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Fast Anisotropic Smoothing of Multi-Valued I mages
using Curvature-Preserving PDE’s

David Tschumperlé

Equipe Image/GREYC (UMR CNRS 6072)
6 Bd du Magéchal Juin, 14050 Caen Cedex, France

Abstract

We are interested in PDE’s (Partial Differential Equatjoimsorder to smooth multi-valued images in an anisotropic
manner. Starting from a review of existing anisotropic tagmation schemes based on diffusion PDE’s, we point ot th
pros and cons of the different equations proposed in thetitee. Then, we introduce a new tensor-driven PDE, regihar
images while taking the curvatures of specific integral eamnto account. We show that this constraint is particybasl|
suited for the preservation of thin structures in an imagtoration process. A direct link is made between our pragose
equation and a continuous formulation of the LIC’s (Lineeltal Convolutions by Cabral and Leedom [11]). It leads to
the design of a very fast and stable algorithm that implement regularization method, by successive integrationsxef
values along curved integral lines. Besides, the schemenicatly performs with a sub-pixel accuracy and preserlies t
thin image structures better than classical finite-difiees discretizations. Finally, we illustrate the efficien€our generic
curvature-preserving approach - in terms of speed and MigLaity - with different comparisons and various appliocas
requiring image smoothing : color images denoising, infi@nand image resizing by nonlinear interpolation.

Keywords: Multi-valued Images, Data Regularization, Anisotropic&thing, Diffusion PDE’s, Tensor-valued Geometry,
Denoising, Inpainting, Nonlinear Interpolation.

1 Introduction

Obtaining regularized versions of noisy or corrupted imdgt has always been a desirable goal in the fields of computer
vision and image processing. It is useful, either to restlegraded images (which is the most direct application ofjena
regularization methods) or - more indirectly - as a pre-psasing step that eases further analysis of the considetad da
Regularization is actually one of the key operations neégedany image analysis algorithms. A lot of image regulditzra
formalisms have been then already proposed in the litexdtuithis purpose.

Since the pioneering work of Perona-Malik [33] in the earys9 the framework of anisotropic diffusion PDE’s (Partial
Differential Equations) has particularly raised a strontgiiest for data regularization : such equations have tilityato
smooth data in a nonlinear way, allowing the preservaticsigrfificant image discontinuities. PDE’s are local forntialas

and thus, they are well adapted to deal with degraded imabesevsources of data corruption are local or semi-local too :
gaussian noise, scratches or compression artefacts atelegradations usually encountered in digital (origimaligitized)
images. Therefore, many variants of diffusion PDE’s havenbgroposed so far for the restoration of image datasets. In
particular, important contributions in this field concehe tway the classical isotropic diffusion equation (heat fitnas
been extended to deal with anisotropic smoothing [33, 2753}, how diffusion PDE’s may be seen as gradient descents
of various energy functionals [4, 13, 16, 23, 36], and th& letween regularization PDE’s and the concept of non-linea
scale spaces [1, 28, 30]. Extensions of these techniqua&ddoimages and more generally multi-valued datasets hega b
also tackled in [38, 44, 48, 53]. More recently, regulaimaiPDE’s under constraints have been proposed in orderdb de
with more specific datasets, as fields of unit vectors [1832441], orthonormal matrices [17, 45], positive-definitatrices

[17, 46], or image data defined on implicit surfaces [7, 14, 42

Despite this wide range of existing constrained and uncaim&d PDE formalisms, all regularization methods haveesom
thing in common : they locallgmooththe image along one or several directions of the plane tleadifferent at each image



point. Typically, the principal smoothing directions ateesen to be parallel to the image contours, resulting iarasotropic
regularization that does not destroy edges. As a requirgmefining a correcsmoothing behaviois one of the first aim of

a good regularization algorithm, the second being the pi@tiof the smoothing process itself : it must respect thenddfi
smoothing geometry as much as possible.

Following this general principle, authors of [48, 52] rettgiproposed two different PDE-based frameworks able tagtes
specific regularization processes from a given (user-dé¥imederlying local smoothing geometry. These methods hawe
main interests : on one hand, they unify a lot of previoushpmsed equations into generic diffusion PDE’s and provide
a localgeometric interpretatiorof the corresponding regularizations. On the other harel; thearly separate the design
of the smoothing geometry from the smoothing process itsilfa first step, one retrieves the geometry of the structures
inside the image (generally by the computation of the stedatructure tensor fields). Then, a local geometry of the
desired smoothing is defined by the mean of a second Tetd diffusion tensorgdepending orG). Finally, one step of
the smoothing process itself (driven ) is performed through one or several iterations of a spediffasion PDE. This
procedure is repeated until the image is regularized enough

In this article, we first review these two efficient and unifyiregularization methods acting on unconstrained maliiied
images, following our interpretation of separating the sthing from the geometry (section 2). We particularly paint

the advantages and drawbacks of each equation in real cA&epropose then a comparable tensor-driven diffusion PDE
that regularizes multi-valued images while respecting#jgecurvature constraintgsection 3). Actually, our equation is
mathematically positioned between the two previous foatioihs, in a way that it solves the issues inherent to botihoukst
Moreover, we propose a theoretical interpretation of ouvature-constrained formalism in terms of LIC’s (Line Igtal
Convolutions [11]). This analogy leads to the proposal obaeh numerical scheme that implements our PDE (section 4),
by successive integrations of pixel values along intedgnalsl. This iterative scheme has two main advantages conhpare
classical PDE implementations : on one hand, it preseneestilentations of thin image structures, since it natunatbyks

at a sub-pixel accuracy. On the other hand, the algorithrolésta run up to three times faster than classical expli¢ieste
since it is unconditionally stable, even for large PDE tineps. Finally, we illustrate the effectiveness of our ctuve:
preserving method, in terms of computational speed andauality, with results on color image restoration, colmage
inpainting and non-linear resizing, among all possibleliappions in the area of image regularization (section 5).

2 Anisotropic Smoothing of Imageswith PDE’s: A Review

Let us consider a multi-valued imade 2 — R™ (n = 3 for color images) corrupted by noise and defined on a domain
Q C R?. We denote by, : Q — R, the scalar channelofI: VX = (z,9) € Q, Ix)= (lix) I2(x) - In(X))T.
Regularizingl can be done by one among the large variety of existing ddfuBIDE’s. We will focus anyway on the recent
works in [48, 52], which are unifying approaches.

2.1 Local Geometry and Diffusion Tensors

Basically, PDE-based regularization may be seen as thédowaothing of an imagé along defined directions depending
themselves on the local configuration of the pixel inteasitiOne wants to smooihwhile preserving its edges (discon-
tinuities in image intensities), i.e. performs a local sthirtg mostly along directions of the edges, avoiding smiogth
orthogonally to these edges. Naturally, this means thahasdirst to retrieve thimcal geometrof the imagd. It consists
in the definition of these important features at each imagetpo = (z,y) € Q:
e Two orthogonal directioné&) , 9(3() € S! (unit vectors ofR?) directed along the local maximum and minimum
variations of image intensities 2. The directiord— generally corresponds to the edge direction, when theneds o
. (x)
respectively\™, AT are related to the locatrengthof an edge.

measuring effective variations of the image intensitiemgb ', and

e Two corresponding positive valueé'x) ;A (X)

Ox)
For scalar image$ : Q — R, this local geometry{ A\*/— 6%/~ | X € Q} is usually retrieved by the computation of
the gradient fieldv I, or smoothed gradient fielef I, = VI x G, whereG,, is a2D gaussian kernel, with a varianee
Thus, AT = | VI, |? is a possible measure of the local strength of the contounite @~ = VI, /|| VI,| gives the contours



direction. It is worth to notice thag A*/—, 6%/~ | X € Q} can be represented in a more convenient form by a f&Id
2 — P(2) of 2 x 2 symmetric and semi-positive matrices, nanesors VX € Q, Gx) = A~ 0-6-" 4 At oto+T.
Eigenvalues of are indeecd\~ and\™ and corresponding eigenvectors éreandd*. For instance, the local geometry of
scalar-valued imagescan be expressed with the ten€erx) = VIx) VI&).

For multi-valued imagek : 2 — R™, the local geometry can be retrieved in a similar way, by tivagutation of the field>
of structure tensorsAs noticed in [21, 52], this extends naturally the gradfenimulti-valued images :

o1,
n e

VXeQ, G =Y VIxVIx Where VI, = . (1)
i=1 Dy
Ay

A gaussian-smoothed versi@h, = G * G, is usually computed to retrieve a more coherent geomeldry.x is a good
estimator of the local multi-valued geometryladt X : its spectral elements give at the same time the vectoedalariations
(by the eigenvalues—, AT of G,) and the orientations (edges) of the local image structiimgthe eigenvector&~ L0+ of
G,), o being proportional to the so-called noise scale.

Once the local geometré, of I has been determined this way, authors of [48, 52] proposel@$mn a particular field
T : Q — P(2) of diffusion tensorsvhich specifies the local smoothing geometry that shouldedhie regularization process.
Of couse T depends on the local geometrylpfand is thus defined from the spectral elemevntsA™ andf—, 6* of G, :

— e T
VX €Q,  Tx)=finy 0 0 +fhir, 070" ()

Basically, ft/~ : R? — R designates two functions which set the strengths of thea@tksimoothing along the respective
directions§—,0". Several choices fof —, f™ are possible, depending on the considered applicationintaiye denoising, a
possible choice is (proposed in [16, 44, 48]) :

1

_ 1
foony = o and f(-‘;\+,)\,) = (

ith
I+ AT+ A7 L+ AT £ A ) pr=p2

At this point, the desired smoothing behavior is intendeloleto

e If a pixel X is located on an image contoux&) is high), the smoothing oX would be performed mostly along the
contour directiom&) (sincef(f') << f(f.))’ with a smoothing strength inversely proportional to tbatour strength.

o If a pixel X is located on a homogeneous regia@() is low), the smoothing oiX would be performed in all possible
directions (isotropic smoothing), sing‘gfv) ~ f(f_') and thernT ~ I; (identity matrix).

This is one possible choice fgi—, f* in order to satisfy basic image denoising requirements.58j,[the same kind of
considerations leads to similar diffusion functions. Aty this is quite natural to design a smoothing behavionfithe

image structuréeforeapplying the regularization process itself.

Pre-defining the smoothing geometlfyfor each PDE iteration is the first stage of regularizatiagoathms proposed in
[48, 52]. The corresponding smoothing must be applied thde.important differences between all existing regulaidra
methods lie first on the definition @, but also on the form of the diffusion PDE that will be used &fprm the smooth-
ing. Choosing different smoothing functiorfs’, f* and diffusion PDE’s detailed below leads to the unificatibrmost

unconstrained image regularization methods proposecititérature [1, 4, 7, 8, 13, 15, 16, 23, 28, 30, 33, 36, 37, 38].

2.2 Thedivergence-based PDE

Considering a corrupted multi-valued imabe? — R™ and a local smoothing geometlly : 2 — P(2) defined as a field
of diffusion tensors (2), the following divergence PDE ca&nused to anisotropically smoakialong” T :

oI;
ot

This classical equation in PDE-based regularization hasn biatroduced by Weickert in [52], and adapted for
color/multivalued images in [53]. Note that the tensor fillds the same for all image channdls ensuring that all/;

Vi=1,.,n,

= div(TVI,) 3)



are smoothed by eommon multi-valued geometmhich takes the correlation between image channels intoutsince
T depends o16z), contrary to a uncorrelated channel-by-channel approHoeé notable characteristics of (3) are :

(a) Pros : It unifies a lot of existing scalar or multi-valued regulatibn approaches and proposes at the same time two
interpretation levels of the regularization process :

o local interpretation: (3) may be seen as the physical law describing local diffuprocesses of the pixels individually
regarded as temperatures or chemical concentrations inismtipic environment which is locally described By

e global interpretation the problem of image regularization is often expresseti@stinimization of a specific energy
functional E(I), depending on the spatial variationsIof, 7, 13, 14, 16, 17, 23]. Findingthat minimizesE(I) is
usually done by a gradient descent (i.e. a PDE), coming fleerBuler-Lagrange equations BfI), resulting in a
particular case of (3). In [44, 48], we demonstrated thahtir@mization of the general multi-valueg-functional

E(I) :/sz(v,x)dﬂ where ¢ : R? - R 4)

is done by the divergence PDE (3) with= (%—‘Ii 0-6-" + (%—‘Ii 6+6+" . In this case, the,, A_ are the two positive
eigenvalues of thmaon-smoothedtructure tensor fielGx = >, VI, VI, while thed. , §_ are the two corresponding
orthonormal eigenvectors d&&. Similar results have been demonstrated for scalar-vailmedes [4, 16, 26] (and

references therein).

(b) Cons :Strictly speaking, the PDE (R)oes not fully respect the geometfy The smoothing performed is not always the

one that could be expected. We illustrate this fact by cangid the simple case of single direction smoothing. Suppos

we want to anisotropically smooth a scalar imdge{) — R everywhere along the gradient directiﬁ:@fr—” with a constant

strengthl. This is of course for illustration purposes, since all imagscontinuities would be destroyed with such a smooth-
T

ing geometry. Intuitively, we should defifBas : VX € @, T(x) = (%) (%) , leading to the simplification

of (3) as% = div (W VIVITVI) = div(VI) = AI, whereAl = % + giyé’ stands for the Laplacian df. As

noticed in [25], the evolution of this so-call&éeat flow equatiors similar to the convolution of the imageby a normalized

gaussian kernek, with a variancer = /2 t. This choice ofinisotropictensorsT' leads to ansotropicsmoothing, without

preferred directions. Note that choosiig= I; (identity matrix) would give exactly the same result : diéfat tensors fields

T with very different shapes (isotropic or anisotropic) defihe same regularization behavior. Indeed, the divergisree

differential operator, so (3) implicitly depends on gpmatial variationsof T. Thus, the divergence equation (3) hampers the

design of a pointwise smoothing behavior (see [44, 48] forem®tails on this particular point).

2.3 Thetrace-based PDE

In order to respect the local smoothing geomé&trywe have proposed in [44, 48] a regularization PDE, verylsintd the
divergence equation (3), but based ameece operator :

%I %I,
a[i ) Ox? Oxdy
Vi=1,..,n, = trace(TH;) with H, = (5)
8t 621i 62 I
ozdy  9y?

H; stands for the Hessian éf. The equation (5) is a tensor-based expression of the follpRDE, expressed with simulta-
neous oriented and weightéd Laplacians :

ol _
71 = fo-an Tomo- + Foeaey Tover

wherely-4- = 596—1 represents the second directional derivativd afongd~ (the same fo¥™). Particular cases of (5)
have been proposed in [4, 26, 27, 12, 37, 38, 44, 48] for soalawulti-valued images. Note that each chanheif I is also
smoothed with a common tensor fiéld

(a) Pros : As demonstrated in [44, 48], the evolution of (5) has an ggBng geometric interpretation in terms of local



filtering with oriented and normalized gaussian kernelmay be seen locally as the application of a very small coriariu
around eactX with a gaussian maskT orientedby the tensofT x) :

1 XTT-1X
G xy = Yo exp< — )

This ensures that the smoothing performed by (5) is trulgrdegd along the pre-defined smoothing geon&trAs the trace
is not a differential operator, the spatial variatiorllbfloes not trouble the diffusion directions here and two déffé tensor
fields will necessarily lead to different smoothing behasidNote that under certain conditions, the divergence F)Eay
be also developed as a trace formulation (5). In this casetetisors inside the trace and the divergeareenot the same
[44, 48].

(b) Cons : Contrary to the divergence formulations (3), trace-baspthttons (5) are very local formulations and thus,
are rarely connected to global formulations expressed &uirgy functionals such as (4). This is particularly trueemvh
considering multi-valued images, despite recent papietio explore such links [44, 48]. For scalar-valued imgges 1),
some correspondences are known anyway [4, 16, 20, 26]. Isdfeels, we will mainly focus on the local behavior of
regularization PDE's.

Note that the trace equation (5) behaves locally as an edegdaussian smoothing whose strength and orientationasthjir
related to the tensdF x). But on curved structures (like corners), this gaussiaraieh is not desirable : when the local
variation of the edge orientatiah is high, a gaussian filter tends tound corners, even by conducting it only alofg.
This is due to the fact that an oriented gaussian mask is rmedljtself This classical behavior is also best known as th
“mean curvature flow” effect, characterized by the PI%F_ ae 1. This problem is illustrated on Fig.1b and Fig.2b where
(5) has been applied on synthetic and real color imagéelahds been defined as (2) (thgn # 0). One can easily see how
image structures are subject to the mean curvature flowtefésilting in rounding the corners of the square in Figatlin
blending parallel thin curved structures in Fig.2b.
To avoid this over-smoothing effect, most regularizati@&? try to stop their action on corners (by vanishing tesSyx,
there, i.ef~ = f* = 0). But this implies the detection of curved structures orspair corrupted images, which is generally
a hard task. Conversely, image under-smoothing on edge®otay when limiting the diffusion too much on regions with
high intensity variations (Fig.1c). There is a difficultdezoff between complete noise removal and preservationmid
structures, when using trace-based PDE’s (5).

(b) Applying trace-based PDE (5), (c) Applying trace-based PDE (5), (d) Applymg our constrained PDE
Wlthp1—05p2—12 Wlthp1—09p2—12

(a) Noisy synthetic color image
Wlthpl =0.5,p2 = 1.2,

Figure 1:Problems encountered when using trace-based PDE’s (5)reectimage structures (details are shown on the second row).
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(b) Applying trace-based PDE (5), (c) Applying our constrained PDE (14),

(a) Image of a fingerprint with p1 = 0.5, ps = 1.2. with p1 = 0.5, ps = 1.2.

Figure 2:Comparisons between trace-based PDE's (5) and our newtateyareserving PDE's (14) on a real image.

Actually, this kind of regularization processes does nat edout theurvatureof the smoothing directions, and by extension,
of the curvature of the image contours. Taking this cunainio account is a very desirable goal and has motivated dinke w
presented in the sequels : in section 3, we propose a newdflasse-based regularization PDE’s that smooth an inlage
along a tensor field, while implicitly taking curvatures of specific integral as of T into account Roughly speaking,
we want to locally filter the image witburved gaussian kernelghen necessary, in order to better preserve image strgcture
For illustration purposes, results of our curvature-pnésg equation is shown on Fig.1d and Fig.2c.*

3 Curvature-Preserving PDE’s

3.1 Thesingledirection case
To illustrate the general idea of curvature-preserving BD&e first focus on image regularization along/ector field
w : Q — R? instead of a tensor field. We consider then a local smoothing everywhere along aesiigbction*-, with

Twi”
a smoothing strengtfiw||. We denote the two spatial componentsoby wx), = (ux) v(x))’.
We propose to define the followirgyirvature-preservingegularization PDE that smoothkalongw by :

ol;
Vi=1,...,n, 5 = trace(wa Hi) + VIZ»TJWW (6)
wherel,, stands for the Jacobian ef , andH; is the Hessian of;.
du  du 8%I; 8%,
or Oy 0z2 Oz 0y
Jw = and Hz =
v v %L, 9L
ox Oy 0x0 Dy?

The PDE (6) adds a terfiI! J,, w to the trace-based equation (5) that smoolha®ngw with locally oriented gaussian
kernels (see section 2.3). This extra term naturally dependhe variation of the vector fielgt. Let us explain how (6) is
related tow.



Let C(’i) be the curve defining thiategral curveof w, starting fromX and parameterized byec R :

X = X
- (7)
aif) = W(C()é))

Whena — 4o the integral curvé’x) is trackedorward, andbackwardwhena — —oco (Fig.3). We denote by the family
of integral curves ofv.

s AL AREP a
W A
3 0 A 0 -
Ty TY -
TAE R 7
FYP1 »
ot A 7
gy AR 2
L r
ol i A S
ki PARA AR
LI I~ | a‘ﬁ)r T T Pl
- ) o (b) Example of |ntegral curves wheza is the Iowest elgenvector of the
(@) Integral curve of a general fieig. structure tenso6 of a color imagd (one block is one color pixel).

Figure 3: Integral curvéX of vector fieldsw : Q — R2,

A second-order Taylor development(qfl) arounda =0is :

acx 2 9%CX
(a) G R O(h?)

da ja=0 2 04 ja=0

X

h2
X + hW(X) + 7 Jw(x)W(X) + O(h3)

with h — 0, andO(h™) = h™ ¢,. Then, we can compute a second-order Taylor developmeh((oafl)) arounda = 0,
which corresponds to the variations of the image intensigrX when following the integral curvéX :

2

2

Ii(cg,i)) I; <X +hwx) + 5 Jweo Wix) + O(h3)>

2

h h
5 Jw(x)W(x)) + gtrace(W(x)W{X)Hi(x)> + O(hS)

Li(X) + hV Li{x) (wix) +

The term trace{w(x)w(TX)H,(x)) = aw2 corresponds to the second directional derivativé @ongw.

The second derivative of the functien— I; (C( )) ata = 0is then:

0%I;(CX)) 1
1\~ (a) _ . (X (X _ (X
T ﬁ[“cwﬂ”f(c(—m) 21,(C35)
— 3 2 T 2 3
= Jim o [h VI T W) + 2 trace( wis wii Higx ) + O(h™)]
— trace(wix Wi Hix) ) + VI i Wi ®)

Note that this is exactly the right term in our curvaturesgmwing PDE (6).



Actually, (6) can be seen individually for all integral cessof F instead of each poinX € ) : consider another point

Y € CX. Then, there exist € R such thafyY = C(’E(). Indeed,CX andCY describe the same curve (7) with different
X 27 (pX
parameterizationsva € R, C(‘Z) = C()E‘+a). As (6) is verified onY, thenall(act(“)) lame = %m:e' This is obviously

true fore € R since (6) is verified for all pointY’ lying on the integral curvé*. Then, the PDE (6) may be also written as :

OI;(C(a)) _ O*I;(Cla))
ot Oa?

We recognize in (9) ane-dimensional heat flow constrained@nThis is actually very different from a heat-flooviented

by w, as in the formulatior% = gif; since the curvatures of integral curvesvofare now implicitly taken into account.
In particular, our constrained equation has the interggiioperty to vanish when image intensities are perfecthstant on
the integral curv€, whatever the curvature dfis. In this context, defining a fietd that is tangent everywhere to the image
structures will allow the preservation of these structuesen if they are curved (such as corners). This is not the with
divergence or trace-based PDE’s (3),(5) classically us@éuage regularization. This curvature-preserving propef(6) is
illustrated on Fig.1d and Fig.2b.

Our constrained equation (6) is afliptic PDE since the matrixvw” is positive definite. The existence and unicity of the
solutions of (6) are not directly approached in this articknyway, in next section 3.2, we show that its solution can be
approximated by the technique of line integral convolwiomhich is a well-posed analytical approach.

VC € F, YaeR, 9

3.2 Curvature-Preserving PDE’sand Line Integral Convolutions

Line Integral Convolutions (LIC) have been first introdudad11] as a technique to render a textured imagé” that
represents a vector fielst : Q@ — R?. The idea, originally expressed as a discrete form, cansissmoothing an image
10 - containing only noise - by averaging its pixel values altmgintegral curves of. Actually, a continuous formulation
ofaLICisthen:

[t
vXeq, IHS =+ / £(p) T (CX,) dp (10)

wheref : R — R is an even function (strictly decreasing @oon R*) andCX is defined as théntegral curve(7) of
w throughX. The normalization factoV allows the preservation of the average pixel value al6fgand is equal to

N = [T f(p) dp.

As noticed in section 3.1, our curvature-preserving PDEEéB) be seen as the one-dimensional heat flow (9) constrained o
the integral curv&€® < F. Using the variable substitutidn ) = I(C(’;)), (9) can be also written a%'t:(a) = L(a). The

solutionL" at timet is known to be the convolution df*=° by a normalized gaussian kerr@| (see [20, 25]) :

1 p?
Giw) = 5P~ 5 (11)

SubstitutingL in (11) witha = 0, and remembering thE@‘)) =X andGi_p) = G -

+oo
L = / L% Giiampy dp  with

+oo
VX € Q, IE’;]() = / 100X ) Gy, dp (12)

The equation (12) is a particular form of the continuous bi&sed formulation (10) with a gaussian weighting function
f = G¢. Here, the normalization factor ¥ = ff;f Gip dp = 1. Intuitively, the evolution of our curvature-preserving
PDE (6) may be seen as the application of local convolutignsdsmalized one-dimensional gaussian keraédsg integral
curvesC of w. This kind of anisotropic image smoothing considers thear@edfiltering, instead of just an oriented one.
Applying this setting on a multi-valued imade with w being the lowest eigenvector of the structure tensor €&l@.e.

the contour direction) allows the anisotropic smoothind efith edge preservation, even if these edges are curved. This
is illustrated on Fig.3b, where few integral liné¥ are computed, around a typical T-junction structure. Naie the
streamlines rotate when arriving at the junction, with a-piXel precision. The streamlines have been computed with a
2"d_order Runge-Kutta scheme.



Note that (12) is an analytical solution of (6) whendoes not evolve over timeThis property is generally not verified
when dealing with general nonlinear regularization PDisere the smoothing geometry is re-evaluated at each tiepe st
(this defines a temporal non-linearity). In order to get #irgl of non-linearity, we will then to perform several sussive
iterations of our LIC scheme (12), where the vector figlds updated at each iteration. This is actually a good way ef ap
proximating (6). Classical explicit schemes usually cdasthe smoothing geometw as constant between two successive
PDE iterationd[* andI*+?t_ Thus, our curvature-preserving equation (6) will be edfitiy discretized by several iterations
of our LIC formulation (12) (section 4).

Note also that PDE-based algorithms performing vector flisualization with textures have been already proposed in
[6, 34], mainly inspired by the popular LIC technique, buttheoretical links between PDE-based formulations and4.1C’
have been done. Moreover, the use of divergence-based@tpiptoposed in these paper does not ensure the correotness
the smoothing directions, as pointed out in section 2.2.

3.3 Between Traces and Divergences

We illustrate here how our curvature-preserving PDE (6) bmyegarded compared to trace and divergence expressjons (3
(5), for the case of single direction smoothilig= ww?'.
In this case, the divergence PDE (3) may be developed as :

U2 ol; + w ol;

Oz oy
div(waVIi) = div
uv%—i—vQ%—g
du v du
0?1 0?1 0?1 o T T B,
2 i i 2 i T
= U + 2uv + v + VI
( o1 dxdy 592) v QUg—ZwLu%Jrv%
u%ﬁng—Z U%ﬁLUg_Z
= trace(ww H;) + VIF +
( 1) B U%Jrvg—z v%+vg—z

= trace(ww' H;) + VI Jow + div(w)VIw
Thus, we recognize in these three different terms :
e The first term corresponds to the trace PDE (5), that smoddicaly I alongw.

e The two first terms correspond to ocurvature-constrainedegularization PDE (6), that smoothes locdllglongw
while taking the curvature of integral curvé®f w into account.

e The three terms together correspond to the classical dineggPDE (3) that performs local diffusions bflong
w. This last term diyw)VI!'w is mainly responsible for the perturbations of the effexmoothing direction, as
described in section 2.2. It is not desirable for image ragzétion purposes.

It is interesting to observe that our curvature-const@iPBE (6) is then “mathematically” positioned between tlaedr(5)
and divergence formulations (3), and allows at the samettiméull respect of the pre-defined smoothing directiansvhile
preserving curved images structures.

Note that we can also write our curvature-preserving PDE$6G) divergence-based PDE minus a constraint term :

trace(ww’ H;) + VI Jow = div (ww’ VI;) — div(w)VI/w
Two particular cases of directions are worth studying, in the case of scalar-valued images () :

e Whenw = ”VV—I;H (isophote direction), then VITJ,w = —I,, vanishing then the velocity of our curvature-
preserving evolution equation (6), by counterbalancirgtthce-based term (which is nothing more thanrtrean



curvature motionin this case). No smoothing will be then performed. This i#equnatural since pixel along the
isophotes have constant values, so averaging those vallieotwchange the image. Note by comparison that the
velocity of the corresponding divergence-based exprasﬁio(wa Vli) also vanishes here.

e Whenw = ﬁ (gradient direction), then VI7J,w = 0, and the velocity of our curvature-preserving PDE (6)
becomes simplyw, which really corresponds to a smoothing of the image albagtadient direction (the same as
the unconstrained trace-based PDE (5)). Note by compattistithe velocity of the corresponding divergence-based
expression i\ [ in this case, which corresponds to an isotropic smoothingefmage, instead of an anisotropic one.

These two particular cases allows to better understandffieesshce of regularization behaviors between the traiserdence
and curvature-preserving formulations.

Note also that in case wheve is a divergence free field (i.e(w) = 0), the divergence-based PDE (3) and our curvature-
preserving formulation (6) are strictly equivalent.

3.4 Extension to multi-directional smoothing

We extend our single-direction smoothing PDE (6) so thaaiit deal with a tensor-valued geomeTy: 2 — P(2), instead

of a vector-valued geometry. As pointed out in section 2.1, a diffusion tensor describbesh more complex smoothing
behaviors than single directions. In particular, it mayresgnts botlanisotropicor isotropic regularization behaviors. The
extension of our curvature-preserving PDE (6) is not shifidgward : the notions of curvature and integral curve®obbrs-
valued fieldsT are not as natural as with direction fields

To tackle this problem, we propose to locally decompose adedriven smoothing process into several vector-driven
smoothing processes along different orientations. Werfosite that

T T COS «x
/ aaaz; da = 5 I; where a, =
a=0 sin «
Then, any2 x 2 tensorT may be written as :
2 T
T:—\/T(/ aaagda)\/f
™ a=0
whereVT = /fTuu” + /f—vvT stands for the square root @ = ftuu” + f~vv’. One can easily verify that
(VT)? = T and(v/T)T = V/T. Thus, the tensdl' may be decomposed as :
2 [T 7 =T
T = — VTaaal VT do
T Ja=0
2 ™
_ 2 / (VTaa)(VTan)" da (13)
T Ja=0

We have split the tensdF into a sum ofatomictensors(v/Ta,)(vTa, )T, each being purely anisotropic and directed
only along the direction of the vectafTa, € R2. The equation (13) naturally suggests to decompose angrtelnisen
regularization PDE into a sum of single direction smoottpngcesses, each of them respecting the overall georietRpr
instance :

e If T = I, (identity matrix), the tensor is isotropic and&/ar € [0, 7], v/ Ta = a,. The resulting smoothing will be
then performed in all directions, of the plane with the same strength.

e If T = uu’ (Whereu € S'), the tensor is purely anisotropic antfe: € [0, 7], vVTan = (u”a,)u. The resulting
smoothing will be then performed only along the directioaf the tensofT.

Then, using (13) and considering that each single directinaothing must be done with a curvature-preserving approac



(6), we propose the following constrained regularizati@ERacting on a multi-valued imade: 2 — R™ and driven by a
tensor-valued smoothing geomefty:

I; 2 (7
Vi=1,...,n, %t == /a . trace((\/Taa)(\/Taa)THi) +VII I g, VTag do
which can be simplified as :
. (')Iz 2 T ﬂ
Vi=1,...,n, 5 trac€ TH;) + ;VIZ- - J/Fa, VTaa da (14)

wherea, = (cosa sina)7, andJﬁaa stands for the Jacobian of the vector fi€ld— v Ta,. Note that this kind of
smoothing decomposition along all orientations of the plean be also found in [51]. As in the single direction smaughi
case, (14) may be seen as a trace-based equation (5), whexraterm has been added in order to respect the curvature of
all integral lines passing through the tensor-valued gegnie

4 Implementation considerations

In order to implement our regularization method (14), wedsitfirom the LIC-based intepretation of curvature-preseyv
PDE'’s presented in section 3.2. Indeed, we can explicitisigrdtize (14) by the following Euler scheme :

odt [(R=
[t+dt] _ 7l
T — i 4 =5 (ngoR(\/Taa))

wherea = k7 /N (in the intervall0, 7]), dt is the usual temporal discretization step &idv) represents a discretization of
the mono-directional smoothing PDE velocity (6) that preseurvatures along a vector fietd. If we write this expression

as :Ilt+dtl = L (zﬁ; I+ 24¢ R(\/Taa)) , We may express it as the averaging of different gaussiaigated LIC’s
along vector fields/Ta,, :

N-—1
pierar _ 1 Z i
- N - LIC(VTaa) ’
=0

where each gaussian variance has a standard deviétion

Basically, the difficulty here is the LIC computation, whickeds the tracking of integral curves of a vector field. Hee,
used a very simple method based on the classical Runge-J85ftantegration scheme. Faster LIC implementations have
been proposed in [40] but do not deal with gaussian ponaer&iinctions, as needed here.

This simple observation leads then to the following fasbatgm for the implementation of one iteration of our curvat-
preserving PDE (14) :

1. Compute the smoothed structure tensor f@|dfrom Il :

2
oI ( a1l arl” )
n
ox ox oy
G, =G, % E

2
P orl” o1l a1l
Oz dy 9y

o will depend on the noise scale. We used relatively low va({besveer) and1.5) for our experiments in section 5.

2. Compute the eigenvaluag, A\~ and eigenvectoré™, 6~ of G,.
3. Compute the smoothing geometry tensor fiElfom G, : T = m 06" + m g+o+"
4. For allain [0, 7] (discretized with a user-fixed step) :

e Compute the vector fieldr = VT a,.



e Perform a Line Integral Convolution dft! alongCX in the forward and backward directions.

5. Average all LIC’s computed in step 4.

The main parameters of our algorithm axe p», o, dt and the number of PDE iteration$ that are applied. The character-
istics of this scheme, compared to the classical finiteediffice one is :

o It allows the preservation of thin image structures from matical point of view : the smoothing is performed along
integral curves ofv, with a sub-pixel accuracy. Precise Runger-Kutta inteafioh is used to track the integral curves
C.

o It allows to choose very large time stegis since the scheme we proposed is unconditionally stabdieeddt simply
corresponds to a smoothing variance of the gaussian-patediszonvolution along € F.

e As a result, the regularization algorithm performs very.fagery few iterations are necessary to get the result, even
if each iteration is more time-consuming. For our applmasi presented in section 5, we were even able to choose
nb = 1 iteration with very large time step#. In fact, this leads to a rough approximation of (14), sineelast the
temporal non-linearity property of the PDE. But for imageatwew noise, this gave suprisingly good results. Actually
the spatial non-linearity seems to play a more importarmt tiohn the temporal non-linearity in our scheme.

The smoothing is done as an averaging of multiple LIC’s ifieddént directionsy. The choice of the discretization stép

is important in this context. Actually, in regions where #moothing needs to be mostly anisotropic, only few values of
are necessary since in all cases, the smoothing will be diong $he same single direction. But in homogeneous regions
needing isotropic smoothing, a smalt&y will give much better results. Practically speaking, wessh, = 45° which is
enough to get a good precision for isotropic smoothing.

On Fig.4, we illustrate the efficiency of our new scheme, careg to the classical finite-difference one. A syntheticsyoi
image is anisotropically smoothed with our PDE (14), with= 0.01 andp, = 100 (smoothing mostly along isophotés,

with a strength ofl). The LIC-based scheme (Fig.4c) better preserves thetgsteualong time. This is due to the important
role played by the sub-pixel accuracy property of the unyileglLIC computation.

(b) Regularization using a finite-difference scheme(c) Regularization using our LIC-based scheme

(@) Noisy color image. (stopped at = 100). (stopped at = 100).

Figure 4: Comparisons between classical explicit PDE seseand LIC-based implementation of our PDE (14).

5 Application Results

We present different application results of our curvatoreserving PDE (14), implemented by the LIC-based scherde an
applied on24bits color imaged : Q — [0,255]3. The(R, G, B) color base has been considered for the PDE evolutions.
All experiments have been performed on a P€ Ghz running Linux (single CPU). The implementation has beéame in
C++, thanks tahe Cimg Library{49], a very simple-to-use and powerful image processimgly. For each result presented
below, we detail the used parameters and the processing time



5.1 Color Image Denoising and Regularization

Image denoising is a direct application of regularizatia@imods. Sensor inaccuracies, digital quantifications omression
artefacts are indeed some of the various noise sourcesahaffect a digital image, and suppressing them is a desirabl
goal. In Fig.5, we illustrate how our curvature-preservifige (14) can be successfully applied to remove such argefact
while preserving the essential structures of the proceissagdes.

e Fig.5a shows a restoration of the “baboon” color imagefiaidlly degraded by adding uncorrelated gaussian noise on
(R,G, B). This512 x 512 color image has been regularized with (14) arid@x 111 portion of the image is shown.
Only one PDE iteration has been necessary, with= 0.5, p2 = 0.7, 0 = 1.5 anddt = 50. Processing time i$9.3
seconds for the entire image.

e Fig.5billustrates a real case where a color photograph&es dhigitized from a grainy paper, leading to the apparition
of watered effects on the digital picture (siZ&6 x 367). Using our regularization method allows to clearly remove
the grain while preserving quite fine structures (palm tesdd). Shown image is E52 x 133 portion of the original
one. Only one PDE iteration has been necessary,pyith 0.5, po = 0.7, 0 = 1 anddt = 10. Processing time i$1
seconds for the entire image.

o Fig.5c deals with the suppression of compression artefiactdlor images. A JPEG version of the “Lena” color image
(size=256 x 256, where the JPEG quality ratio has been sa#) is processed by our regularization algorithm. Usual
block effects inherent to the DCT compression are visibléhercompressed image (left). One PDE iteration is applied
then, withp; = 0.5, p2 = 0.9, 0 = 2, dt = 200, in order to get the regularized result (right). Only@ x 73 portion
of the original image is shown. Processing timé.isseconds for the entire image.

e Fig.5d illustrates how our regularization method is usedfrtprove a digital color image quantified #%6 colors by
the Floyd-Steinberg algorithm (siz&55 x 287). One PDE iteration has been applied, with= 0.5, po = 0.8,0 = 1,
dt = 30. A 136 x 118 portion of the image is shown. Processing timé2s3 seconds for the entire image.

e Fig.5e shows a digital photograph shot under low luminasityditions, leading to the apparition of real digital noise
(poisson noise). Processed color image has 8i&x 306 and has been restoredfrt seconds (one PDE iteration),
with parameterg; = 0.2, po = 0.5, 0 = 2, dt = 120.

o Fig.5f illustrates how exaggerating the smoothing geoynedn create interesting painting effects. One PDE itematio
of (14) has been applied, with = 0.5, p» = 1.2, ¢ = 4 (which leads to an exaggeratedly smooth geom&frand
dt = 20. Processing time i86 seconds for thigd60 x 365 color image.

Note that our equation (14) is acting a as intelligent imageather. It is actually not able to perform edge enhancepasnt
divergence-based PDE’s (3) may do. This would be possilyi@ayby adding a classical shock-filter term (such as proghose
in[2, 31] for scalar images and extended in [44, 55] for mudtiued ones) to our curvature-preserving PDE formulatia@h).
Generally, this enhancement is not necessary for noisyasyguarticularly since we preserve the edges very well with o
curvature-preserving method.

5.2 Color Image Inpainting

Image inpainting is a very new and challenging applicatigmich consists in filling-in missing (user-defined) imaggioas

by guessing pixel values such that the reconstructed im#b®seks natural. Basically, the user provides one coloage
I:Q — R3 and onemaskimageM : 2 — {0,1}. The inpainting algorithm must fill-in the regions whe¥&(X) = 1,

by the mean of some intelligent interpolations. Inpaintihgprithms can be used for instance to remove various sirest

in images (scratches, logos or real objects). Pioneerirmy @wo image inpainting has been first proposed as a varidtiona
formulation by Masnou and Morel [29], followed by many PDEslked solutions [8, 9, 15, 48]. It is also worth to cite some
papers related to inpainting without use of PDE’s [19, 2&]pag others.

In this article, we see the inpainting process as a diredtagtjon of our proposed curvature-preserving PDE (14)plmng

the diffusion equation only on the regions to inpaint alldivs neighbor pixels to diffuse inside these regions : a newali
completion of the image data along isophotes directiorfais haturally done, reconstructing the missing parts ofitfage.
This kind of PDE-based inpainting technique has been alzpgsed in [8, 15, 48]. Note that it is not able to perform textu
reconstructions, and texture synthesis steps will be dometnecessary [3, 9, 56].



(e) Denoising of a digital photograph with digital noise6®). (f) Creating painting effects with over-smoothingqedures (26s).

Figure 5: Results of color image regularization using ouvature-preserving PDE’s (14).



(c) Left : Zoom of (b). Right: Reconstruction of a color image whek6% of the pixel values have been suppressed (1m01s).

Figure 6: Results of color image inpainting using our cunvetpreserving PDE (14).

e Fig.6a shows how our PDE-based inpainting technique cais&e to remove real objects from digital photographs. A
500 x 500 color image (left) is inpainted with a user-defined mask @fé)l The inpainted image (right) is obtained in
4 minutesl1 seconds, afte200 iterations of our PDE (14) with parameters = 0.001, po = 100, ¢ = 4, dt = 150.
Note thatp; << p2 encourages smoothing only along the isophote directiottsavstrength of 1 everywhere.

e Fig.6b shows an application of subtitles removing in a mdérdene. Image size i800 x 162 and the inpainted image
has been obtained afted iterations of (14), withp; = 0.001, po = 100, o = 4, dt = 50, for a total processing time
of 11 seconds.

e Fig.6c illustrates the reconstruction capabilities of oyrainting technique. Half of the pixels of3#0 x 246 color
image have been suppressed by masking them with>a 16 checkerboard-shaped mask. Then, the image is recon-
structed usind0 iterations of our PDE (14) inside the inpainting mask, widinigmeterg; = 0.001, p, = 100, 0 = 4
anddt = 50 (processing time i$ minute01 seconds).

For each inpainting result shown in this article, the itizg@tion of the pixel values inside the inpainting maskg at 0 has
been done by white noise. Actually, the inpainting algaritls not much dependent of the initialization step : the eiquat
(14) diffuses neighborhood values inside the inpaintingkmantil convergence, and there is then a strong border ttondi
We didn't see much difference between different types didhization (noise, zero-filling or linear interpolatian)



(a) Original color image

Figure 7: Comparisons of image resizing, using Neareghir (first row), Linear (second row), Bicubic (third row)dch
PDE-based (last row) interpolations.

5.3 Color Image Resizing

The inpainting technique naturally suggests that the neali interpolation implicitly performed by our regulatien PDE
(14) can be also applied to magnify images, just as a replectto classical linear or bicubic interpolations. This @nd

as follows : starting from a linear or bicubic magnificatiohaocolor image as an initialization, we apply our curvature-
preserving PDE (14) everywhere except on the pixels havkmpwn” intensity values (pixels created from the original
image points). This is actually very similar to image ingiig with a very sparse grid for the mask.

e Fig.7 illustrates one example of image resizing. An orig2@0 x 210 color image is resized by a factor2 with
classical nearest-neighbor, linear and bicubic intetpwia, then by our PDE-based technique (14). Our non-linear
regularization filter allows to remove the aliasing effagisially encountered with simple interpolation methods|evh
correctly preserving the edges of the image.

Notice that we always preserve the values of the points spamding to the original thumbnail image, so that resiziagkb
the image to its original dimension (sub-sampling) resulthe original input data.



54 Other Results & Availability
Many application results of our algorithm can be found atfttlewing web page :
http://www.greyc.ensicaen.fr/"dtschump/greycstorati on/

You can also download and test the algorithm on differentigectures. Finally, the source of the algorithm (in C++) is
available as a part of the open sou@leng Library[49].

Conclusion

We proposed a generic constrained regularization formadisle to anisotropically smooth multi-valued images withE%
while preserving natural curvature constraints. It can &edun a wide range of image processing applications, iiedud
image denoising, inpainting, interpolation among oth&tss formalism makes the link between general diffusion Riad
Line Integral Convolutions, and leads to the design of a ¥&stand efficient numerical scheme that implements the adeth
This may ease the introduction of nonlinear diffusion megimr time-critical applications in the area of multimedieedical
imaging and image processing in general.
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