Anisse Kasraoui 
email: anisse@math.univ-lyon1.fr
  
AND Dennis Stanton 
email: stanton@math.umn.edu
  
Jiang Zeng 
email: zeng@math.univ-lyon1.fr
  
Jiang Zeng The 
  
The combinatorics of Al-Salam-Chihara q-Laguerre polynomials

Keywords: q-Laguerre polynomials, Al-Salam-Chihara polynomials, y-version of q-Stirling numbers of the second kind, linearization coefficients Primary 05A18; Secondary 05A15, 05A30

come    

Introduction

The monic simple Laguerre polynomials L n (x) may be defined by the explicit formula:

L n (x) = n k=0 (-1) n-k n! k! n k x k , (1) 
or by the three-term recurrence relation

L n+1 (x) = (x -(2n + 1))L n (x) -n 2 L n-1 (x). (2) 
The moments are

µ n = L(x n ) = ∞ 0
x n e -x dx = n!.

The linearization formula reads as follows:

L n 1 (x)L n 2 (x) = n 3 C n 3 n 1 n 2 L n 3 (x),
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where

C n 3 n 1 n 2 = s≥0 n 1 ! n 2 ! 2 N 2 +n 3 -2s s! (s -n 1 )!(s -n 2 )!(s -n 3 )!(N 2 + n 3 -2s)!n 3 ! .
Equivalently we have

L(L n 1 (x)L n 2 (x)L n 3 (x)) = s≥0 n 1 ! n 2 ! n 3 ! 2 N 2 +n 3 -2s s! (s -n 1 )!(s -n 2 )!(s -n 3 )!(N 2 + n 3 -2s)! . (4) 
Given positive integers n 1 , n 2 , . . . , n k such that n = n 1 + • • • + n k , let S i be the consecutive integer segment

{n 1 + • • • n i-1 + 1, . . . , n 1 + • • • + n i } with n 0 = 0, then S 1 ∪ . . . ∪ S k = [n]. A permutation σ of [n]
is said to be a generalized derangement if i and σ(i) do not belong to a same segment S j for all i ∈ [n]. Let D n be the set of generalized derangements of [n] then we have

L(L n 1 (x) . . . L n k (x)) = σ∈Dn 1.
(

A q-version of (1) was studied by Garsia and Remmel [START_REF] Garsia | A combinatorial interpretation of q-derangement and q-Laguerre numbers[END_REF] in 1980. Several q-analogues of the moments (2) and recurrence relation [START_REF] Corteel | Crossings and alignements of permutations[END_REF] were investigated in the last two decades (see [START_REF] Clarke | New Euler-Mahonian statistics on permutations and words[END_REF][START_REF] Simion | Specializations of generalized Laguerre polynomials[END_REF][START_REF] Simion | Octabasic Laguerre polynomials and permutation statistics[END_REF]) in order to obtain new mahonian statistics on the symmetric groups. On the other hand, in view of the unified combinatorial interpretations of several aspects of Sheffer orthogonal polynomials (moments, polynomials, and the linearization coefficients)(see [START_REF] Kim | A combinatorial formula for the linearization coefficients of general Sheffer polynomials[END_REF][START_REF] Viennot | Une théorie combinatoire des polynômes orthogonaux[END_REF][START_REF] Zeng | Weighted derangements and the linearization coefficients of orthogonal Sheffer polynomials[END_REF]) it is natural to seek for a q-version of this picture.

As one can expect, the first result in this direction was the linearization formula for q-Hermite polynomials due to Ismail, Stanton and Viennot [START_REF] Ismail | The Combinatorics of q-Hermite polynomials and the Askey-Wilson integral[END_REF], dated back to 1987. In particular, their formula provides a combinatorial evaluation of the Askey-Wilson integral. However, a similar formula for q-Charlier polynomials was discovered only recently by Anshelevich [START_REF] Anshelevich | Linearization coefficients for orthogonal polynomials using stochastic processes[END_REF], who used the machinery of q-Levy stochastic processes. Short later, Kim, Stanton and Zeng [START_REF] Kim | The combinatorics of the Al-Salam-Chihara q-Charlier polynomials[END_REF] gave a combinatorial proof of Anshelevich's result.

The object of this paper is to give a q-version of all the above formulas for simple Laguerre polynomials.

Al-Salam-Chihara polynomials revisited

The Al-Salam-Chihara polynomials Q n (x) := Q n (x; α, β|q) may be defined by the recurrence relation [START_REF] Koekoek | The Askey-scheme of hypergeometric orthogonal polynomials and its qanalogue[END_REF]Chapter 3]:

Q 0 (x) = 1, Q -1 (x) = 0, Q n+1 (x) = (2x -(α + β)q n )Q n (x) -(1 -q n )(1 -αβq n-1 )Q n-1 (x), n ≥ 0. ( 6 
) Let Q n (x) = 2 n p n (x) then xp n (x) = p n+1 (x) + 1 2 (α + β)q n p n (x) + 1 4 (1 -q n )(1 -αβq n-1 )p n-1 (x). ( 7 
)
They also have the following explicit expressions:

Q n (x; α, β|q) = (αβ; q) n α n 3 φ 2 q -n , αu, αu -1 αβ, 0 q; q = (αu; q) n u -n 2 φ 1 q -n , βu -1 α -1 q -n+1 u -1 q; α -1 qu = (βu -1 ; q) n u n 2 φ 1 q -n , αu β -1 q -n+1 u q; β -1 qu -1 ,
where x = u+u -1 2 or x = cos θ if u = e iθ . The Al-Salam-Chihara polynomials have the following generating function

G(t, x) = ∞ n=0 Q n (x; α, β|q) t n (q; q) n = (αt, βt; q) ∞ (te iθ , te -iθ ; q) ∞ .
They are orthogonal with respect to the linear functional Lq :

Lq (x n ) = 1 2π π 0 (cos θ) n (q, αβ, e 2iθ , e -2iθ ; q) ∞ (αe iθ , αe -iθ , βe iθ , βe -iθ ; q) ∞ dθ, (8) 
where x = cos θ. Note that Lq (Q n (x) 2 ) = (q; q) n (αβ; q) n .

Theorem 1. We have

Q n 1 (x)Q n 2 (x) = n 3 ≥0 C n 3 n 1 ,n 2 (α, β; q)Q n 3 (x), (9) 
where

C n 3 n 1 ,n 2 (α, β; q) = (-1) N 2 +n 3 (q; q) n 1 (q; q) n 2 (αβ; q) n 3 × m 2 ,m 3 (αβ; q) n 1 +m 3 α m 2 β n 3 +n 2 -n 1 -m 2 -2m 3 q ( m 2 2 )+( n 3 +n 2 -n 1 -m 2 -2m 3 2 ) 
(q; q) n 3 +n 2 -n 1 -m 2 -2m 3 (q; q) m 2 (q; q) m 3 +n 1 -n 3 (q; q) m 3 +n 1 -n 2 (q; q) m 3 .

Proof.

Clearly C n 3 n 1 ,n 2 (α, β; q) = Lq (Q n 1 (x)Q n 2 (x)Q n 3 (x))/ Lq (Q n 3 (x)Q n 3 (x)
). Using the Askey-Wilson integral:

(q; q) ∞ 2π π 0 (e 2iθ , e -2iθ ; q) ∞ 4 j=1 (t j e iθ , t j e -iθ ; q) ∞ dθ = (t 1 t 2 t 3 t 4 ; q) ∞ 1≤j<k≤4 (t j t k ; q) ∞ , one can prove [12, Theorem 3.5] that Lq (G(t 1 , x)G(t 2 , x)G(t 3 , x)) = (αt 1 t 2 t 3 , βqt 1 t 2 t 3 , αβq; q) ∞ (t 1 t 2 , t 1 t 3 , t 2 t 3 ; q) ∞ 3 φ 2 t 1 t 2 , t 1 t 3 , t 2 t 3 αt 1 t 2 t 3 , βt 1 t 2 t 3 |q; αβ .
Therefore

n 1 ,n 2 ,n 3 Lq (Q n 1 (x)Q n 2 (x)Q n 3 (x)) t n 1 1 (q; q) n 1 t n 2 2 (q; q) n 2 t n 3 3 (q; q) n 3 = k≥0 (αt 1 t 2 t 3 q k , βt 1 t 2 t 3 q k , αβ; q) ∞ (t 1 t 2 q k , t 1 t 3 q k , t 2 t 3 q k ; q) ∞ (αβ) k (q; q) k . ( 10 
)
Using the Euler formulas:

(t; q) ∞ = n≥0 (-1) n q ( n 2 ) (q; q) n t n ; 1 (t; q) ∞ = n≥0 1 (q; q) n t n ,
we can rewrite the sum in [START_REF] Gasper | Basic hypergeometric series[END_REF] as follows:

(αβ; q) ∞ k≥0 (αβ) k (q; q) k l 1 ,l 2 ≥0 α l 1 β l 2 q k(l 1 +l 2 ) (-t 1 t 2 t 3 ) l 1 +l 2 q ( l 1 2 )+( l 2 2 ) (q; q) l 1 (q; q) l 2 × m 1 ,m 2 ,m 3 ≥0 q (m 1 +m 2 +m 3 )k t m 1 +m 2 1 t m 1 +m 3 2 t m 1 +m 3 3 (q; q) m 1 (q; q) m 2 (q; q) m 3 . (11) Substituting k≥0 
(αβq l 1 +l 2 +m 1 +m 2 +m 3 ) k (q; q) k = 1 (αβq l 1 +l 2 +m 1 +m 2 +m 3 ; q) ∞ in [START_REF] Gould | The q-Stirling Numbers of First and Second Kinds[END_REF], we get

l 1 ,l 2 ,m 1 ,m 2 ,m 3 t n 1 1 t n 2 2 t n 3 3 (αβ) n 1 +m 3 α l 1 β l 2 q ( l 1 2 )+( l 2 
2 ) (q; q) m 1 (q; q) m 2 (q; q) m 3 (q; q) l 1 (q; q) l 2 (-1)

l 1 +l 2 , (12) 
where

l 1 + l 2 + m 1 + m 2 = n 1 , l 1 + l 2 + m 1 + m 3 = n 2 and l 1 + l 2 + m 2 + m 3 = n 3 . Since l 1 + l 2 ≡ N 2 + n 3 (mod 2), extracting the coefficient of t n 1 1 t n 2 2 t n 3 3 
(q; q)n 1 (q; q)n 2 (q; q)n 3 in (12) and dividing by (q, αβ; q) n 3 we obtain [START_REF] Garsia | A combinatorial interpretation of q-derangement and q-Laguerre numbers[END_REF] where l 1 is replaced by m 2 .

The new q-Laguerre polynomials

We define the new q-Laguerre polynomials L n (x; q) by re-scaling Al-Salam-Chihara polynomials:

L n (x; q) = √ y q -1 n Q n (q -1)x + y + 1 2 √ y ; 1 √ y , √ yq|q . ( 13 
)
It follows from [START_REF] Foata | Laguerre polynomials, weighted derangements and positivity[END_REF] that the polynomials L n (x; q) satisfy the recurrence:

L n+1 (x; q) = (x -y[n + 1] q -[n] q )L n (x; q) -y[n] 2 q L n-1 (x; q). ( 14 
)
We derive then the explicit formula for L n (x):

L n (x; q) = n k=0 (-1) n-k n! q k! q n k q q k(k-n) y n-k k-1 j=0 x -(1 -yq -j )[j] q . ( 15 
)
Thus L 1 (x; q) = x -y, L 2 (x; q) = x 2 -(1 + 2y + qy)x + (1 + q)y 2 , L 3 (x; q) = x 3 -(q 2 y + 3 y + q + 2 + 2 qy)x 2 + (q 3 y 2 + yq 2 + q + 2 qy + 3 q 2 y 2 + 1 + 4 qy 2 + 2 y + 3 y 2 )x -(2 q 2 + 2 q + q 3 + 1)y 3

A combinatorial interpretation of these q-Laguerres polynomials can be derived from the Simion and Stanton's combinatorial model for octabasic Laguerre polynomials [START_REF] Simion | Octabasic Laguerre polynomials and permutation statistics[END_REF]. For a subset A of [n], the functional digraph of an injection f : A → [n] consists of disjoint paths and cycles. Each path P is of the form a 0 → a 1 → • • • → a l , where f (a j ) = a j+1 for 0 ≤ j < l, with f -1 (a 0 ) empty, and a l ∈ [n] -A. We put last(P ) = a l and if i = a k ∈ P we write ind(i, P ) = k for the index of i on the path P . For any path P in the digraph and two integers i < j, we put n P (i, j) = |{a ∈ P : i < a < j}|.

For p ∈ P and two integers i < j, we define m P (p; i, j) = |{a ∈ P : i < a < j, ind(p, P ) < ind(a, P )}|, that is, the number of points on the path "to the right" of p, whose values are strictly between i and j. And finally, for i ∈ A, we denote by F (i) the "first forward iterate" of f which is smaller than i, i.e.,

F (i) = f p (i), where p = min{m ≥ 1, f m (i) < i if such m exists}; i, if {m ≥ 1, f m (i) < i} is empty.
For instance, suppose that the path P = 2 → 7 → 1 → 5 → 3 is a connected component of the functional diagraph of f . Then n P (1, 4) = |{2, 3}| = 2, m P (7; 1, 4) = |{3}| = 1, and

F (2) = F (7) = 1, F (1) = 1, and F (5) = 3. For any k ∈ [n], let α(k) = w(k) = 0 if k / ∈ A, otherwise if k is on a cycle or a path P such that k > last(P ), then α(k) = 1 and w(k) = F (k) -1 - last(Q)>k n Q (0, F (k));
if k is on a path P such that k < last(P ), then α(k) = 0 and

w(k) = k -1 -m P (k; 0, k) - last(Q)>last(P ) n Q (0, k),
where Q ranges over all paths in the functional digraphs of f . Let 

w(A, f ) = k∈A w(k) and α(A, f ) = k∈A α(k).
w(A, σ) = (3 -1 -1) + (5 -1 -1) + (1 -1) + (4 -1 -2) = 5.
Theorem 2. The q-Laguerre polynomials have the following interpretation:

L n (x; q) = A⊂[n],f :A→[n] (-1) |A| x n-|A| y α(A,f ) q w(A,f ) ,
where f is injective.

Proof. This is the a = 1, s = u = 1 and r = t = q special case of the quadrabasic Laguerre polynomials [19, p.313].

Remark 1. It is easy to see that the constant term L n (0) is equal to

L n (0) = (-1) n y n n! q .
So the restriction of the statistic on permutations is a Mahonian statistic.

Moments of the q-Laguerre polynomials

Let S n be the set of permutations of [n] := {1, 2, . . . , n}. For σ ∈ S n the crossing number of σ is defined by

cr(σ) = n i=1 #{j|j < i ≤ σ(j) < σ(i)} + n i=1 #{j|j > i > σ(j) > σ(i)},
while the number of weak excedances of σ is defined by

wex(σ) = #{i|1 ≤ i ≤ n and i ≤ σ(i)}.
We can depict these statistics by associating with each permutation σ of [n] a diagram by drawing an arc i → σ(i) above (resp. under) the segment 1

→ 2 → • • • → n if i ≤ σ(i) (resp. i > σ(i)).
For example, the permutation σ = 9 3 7 4 6 11 5 8 1 10 2 can be depicted as follows: Let µ (ℓ) n (y, q) be the enumerating polynomial of permutations in S n with respect to weak excedances and crossing numbers:

µ (ℓ)
n (y, q) := σ∈Sn y wex(σ) q cr(σ) .

Randrianarivony [START_REF] Randrianarivony | Moments des polynômes orthogonaux unitaires de Sheffer généralisés et spécialisations[END_REF] and Corteel [START_REF] Corteel | Crossings and alignements of permutations[END_REF] have proved the following continued fraction expansion:

E(y, q, t) := n≥0 µ (ℓ) n (y, q)t n = 1 1 -b 0 t - λ 1 t 2 1 -b 1 t - λ 2 t 2 . . . , (16) 
where b n = y[n + 1] q + [n] q and λ n = y[n] 2 q . We derive then from the classical theory of orthogonal polynomials the following interpretation of the moments of the q-Laguerre polynomials.

Theorem 3. The n-th moment of the q-Laguerre polynomials is equal to µ (ℓ) n (y, q). More precisely, let L q be the linear functional defined by

L q (x n ) = µ (ℓ) n (y, q), then L q (L n 1 (x; q)L n 2 (x; q)) = y n 1 (n 1 ! q ) 2 δ n 1 n 2 . ( 17 
)
The first values of the moment sequence are as follows:

µ (ℓ) 1 (y, q) = y, µ (ℓ) 2 (y, q) = y + y 2 , µ (ℓ) 3 (y, q) = y + (3 + q)y 2 + y 3 , µ (ℓ)
4 (y, q) = y + (6 + 4q + q 2 )y + (6 + 4q + q 2 )y 3 + y 4 . Combining the results of Corteel [START_REF] Corteel | Crossings and alignements of permutations[END_REF], Williams [START_REF] Williams | Enumeration of totally positive Grassmann cells[END_REF]Proposition 4.11] and the classical theory of orthogonal polynomials, one can write the moments of the above q-Laguerre polynomials as a finite double sum (cf. ( 28)). Here we propose a direct proof of this result. Actually we shall give such a formula for the moments of Al-Salam-Chihara polynomials. Definition 4. Define the y-versions of the q-Stirling numbers of the second kind by

X n = n k=1 S q (n, k, y) k-1 j=0 (X -[j] q (1 -yq -j )). ( 18 
)
The y-versions of q-Stirling numbers of the first kind can be defined by the inverse matrix or equivalently

n-1 j=0 (X -[j] q (1 -yq -j )) = k=1 s q (n, k, y)X k .
Remark 2. We have

S q (n, k, y)| q=1 = S(n, k)(1 -y) n-k , S q (n, k, 0) = S q (n, k),
where S(n, k) and S q (n, k) are, respectively, the Stirling numbers of the second kind and their well-known q-analogues, see [START_REF] Gould | The q-Stirling Numbers of First and Second Kinds[END_REF].

Consider the rescaled Al-Salam-Chihara polynomials P n (x):

P n (X) = Q n (((q -1)X + 1/α 2 + 1)α/2; α, β|q) = α -n n k=0 (q -n ; q) k (q; q) k q k (αβq k ; q) n-k (1 -q) k q ( k 2 ) α 2k × k-1 j=0 X -[i] q (1 -q -i /α 2 ) . ( 19 
)
Theorem 1. The moments of the rescaled Al-Salam-Chihara polynomials P n (X) are

µ n (α, β) = n k=1 S q (n, k, 1/α 2 )(αβ; q) k q -( k 2 ) (1 -q) -k α -2k .
Proof. Let L : X n → µ n (α, β) be the linear functional. We check that these moments do satisfy L(P n (X)) = 0 for n > 0. Let a k be the coefficients in front of the product in ( 19), then we have, using y-Stirling orthogonality,

L(P n (X)) = n k=0 a k k j=1 s q (k, j, 1/α 2 ) j t=1 S q (j, t, 1/α 2 )(αβ; q) t q -( t 2 ) (1 -q) -t α -2t = n k=0 a k (αβ; q) k q -( k 2 ) (1 -q) -k α -2k = α -n (αβ; q) n n k=0 (q -n ; q) k (q; q) k q k = 0.
Note that the last equality follows by applying the q-binomial formula.

Theorem 2. The generating function for the moments

µ n (α, β) is ∞ n=0 µ n (α, β)t n = ∞ k=0 (αβ; q) k q -( k 2 ) (1 -q) -k α -2k t k k i=1 (1 -[i] q t(1 -q -i /α 2 )) . ( 20 
)
Proof. By definition [START_REF] Simion | Specializations of generalized Laguerre polynomials[END_REF] we have

S q (n, k, y) = S q (n -1, k -1, y) + [k] q (1 -yq -k )S q (n -1, k, y).
It follows that ( 18) is equivalent to

n≥k S q (n, k, y)t n = t k k i=1 (1 -[i] q t(1 -q -i y)) , (21) 
which yields immediately [START_REF] Viennot | Une théorie combinatoire des polynômes orthogonaux[END_REF] in view of Theorem 1.

The moment of q-Charlier polynomials corresponds to the β = 0, α = -1/ a(1 -q) case, while that of q-Laguerre polynomials corresponds to the α = 1/ √ y, αβ = q case. Therefore,

∞ n=0 µ (c) n (a, q)t n = ∞ k=0 a(qt) k k i=1 (q i -q i [i] q t + a(1 -q)[i] q t) , (22) 
∞ n=0 µ (ℓ) n (y, q)t n = ∞ k=0 k! q (qty) k k i=1 (q i -q i [i] q t + [i] q ty) . ( 23 
)
Theorem 3. Let p = 1/q. We have

∞ k=0 (αβ; q) k q -( k 2 ) (1 -q) -k α -2k t k k i=1 (1 -[i] q t(1 -q -i /α 2 )) = i≥0 c i (α, β) 1 -[i] q t(1 -q -i /α 2 ) , (24) 
where c i (α, β) = (αβ; q) i (q; q) i q i-i 2 α -2i (q 1-2i /α 2 ; q) i (p 1+i αβ/α 2 ; p) ∞ (p 1+2i /α 2 ; p) ∞ .

Proof. Note the following partial fraction decomposition formula:

t k (1 -a 1 t)(1 -a 2 t) . . . (1 -a k t) = (-1) k a 1 • • • a k + k i=1 a -1 i k j=1,j =i (a i -a j ) -1 1 -a i t .
Therefore

t k k i=1 (1 -[i] q t(1 -q -i /α 2 )) = k i=0 γ k (i) 1 -[i] q t(1 -q -i /α 2 ) , (25) 
where

γ k (i) = 1 k! q k i q α 2(k-i) q ( k 2 )+k-i 2 (q 1-2i /α 2 ; q) i (q 1+2i α 2 ; q) k-i (0 ≤ i ≤ k).
Substituting this in (24) yields

c i (α, β) = k≥i (αβ; q) k (q; q) k k i q q k-i 2 α -2i (q 1-
2i /α 2 ; q) i (q 1+2i α 2 ; q) k-i = (αβ; q) i (q; q) i q i-i 2 α -2i (q 1-2i /α 2 ; q) i k≥0 (αβq i ; q) k (q; q) k q k (q 1+2i α 2 ; q) k .

The theorem follows then by applying the 1 Φ 1 summation formula (see [START_REF] Gasper | Basic hypergeometric series[END_REF]II.5]).

By partial fraction decomposition (see [START_REF] Williams | Enumeration of totally positive Grassmann cells[END_REF]Theorem 4.12]), we get

∞ n=0 µ (c) n (a, q)t n = i≥0 a i (1 -a(1 -q)p 2i )/(a(1 -q)p i ; p) ∞ i! q q i 2 (q i -q i [i] q t + a[i] q t(1 -q)) , (26) 
∞ n=0 µ (ℓ) n (y, q)t n = i≥0 y i (q 2i -y) q i 2 (q i -q i [i]t + [i]ty) . ( 27 
)
Note that (27) yields the following polynomial formula in y for µ

(ℓ) n (y, q): µ (ℓ) n (y, q) = n k=1 k-1 i=0 (-1) i [k -i] n q q k(i-k) n i q k-i + n i -1 y k , (28) 
while (26) does not yield such a polynomial formula in a for µ (c) n (a, q). On the other hand, it follows from (25) and ( 21) that

S q (n, k, y) = q -( k 2 ) k! q k i=1 k i q y i-k q k 2 -i 2 ([i] q (1 -q -i y)) n (q 1-2i y; q) i (q 1+2i /y; q) k-i . ( 29 
)
Using Theorem 1 and the above explicit formula for q-Stirling numbers we can also write the moments µ n (α, β) as a double sum.

Linearization coefficients of the q-Laguerre polynomials

The following is our main result of this section.

Theorem 5. The linearization coefficients of the q-Laguerre polynomials are L q (L n 1 (x; q) . . . L n k (x; q)) = σ∈D(n 1 ,...,n k ) y wex(σ) q cr(σ) .

A proof à la Viennot (cf. [START_REF] Ismail | The Combinatorics of q-Hermite polynomials and the Askey-Wilson integral[END_REF][START_REF] Kim | The combinatorics of the Al-Salam-Chihara q-Charlier polynomials[END_REF]) of (30) would use the combinatorial interpretations for the moments and q-Laguerre polynomials to rewrite the left-hand side of (30) and then construct an adequate killing involution on the resulting set. For the time being we do not have such a proof to offer, instead we provide an inductive proof.

We first show that the above result is true for (n 1 , . . . , n k ) = (1, . . . , 1). Lemma 6. Let d n (y, q) = σ∈Dn y wex(σ) q cr(σ) . Then L q ((x -y) n ) = d n (y, q).

Proof. Note that

L q ((x -y) n ) = n k=0 (-1) n-k n k y n-k µ (ℓ) k (y, q).
By binomial inversion, it suffices to prove that

µ (ℓ) n (y, q) = n k=0 n k y k d n-k (y, q).
But the latter identity is obvious.

The invariance of σ∈D(n 1 ,n 2 ,...,n k ) y wex(σ) q cr(σ) by permutating the n ′ i s is a direct consequence of Theorem 5, but for our proof we need to first establish this property.

Theorem 7. For any permutation γ ∈ S k we have σ∈D(n 1 ,n 2 ...,n k ) y wex(σ) q cr(σ) = σ∈D(n γ(1) ,n γ(2) ,...,n γ(k) ) y wex(σ) q cr(σ) .

Since the two cyclic permutations (1, 2) and (1, 2, 3, . . . , k) generate the symmetric group S k , Theorem 7 is a corollary of the following two lemmas (proved in the next two sections).

Lemma 8.

σ∈D(n 1 ,n 2 ,...,n k ) y wex(σ) q cr(σ) = σ∈D(n 2 ,n 3 ,...,n k ,n 1 ) y wex(σ) q cr(σ) .

Lemma 9.

σ∈D(n 1 ,n 2 ,...,n k ) y wex(σ) q cr(σ) = σ∈D(n 2 ,n 1 ,n 3 ...,n k ) y wex(σ) q cr(σ) .

Proof of Theorem 4. Writing ( 14) as

(x -y)L n (x) = L n+1 (x) + (yq + 1)[n] q L n (x) + y[n] 2 q L n-1 (x),
we derive that

σ∈D(1,n,n 2 ,...,n k ) w(π) = σ∈D(n+1,n 2 ,...,n k ) w(π) + (yq + 1)[n] q σ∈D(n,n 2 ,...,n k ) w(π) (31) +y[n] 2 q σ∈D(n-1,n 2 ,...,n k ) w(π),
where w(π) = y wex(σ) q cr(σ) . In view of Lemma 6 it suffices to prove (31). We distinguish four cases for permutations π ∈ D(1, n, n 2 , . . . , n k ). a) π( 1), π -1 (1) ∈ {2, . . . , n + 1}. Let π(1) = i and π(j) = 1 with i, j ∈ {2, . . . , n + 1}.

Then we define the mapping π → π ′ ∈ D(n -1, n 2 , . . . , n k ) by deleting 1 and j and adding the edge π -1 (j) → i if i = j. Clearly w(π) = yq (i-1)+(j-1)-2 w(π ′ ).

Summing over all i, j ∈ {2, . . . , n + 1} yields the generating function:

y[n] 2 q σ∈D(n-1,n 2 ,...,n k )
y wex(σ) q cr(σ) .

b) π(1) ∈ {2, . . . , n+1} and π -1 (1) > n+1. We define the mapping π → π ′ ∈ D(n, n 2 , . . . , n k ) by deleting i := π(1) and replace the two edges 1 → π(1) → π 2 (1) by 1 → π 2 (1). Clearly w(π) = yq i-1 w(π ′ ). Summing over all i = 2, . . . , n + 1 yields the generating function:

qy[n] q σ∈D(n,n 2 ,...,n k )
y wex(σ) q cr(σ) . c) π -1 (1) ∈ {2, . . . , n+1} and π(1) > n+1. We define the mapping π → π ′ ∈ D(n, n 2 , . . . , n k ) by deleting i := π -1 (1) and replace the two edges 1 ← π -1 (1) ← π -2 (1) by 1 ← π -2 (1).

Clearly w(π) = q i-2 w(π ′ ). Summing over all i = 2, . . . , n + 1 yields the generating function:

[n] q σ∈D(n,n 2 ,...,n k ) y wex(σ) q cr(σ) .

d) π(1) > n + 1 and π -1 (1) > n + 1. Clearly we can consider π as a permutation in D(n + 1, n 2 , . . . , n k ). The generating function is σ∈D(n+1,n 2 ,...,n k ) y wex(σ) q cr(σ) .

Summing up we obtain (31).

When k = 2 Theorem 4 reduces to the orthogonality of the q-Laguerre polynomials [START_REF] Randrianarivony | Moments des polynômes orthogonaux unitaires de Sheffer généralisés et spécialisations[END_REF]. When k = 3 we can derive the following explicit formula from Theorem 1.

Theorem 10. We have

L q (L n 1 (x; q)L n 2 (x; q)L n 3 (x; q)) = s n 1 ! q n 2 ! q n 3 ! q s! q y s (n 1 + n 2 + n 3 -2s)! q (s -n 3 )! q (s -n 2 )! q (s -n 1 )! q × k n 1 + n 2 + n 3 -2s k q y k q ( k+1 2 )+( n 1 +n 2 +n 3 -2s-k 2 
) .

Proof. By Theorem 1 with a = 1 √ y and b = √ yq we have

L q (L n 1 (x; q)L n 2 (x; q)L n 3 (x; q)) = L q (L n 3 (x; q) 2 ) √ y q -1 n 1 +n 2 -n 3 C n 3 n 1 ,n 2 (a, b; q) = m 2 ,m 3 n 1 ! q n 2 ! q n 3 ! q (n 1 + m 3 )! q y n 2 +n 3 -m 2 -m 3 q ( m 2 2 )+( n 3 +n 2 -n 1 -m 2 -2m 3 +1 2 ) (n 3 + n 2 -n 1 -m 2 -2m 3 )! q m 2 ! q (m 3 + n 1 -n 3 )! q (m 3 + n 1 -n 2 )! q m 3 ! q .
Substituting s = n 1 + m 3 and k = n 3 + n 2 -n 1 -m 2 -2m 3 in the last sum yields the desired formula.

Remark 3. It would be interesting to give a combinatorial proof of the above result as in [START_REF] Ismail | The Combinatorics of q-Hermite polynomials and the Askey-Wilson integral[END_REF][START_REF] Kim | The combinatorics of the Al-Salam-Chihara q-Charlier polynomials[END_REF]. When q = 1 such a proof was given in [START_REF] Zeng | Calcul Saalschützien des partitions et des dérangements colorés[END_REF].

We end this section with an example. If n = (2, 2, 1), by Theorem 8 we have

L q (L 2 (x; q)L 2 (x; q)L 1 (x; q)) = s 2! q 2! q 1! q s! q y s (5 -2s)! q (s -1)! q (s -2)! q (s -2)! q × k≥0 5 -2s k q y k q ( k+1 2 )+( 5-2s-k 2 ) = (1 + q) 3 (1 + qy)y 2 . (32) 
On the other hand, the sixteen derangements, depicted by their diagrams and the corresponding weights are tabulated as follows:

1 2 3 4 5 y 2 q 3 1 2 3 4 5 y 3 q 2 1 2 3 4 5 y 2 q 1 2 3 4 5 y 2 q Summing up we get σ∈D(2,2,1) y wex σ q cr σ = y 2 (1 + qy)(1 + q) 3 , which coincides with (32).

Proof of Lemma 8

For each fixed k ∈ [n] define the two subsets of S n :

k S n = {σ ∈ S n | σ(i) > k for 1 ≤ i ≤ k}, S k n = {σ ∈ S n | σ(n + 1 -i) < n + 1 -k for 1 ≤ i ≤ k}. We first construct a simple bijection Φ k : k S n → S k n . Let σ ∈ S k n . For 1 ≤ i ≤ n we define σ ′ (i) := Φ k (σ)(i) as follows: σ ′ (i) =    σ(i + k) -k, if 1 ≤ i ≤ n -k and σ(i + k) > k; σ(i + k) + n -k, if 1 ≤ i ≤ n -k and σ(i + k) ≤ k; σ(i + k -n) -k, if n -k + 1 ≤ i ≤ n.
We can illustrate the map by the diagrams of permutations.

σ -→ σ ′ 1 k k + 1 n i σ(i) -→ 1 n-k n i-k σ(i)-k 1 k n σ(i) i -→ 1 n-k n σ(i)-k i-k 1 k n i σ(i) -→ 1 n-k σ(i)-k n-k+i 1 k n σ(i) i -→ 1 n-k i-k n-k+σ(i) Table 1. The mapping Φ k : σ → σ ′ .
For example, consider the permutation σ ∈ 3 S 15 , whose diagram is given below. that cr(σ ′ ) = cr(σ). We first decompose the crossings of σ and σ ′ into three subsets. Set

L 1 (σ) = {(i, j) | k < i < j ≤ σ(i) < σ(j) or i > j > σ(i) > σ(j) > k}, L 2 (σ) = {(i, j) | i < j ≤ k < σ(i) < σ(j) or i > j > k ≥ σ(i) > σ(j)}, L 3 (σ) = {(i, j) | i ≤ k < j ≤ σ(i) < σ(j) or i > j > σ(i) > k ≥ σ(j)},
and

R 1 (σ ′ ) = {(i, j) | i < j ≤ σ ′ (i) < σ ′ (j) ≤ n -k or n -k ≥ i > j > σ ′ (i) > σ ′ (j)}, R 2 (σ ′ ) = {(i, j) | i < j ≤ n -k < σ ′ (i) < σ ′ (j) or i > j > n -k ≥ σ ′ (i) > σ ′ (j)}, R 3 (σ ′ ) = {(i, j) | i < j ≤ σ ′ (i) ≤ n -k < σ ′ (j) or i > n -k ≥ j > σ(i) > σ(j)}.
The "forms" of the crossings in the L i 's and R i 's is given in Table 2. Clearly, we have cr(σ) =

3 i=1 |L i (σ)| and cr(σ ′ ) = 3 i=1 |R i (σ ′ )| since σ ∈ k S n and σ ′ ∈ S k n . σ -→ σ ′ k i j σi σj i-k σi-k j-k σj -k n-k k i j σj i-k j-k σj -k n-k k σj σi j i σj -k j-k σi-k i-k n-k k i j σi σj n-k σi-k σj -k n-k+i n-k+j k σj σi j i n-k j-k i-k n-k+σj n-k+σi k i j σi σj j-k σi-k σj -k n-k+i n-k k i j σj j-k σj -k n-k+i n-k k σj σi j i σi-k j-k i-k n-k+σj n-k k σi j i σj j-k i-k σj -k n-k+σi n-k k σi j i j-k i-k n-k+σi n-k k i σj σi j σj -k σi-k j-k n-k+i n-k
Table 3. Effects of the mapping Φ k on the crossings of σ and σ ′ . By the definition of Φ k , it is readily seen (see Row 1 in Table 3) that (i, j) ∈ L 1 (σ) if and only if (i -k, j -k) ∈ R 1 (σ ′ ), and thus |L 1 (σ)| = |R 1 (σ ′ )|. Similarly, we have (see Row 2 in Table 3

) that |L 2 (σ)| = |R 2 (σ ′ )|. It then remains to prove that |L 3 (σ)| = |R 3 (σ ′ )|. Let L 4 (σ) = {(i, j) | σ(i) ≤ k < j < i ≤ σ(j) or i ≤ k < σ(j) < σ(i) < j}.
Then it is not difficult to show (see Row 4 of Table 3

) that |R 3 (σ ′ )| = |L 4 (σ)|. It then suffices to prove that |L 3 (σ)| = |L 4 (σ)|. Suppose σ([1, k]) = {i 1 , i 2 , . . . , i k } and σ -1 ([1, k]) = {j 1 , j 2 , . . . , j k }.
Then by definition of L 3 (σ) and L 4 (σ) we have

|L 3 (σ)| = k s=1 |{ℓ | k < ℓ ≤ i s < σ(ℓ)}| + |{ℓ | ℓ > j s > σ(ℓ) > k}|, (34) 
|L 4 (σ)| = k s=1 |{ℓ | ℓ > i s > σ(ℓ) > k}| + |{ℓ | k < ℓ < j s ≤ σ(ℓ)}|. (35) 
For any integer i ∈ [n] set A i (σ) = {j | j < i < σ(j)}. Note that it is easily seen that

|A i (σ)| = |{j | j < i < σ(j)}| = |{j | j > i > σ(j)}| = |A i (σ -1 )|. ( 36 
) Let s ∈ [k]
. By elementary manipulations we get

|{ℓ | k < ℓ ≤ i s < σ(ℓ)}| = |{ℓ | ℓ ≤ i s < σ(ℓ)}| -|{ℓ |ℓ ≤ k < i s < σ(ℓ)}| = |A is (σ)| + χ(i s < σ(i s )) -|{ℓ |ℓ ≤ k < i s < σ(ℓ)}| = |A is (σ)| + χ(i s < σ(i s )) -|{t |i t > i s }|. (37) 
By a similar reasoning, we obtain the following identities:

|{ℓ | ℓ > j s > σ(ℓ) > k}| = |A js (σ -1 )| -|{t |j t > j s }|. ( 38 
) |{ℓ | ℓ > i s > σ(ℓ) > k}| = |A is (σ -1 )| -|{t | j t > i s }| (39) |{ℓ | k ≤ ℓ < j s ≤ σ(ℓ)}| = |A js (σ)| + χ(k < σ -1 (j s ) < j s ) -|{t | i t > j s }|. (40) 
Inserting (37) and ( 38) in (34) and using (36), we get

|L 3 (σ)| = k s=1 |A is (σ)| + |A js (σ)| + χ(i s < σ(i s )) -|{t | i t > i s }| -|{t | j t > j s }|. (41) 
Similarly, inserting (39) and ( 40) in (35) and using (36), we get

|L 4 (σ)| = k s=1 |A is (σ)| + |A js (σ)| + χ(k < σ -1 (j s ) < j s ) -|{t | j t > i s }| -|{t | i t > j s }|. ( 42 
)
Since the i t 's and j t 's are distinct we have

k s=1 |{t | i t > i s }| = k s=1 |{t | j t > j s }| = k 2 and thus k s=1 |{t | i t > i s }| + |{t | j t > j s }| = k(k -1). ( 43 
)
On the other hand,

k s=1 |{t | j t > i s }| + |{t | i t > j s }| = k s=1 |{t | i t = j s }| = k 2 - k s=1 χ(j s ∈ {i 1 , i 2 , . . . , i k }) = k 2 - k s=1 χ(σ -1 (j s ) ≤ k}). (44) 
Also, it follows from the definition of the j t 's that for any s ∈ [k], we have j s > k and σ -1 (j s ) = j s , and thus

χ(k < σ -1 (j s ) < j s ) + χ(σ -1 (j s ) > j s ) = χ(σ -1 (j s ) > k). (45) 
Inserting ( 53), ( 54) and ( 45) in ( 41) and (42) lead to |L 3 (σ)| = |L 4 (σ)| as desired.

Proof of Lemma 9

For any two integers n 1 , n 2 satisfying N

2 := n 1 + n 2 ≤ n we denote by S (n 1 ,n 2 ) n the set of permutations σ in S n such that (i, σ(i)) / ∈ [1, n 1 ] 2 ∪ [n 1 + 1, N 2 ] 2 .
In other words, any two integers in [1, n 1 ] or [n 1 + 1, N 2 ] are not connected by an arc in its graph.

We now construct a map Γ (n 1 ,n 2 ) : σ → σ ′ from S

(n 1 ,n 2 ) n to S

(n 2 ,n 1 ) n as follows. For i = 1, . . . , n, (1) If i > N 2 and σ(i) > N 2 , set σ ′ (i) = σ(i).

(2) Suppose 

{(i, σ(i)) | i < σ(i) ≤ N 2 } = {(i 1 , N 2 + 1 -j 1 ), (i 2 , N 2 + 1 -j 2 ), . . . , (i p , N 2 + 1 -j p )} {(σ(i), i) | σ(i) < i ≤ N 2 } = {(k 1 , N 2 + 1 -ℓ 1 ), (k 2 , N 2 + 1 -ℓ 2 ), . . . , (k q , N 2 + 1 -ℓ q )}. Then set σ ′ (j s ) = N 2 + 1 -i s and σ ′ (N 2 + 1 -k t ) = ℓ t for any s ∈ [p] and t ∈ [q]. (3) Let C = {i ∈ [1, N 2 ] ; σ(i) > N 2 } and D = {i ∈ [1, N 2 ] ; σ -1 (i) > N 2 }. It is easy to see that |C|=|D|. Suppose C = {c 1 , c 2 , . . . , c u } < , D = {d 1 , d 2 , . . . , d u } < , σ(C) = {r 1 , r 2 , . . . , r u } < and σ -1 (D) = {s 1 , s 2 , . . . , s u } < . Let α, β ∈ S u be the (unique) permutations satisfying σ(c i ) = r α(i) and σ -1 (d i ) = s β(i) for each 1 ≤ i ≤ u. Let E = [1, N 2 ] \ {j 1 , . . . , j p , N 2 + 1 -k 1 , . . . , N 2 + 1 -k q } F = [1, N 2 ] \ {N 2 + 1 -i 1 , . . . , N 2 + 1 -i p , ℓ 1 , . . . , ℓ q }.
= {f 1 , . . . , f u } < . Then set σ ′ (e i ) = r α(i) and σ ′ (s i ) = f β(i) for each 1 ≤ i ≤ u.
We can illustrate the map through the diagrams of permutations. See Table 4.

For example, if we consider the permutation in S whose diagram is given by σ

-→ σ ′ 1 N2 n i σ(i) -→ 1 N2 n i σ(i) 1 N2 n σ(i) i -→ 1 N2 n σ(i) i 1 n1 N2 n it N2 + 1 -jt -→ 1 n2 N2 n jt N2 + 1 -it 1 n1 N2 n kt N2 + 1 -ℓt -→ 1 n2 N2 n ℓt N2 + 1 -kt 1 N2 n cj r α(j)
-→ It is not hard to check that Γ (n 1 ,n 2 ) is well defined from S

(n 1 ,n 2 ) n to S

(n 2 ,n 1 ) n

. Since each step of the construction of Γ (n 1 ,n 2 ) is reversible, the map Γ (n 1 ,n 2 ) is bijective. Actually we can prove, the details are left to the reader, that (Γ (n 1 ,n 2 ) ) -1 = Γ (n 2 ,n 1 ) . Lemma 12. For each positive integers n 1 , n 2 , n, with N 2 ≤ n, the map Γ (n 1 ,n 2 ) is a bijection from S . By definition of Γ (n 1 ,n 2 ) , for any σ ∈ S (γ)| = |{(i, j) | i < j < γ(i) ≤ N 2 < γ(j)}| + |{(i, j) | γ(j) < γ(i) < j ≤ N 2 < i}| 

+ |{i | i < γ(i) ≤ N 2 < γ 2 (i)}|. ( 49 

Example 1 .

 1 Let n = 9, A = {2, 9} and σ = (6)(4 7)(3 5 1 8) (in cycle notation with maximum at last). Then we have cyc(σ) = 3 and

  Clearly, we have |E| = |C| and |F | = |D|. Suppose E = {e 1 , . . . , e u } < and F

(n 1

 1 ,n 2 ) n to S (n 2 ,n 1 ) n such that for each σ ∈ S (n 1 ,n 2 ) n , we have (wex, cr)Γ (n 1 ,n 2 ) (σ) = (wex, cr)σ. (46)As an immediate consequence, we obtain Lemma 9.Let n = n 1 + n 2 + • • • + n k . Then D(n 1 , n 2 , . . . , n k ) ⊆ S (n 1 ,n 2 ) n

  )Now, by elementary manipulations and the definition of B(γ) we get|{(i, j) | i < j < γ(i) ≤ N 2 < γ(j)}| = p r=1 |{x | i r < x < j r ≤ N 2 < γ(x)}| = p r=1 |{x | i r < x < j r }| -|{x | i r < x < j r , γ(x) ≤ N 2 }|.

Table 4 .

 4 The mapping Γ (n 1 ,n 2 ) : σ → σ ′

	1	2	3	4	5	6	7	8	9	10 11 12 13 14 15
	then the diagram of Γ (n 1 ,n 2 ) (σ) is given by			
	1	2	3	4	5	6	7	8	9	10 11 12 13 14 15

Table 6 .

 6 Effects of the mapping Γ (n 1 ,n 2 ) on the crossings of σ and σ ′ .

	(n 1 ,n 2 ) n	and i > N 2 satisfying

Then the diagram of Φ 3 (σ) is given by The main properties of Φ k are summarized in the following result.

Lemma 11. For each positive integer k ∈ [n], the map Φ k : k S n → S k n is a bijection such that for any σ ∈ k S n there holds (wex, cr)Φ k (σ) = (wex, cr)σ.

(33)

Now, Lemma 8 is an immediate consequence of Lemma 11. Let n = n 1 + n 2 + • • • + n k . Then D(n 1 , n 2 , . . . , n k ) ⊆ n 1 S n . By definition of Φ n 1 , for any σ ∈ n 1 S n and i ∈ [n -n 1 ] satisfying σ(i + n 1 ) > n 1 , we have i -

. The result follows then by applying (33).

Proof of Lemma 11 It is easy to see that Φ k is a bijection. Let σ ∈ k S n and σ ′ = Φ k (σ). The equality wex(σ ′ ) = wex(σ) follows directly from the definition of Φ k . It then remains to prove

. Since the cardinality of D(n 1 , n 2 , . . . , n k ) doesn't depend of the order of the n i 's and Γ (n 1 ,n 2 ) is a bijection, we have

Proof of Lemma 12 It was shown above that Γ (n 1 ,n 2 ) is bijective. Let σ ∈ S

(n 1 ,n 2 ) n and σ ′ := Γ (n 1 ,n 2 ) (σ). The equality wex(σ ′ ) = wex(σ) is an immediate consequence of the definition of Γ (n 1 ,n 2 ) . It then remains to prove that cr(σ ′ ) = cr(σ). The idea is the same than for the proof of Lemma 8. We first decompose the number of crossings of σ and σ ′ . For each permutation γ ∈ S n , set

Clearly, for any γ ∈ S

The "forms" of the crossings in the G

's and G

(n 2 ,n 1 ) i 's are given in Table 5. By the definition of Γ (n 1 ,n 2 ) , it is readily seen (see Row 1 in Table 6) that G

By similar considerations we can prove (see Table 6) that |G . Suppose that

then, by construction of σ ′ , we have

By symmetry, the identity (48) is also valid on S

(n 2 ,n 1 ) n

. Applying (48) to σ ′ and σ lead to

This conclude the proof of Lemma 12. It then remains to prove Lemma 13.

But for any r ∈ [1, p], we have |{x | i r < x < j r }| = j r -i r -1 and

we have that for any integers r and t, i r ≤ n 1 , k t ≤ n 1 , j r > n 1 and ℓ t > n 1 , and thus i r < j t and i r < ℓ t .

Summing over all r yields 

where the last identity follows from the definitions of B(γ) and B(γ -1 ). Inserting (53) and (54) in (52) lead to (48). This concludes the proof of Lemma 13.