 34 indicate the hBN bandgap energy in the 

range from 6 to 6.5 eV that disables these interpretations. Others authors 45, 49, 50 claimed that 

the structured luminescence is due to transition between the conduction band and acceptor 

carbon atom at substitutional N site. Recently, experimental evidence of the correlation 

between carbon and oxygen contents in hBN samples and intensity of the structured 

luminescence has been given51. 

 In a recent publication 39 the structured luminescence of hBN has been attributed to 

defects or impurities. The peaks (β), (γ) and (δ) in Figure1.a were ascribed to phonon replicas 

of the zero phonon line (α) involving TO phonons (ωTO = 169 meV). Due to the low sample 

temperature in present experiments, the luminescence peaks become well resolved, allowing 

more precise determination of their spectral positions than in room-temperature experiments 

39, 42. The obtained phonon energy of ωg = 186 meV, which falls between the known energy 

of LO (199 meV) and degenerated TO/LO (169 meV) phonons at the Γ point 18, 19, 26, 52, 

corresponds more probably to a local phonon mode around the impurity involved in the 
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luminescence process. Moreover, the pronounced red shoulder observed on each phonon 

replica peak shows that multi-phonon processes play a major role in the energy relaxation of 

the impurity. The coupling between the defect and the lattice is weak as it is shown by the 

Huang-Rhys factor S = 1.3 obtained from the normalized peak intensities. This assignment is 

consistent with fast luminescence decay of the peaks (α), (β), (γ) and (δ) (figure 2).   

 The photoluminescence excitation (PLE) spectrum shown in Figure 3.b supports our 

interpretation of the defect related luminescence. Indeed, it reflects features characteristic of 

such transitions. The luminescence intensity steeply increases and then decreases 

progressively with the excitation energy. The sharp onset in the PLE spectrum at 4.09 eV 

corresponds to the minimum energy required to excite the impurity. As in the case of weak 

electron-phonon coupling, this absorption onset coincides with the zero-phonon 

luminescence peak (α). Interestingly, two phonons replicas separated by ωe =170 meV, that 

is close to the energy of the TO/LO degenerated phonons26, can be observed in the PLE 

spectra. They are indicated by arrows in Figure 3.a. We see that the energies of phonons 

involved in the luminescence (ωg) and excitation (ωe) processes are different. This results 

from the electronic state of the defect, which is not the same in both cases. Consequently, 

lattice deformations around the defect are different that affects the local phonon frequencies. 

The fact that eg ω>ω  signifies a stronger matrix interaction with the impurity in the excited 

state. 

 We do not evidence the impurity involved in the luminescence process in current 

experiments. However, we can guess about the influence of carbon with more or less 

confidence. Recent experiments reveal that the structured luminescence strongly shows up 

in hBN samples contaminated by carbon and oxygen51. This result is consistent with our 

previous results39 and is supported by our complementary photoluminescence experiments 

carried out with a pyrolytic BN sample (pBN). These experiments will be described in details 

in a forthcoming article53. The pBN is a high purity material, free of carbon compound, 

obtained by gas-phase reactions between BCl3 and NH3 at 2300 K and deposition on a Si 
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substrate (CVD method). Actually, pBN sample exhibits no structured emission around 4 eV 

whatever the excitation energy is. Its excitation by energy photon above 4.5 eV uniquely 

results in a continuous emission band similar to that observed in hBN53.  Moreover, the PLE 

spectrum of hBN (Figure 3) is rather complicated with a first edge at 4.09 eV and a second 

one at 5.2 eV. This may indicate that the defect involved in the radiative process has at least 

two excited levels separated by 1.1 eV positioned within the bandgap. Since, the 

substitutional carbon impurity at nitrogen site (CN) is supposed to introduce two energy levels 

split by ~0.8 eV in the energy range 3.2 – 4.9 eV below the conduction band of hBN, 50 its 

participation in the luminescence process is most likely. 

 We discuss now the nature of the broad luminescence band observed in hBN powder 

sample under photoexcitation above 5 eV. Due to its long and multi exponential decay (curve 

(ε) in figure 2), we assign this luminescence to radiative recombination of deep donor and 

acceptor pairs (DAP): 

 DAPhυ+++ +→ DADA -oo                                         (5) 

We remark that this deep DAP is different from that related to the 5.3-eV emission (q-DAP17). 

As Figure 3.c shows, the correspondent PLE spectrum of the long-lived luminescence 

component is dominated by the excitonic peak at 5.95 eV. This fact indicates that the energy 

transfer to the DAP recombination channel via free excitons is efficient: 

00- DADA

h

+→++

→+
+exciton

excitonυhBN exc
                              (6) 

This excitonic peak is preceded by a weak shoulder for excitation energies ranging from 5 eV 

to 5.5 eV.  We have assigned this shoulder to a direct excitation of the deep DAP (Equation 

4). The PSL spectrum displayed in Figure 6 shows that no noticeable photostimulated 

luminescence can be observed following hBN irradiation between 5 and 5.5 eV that indicates 

no efficient population of distant traps. In contrast to the direct ionization of the donor or 



 13

acceptor (Equations 2-3), the mechanism (4) does not lead to the charge injection into CB (e-

) or VB (h+) and does not contribute significantly to PSL.  

 A very large bandwidth of the deep DAP band (~1 eV) and its nearly symmetrical 

shape, suggest that at least one of defects involved in the emission is strongly coupled to the 

lattice54. This assumption is supported by a comparison of the luminescence spectra 

obtained at room and low (9 K) temperatures: when the temperature is increased from 9 K to 

300 K (Figure1.c) thermally activated quenching is intensified. The intensity of the broad DAP 

band then drops and the band shifts to the blue. Blue shifts induced by the rises of the 

temperature has been reported for deep, so-called “self activated”, DAP luminescent bands 

of several semiconductors: ZnS 55, 56, GaAs 57 or GaN 58. The blue shift is generally observed 

when localized complex centers with strong electron-phonon coupling are involved in the 

luminescence process. The configurational coordinate (CC) model, which takes into account 

the interaction of such localized center with matrix, predicts a linear shift of the band position 

with temperature 56. The relevant blue shift results from thermal occupation of vibrational 

levels associated with the excited state and thermal quenching is due to radiationless 

recombination of +− − he  pairs. 

  The acceptor complex center involved in such emissions is usually formed by an 

acceptor type vacancy adjacent to a donor impurity atom, 55-58 and it is often called “A-

center”. The emission results from the electron transition from a relatively distant donor to the 

donor-vacancy acceptor complex 59. According to theoretical calculations most stables 

defects in hBN are supposed to be boron vacancy VB for n-type conditions and nitrogen 

vacancy VN for p-type conditions. To the best of our knowledge there are no calculations 

concerning vacancy-impurity complexes in hBN. Nevertheless, results obtained in cBN 

shows that BB CV −  and NB OV −  complexes form deep acceptors. Such center in 

association with the shallow BC  or NO  donor may be responsible for DAP transitions at 3.9 

eV observed in hBN polycrystalline samples. 
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B – Photo-stimulated luminescence and band gap transitions of hBN 

 As we have already mentioned, the PSL excitation onset cannot be a measure of 

bandgap energy. However in combination with PLE spectra, PSL excitation spectra can 

provide valuable information concerning exciton and band edge energy positions. Below we 

will discuss the PSL excitation in the framework of relevant processes depicted in Figure 4 

Several interesting details can be remarked from the comparison of PLE and PSL excitation 

spectra displayed on Figure 6.  

Several free exciton transitions in hBN merge in the dominant peak of the PLE 

spectrum (Figure 3c) in the range of photon energies between 5.8 and 6.0 eV.34 One 

remarkable feature in Figure 6 is the non-contribution of these excitons to the PSL excitation. 

In fact, dissociation of excitons is required for a storage of distant charges, which results in 

PSL. This dissociation is only possible if the gain in energy due to the charge localization is 

greater than the exciton binding energy. Using this reasoning, we have previously set up the 

lower limit to the exciton binding energy: 40.>eD  eV 17. Two factors additionally contribute 

to the inhibition of exciton dissociation: its short lifetime and limited spatial extent. We have 

not observed free exciton luminescence in our hBN polycrystalline sample: the free excitons 

are rapidly bound to defects where a part of them recombine radiatively. The lifetime of free 

excitons in hBN is then small that reduces their dissociation probability. In a similar way, 

small exciton radius decreases the dissociation probability. The non-contribution of the free 

exciton of hBN to the PSL processes may be an indication of its small radius and tight 

binding energy.  

The PSL excitation spectrum in Figure 6 follows below 5.7 eV the exponential growth 

of the PLE spectrum of q-DAP luminescence at 5.3 eV17. The q-DAP states apparently 

contribute to the PSL signal that complements the general schema in Figure 4 by the type IV 

transition corresponding to the direct q-DAP excitation (Equation 4). This fact seems 

surprising since no free charge carriers are created in such process required for a distant 

charge trapping. Indeed it can be understood if we consider the q-DAP transition energy as a 
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function of the pair distance. Closer charge pairs possess a higher transition energy and 

distant pairs a lower. The charge diffusion within the manifold of q-DAP levels below 

ionization can therefore take place toward more distant and hence long-lived states, which 

contribute to PSL. The existence of the exchange between q-DAP traps excited according to 

Equation 4 was suggested in our previous article17.  

In the same publication we have reported a change in the q-DAP population 

mechanism at 5.7 eV. At this energy the q-DAP ionization takes place following Equations 

(2)-(3) and results in the regime crossover from Raman to photoluminescence. This can be 

ionization of either acceptor or donor states whatever is higher lying. Higher-energy photons 

between 5.7 and 6.0 eV efficiently produce hBN excitons, however they do not appreciably 

contribute to PSL. This is seen in Figure 6 in both PLE (Elum = 5.3 eV) and PSL spectra. 

However, another sharp PSL excitation maximum is observed in the high-energy wing of the 

exciton absorption band at 6.1 eV. We can relate a high efficiency of the distant charge traps 

population at this energy to the ionization of acceptor or donor states whatever is lower lying. 

Resuming, we attribute two spectral features observed at 7.51 =iE  eV and 1.62 =iE  eV in 

the PSL excitation spectrum to the direct ionization of donor and acceptor levels (or vice 

versa) involved in the q-DAP luminescence (processes II and III of Figure 4 and Equations 2-

3):  

12

21

iorigD

iorigA
EEE

EEE

−=

−=

+

−
     (7) 

Keeping in mind this assignment, we can estimate the bandgap energy of hBN. Indeed, the 

energy of the q-DAP luminescence qDAPE  = 5.3 eV is given by the relation 

+− −−= DAgqDAP EEEE       (8) 

Combining Equations (7) and (8) we then obtain: 

eVEEEE qDAPiig 5.612 ≈−+=      (9) 
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 Alternatively, we can assign the spectral feature observed at 1.62 =iE  eV to the 

dissociation of excitons on the high-lying acceptor or donor state of energy 7.51 =iE  eV 17. 

In framework of this hypothesis the dissociation of lower-energy excitons is energetically 

forbidden. Indeed, the energy gain from the charge localization on donor or acceptor is 

1iex EE − , where 2iex EE ≡  is the exciton energy. For the efficient charges separation, 

this gain in energy has to be higher than the exciton binding energy exg EE − . This allows 

the energy balance equation relative to the process threshold: 

eVEEE

EEEE

iig

iexexg

562 12

1

.=−=

−=−
      (10) 

Interesting, both alternatives in identification of the spectral feature at 1.62 =iE  eV result in 

the same bandgap energy of 5.6=gE  eV. 

Our estimation of the hBN bandgap energy is in good agreement with that obtained from all-

electron GW calculations recently performed by Arnaud et al.34. Moreover, taking the exciton 

transitions at 5.8 eV, we obtain the exciton binding energy of 0.7 eV. This disagrees with the 

Wannier-type exciton suggested by Watanabe et al. 1 and supports the Arnaud’s prediction of 

the Frenkel-type exciton with strong binding energy 34.  

The shape analysis of PLE and PSL excitation spectra supports the obtained value of 

hBN bandgap energy. On Figure 7 we have plotted the PLE spectra of the bound excitons 

luminescence ( eVElum 55.= ) together with the PLE spectra of broad DAP luminescence 

( eVElum 733.= ). The PLE ( eVElum 55.= ) peak at 5.8 eV fits well the position of the 

strongest excitonic transitions predicted theoretically,34, 60, 61 as represented by vertical bar in 

Figure 7. As well the plateau of the PLE spectra in the energy range between 6.1 and 6.5 eV 

is related to low-intensity excitonic transitions converging to the dissociation limit. 

Interestingly, both PLE spectra coincide in the high-energy spectra range above 6.1 eV and 

follow the PSL spectrum until 6.5 eV. Above 6.5 eV the PSL grows faster while the intensity 
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of the PLE spectra decreases. The PSL is expected to increase at gEh >ν , where 

according to Figure 4, the process I efficiently contributes to the distant traps population. This 

difference in shapes between the PLE and PSL spectra is therefore explained by interband 

transitions and supports well our bandgap energy estimation 5.6=gE  eV. 

Our final remark concerns the shape of PLE spectrum. From a general point of view, 

as long as the hBN can be considered as optically thin material, the shape of the PLE 

spectrum is expected to follow the intrinsic absorption spectrum. At higher absorbance, a 

saturation or even a decrease of PLE intensity appears as an intensification of non radiative 

recombination processes. Interestingly, we observe the indication of saturation effect around 

6.5 eV in good agreement with our bandgap estimation. 

V. Conclusion. 

Photoluminescence of hexagonal boron nitride has been studied by means of the time- 

and energy-resolved photoluminescence spectroscopy methods. Depending on the 

excitation energy several luminescence bands have been observed. (i) A strongly structured 

band in the energy range between 4.1 and 3.3 eV is assigned to phonon replicas of an 

impurity luminescence. (ii) A very broad band ( 1~E∆  eV) centered at 3.9 eV is assigned to 

DAP transitions involving a strongly localized acceptor complex center. Moreover, the 

intensity ratio between these two emissions strongly depends on excitation photon energy. 

(iii) q-DAP are responsible for the 5.3 eV emission and (iv) emission of excitons bound to 

defects is observed at 5.5 eV.  

 The excitation of samples by high-energy photons above 5.4 eV enables another 

phenomenon called photostimulated luminescence, which is due to distantly trapped 

photoinduced charges. PSL is observed in hBN following interband and acceptor/donor-band 

transitions. Moreover, we show that in contrast to DAP, PSL can also result from a direct q-

DAP excitation. The comparison of photoluminescence excitation and PSL spectra allows 



 18

bandgap energy estimation of 6.5 eV and supports the hypothesis of Frenkel-like exciton in 

hBN with large binding energy of 0.7 eV. These conclusions support most recent theoretical 

calculations.34, 35  
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Figure 1 Luminescence spectra of polycrystalline hBN. The excitation energy is indicated on 

each spectrum. The phonons replicas are labeled in (a). The star in (c) and (d) 

indicates the second order of the 5.5 eV band. 
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Figure 2.  Luminescence decay curves at different photon energies. Curves α, β, γ and δ 

correspond to the peaks of the structured emission. The curve ε corresponds to the broad 

emission maximum.  
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Figure 3 . PLE spectra (Elum = 3.72 eV) of polycrystalline hBN (a) and its short- (b) and long-

lived (c) components. 
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Figure 4. Schematic representation of electronic transitions relevant to PSL. 
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Figure 5. Phosphorescence decay curves for different photon excitation energies. 
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Figure 6. PSL excitation spectrum (open circles) and PLE spectrum of q-DAP luminescence 

(5.3 eV) of polycrystalline hBN. The total measured PSL excitation spectrum is shown in the 

insert. 
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Figure 7. PSL excitation spectrum (open circles) and PLE spectra of bound exciton 

luminescence (5.5 eV, dashed line) and deep DAP luminescence (3.73 eV, solid line). 

Theoretical oscillator strengths34, 60, 61 of free exciton transitions in hBN are shown by straight 

vertical bars. 
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