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Abstract

We review recent methods based on diffusion PDE’s (Partifiéi2ntial Equations) for the purpose of multi-channel
image regularization. Such methods have the ability to $mowulti-channel images anisotropically and can presdrea t
image contours while removing noise or other undesired lrt#acts. We point out the pros and cons of the existingaequ
tions, providing at each time a local geometric interpietabf the corresponding processes. We focus then on amaleer
and generic tensor-driven formulation, able to regularnzages while specifically taking the curvatures of localgaatruc-
tures into account. This particular diffusion PDE variaattually well suited for the preservation of thin struesiand
gives regularization results where important image festwan be particularly well preserved compared to its catopgt
A direct link between this curvature-preserving equatiod a continuous formulation of the Line Integral Convolatiech-
nigue (Cabral and Leedom, 1993) is demonstrated. It allbegdesign of a very fast and stable numerical scheme which
implements the multi-valued regularization method by ssstve integrations of the pixel values along curved itdgres.
Besides, the proposed implementation, based on a foudér-é&tunge Kutta numerical integration, can be applied with a
subpixel accuracy and preserves then thin image structoweb better than classical finite-differences discretirat usu-
ally chosen to implement PDE-based diffusions. We finallisirate the efficiency of this diffusion PDE’s for multi-atinel
image regularization - in terms of speed and visual qualtyth various applications and results on color images Lidiclg
image denoising, inpainting and edge-preserving intetjmi.

Keywords : Multi-Channel Images Regularization, Anisotropic Smaagh Diffusion PDE’s, Tensor-Valued Geometry,
Denoising, Inpainting, Nonlinear Interpolation.

Preliminary Notations

- Throughout this chapter, we will representailti-channelor multi-valued imagéy a continuous functiof : Q@ — R™,
whereQ2 C R? is the definition domain of the image (basicallg & rectangléV x H) andn € N7 is the dimension of each
vector-valued image pixd(X) located aiX = (z y)T € Q. The notation/; stands for the" channelof the imagd.

Note that/; can be considered itself as a scalar-valued imlagé2 — R. Thus, we have

T

For the common case of color images, we naturallyrget 3, i.e. three vector components (R,G,B) per pixel, retrieved
respectively from the red(), green (>) and blue {s) channels of a color image

- We will also intensely us@"-order diffusion tensorsn equations described in this chapter. A diffusion terBois
assimilated to & x 2 symmetricandpositive-definitenatrix, having then two positive eigenvalugs A\, and two associated
orthonormal eigenvectons; 1 u,. Theshapeof a tensod may be seen as aillipse oriented by the vector basis L u,
and elongated by; andX., as illustrated below.
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When\,; >> A; (lenghtened ellipse), the tensbris said to beanisotropicand hasui, has its principal orientation. When
A1 = A2 = 3, the tensoD is isotropicand thus equal to a weighted version of the 2x2 identity mafgri

M=) =0 - D:ﬁﬂd:<g g)

An isotropictensorD have no privileged orientations, all vectorsRi being possible eigenvectorsbr.
- Finally, we will denote(z,,, a normalize® D Gaussian function with a standard deviatiorraf

1 IQ + y2
Ga (Ia y) = 27TO'2 exp <_ 20_2

Introduction

Obtaining regularized versions of noisy or corrupted imdgta has always been a desirable goal in the fields of computer
vision and image processing. Removing noise or scratchesdegraded images is indeed a fundamental pre-processmg s
that can possibly ease the further analysis of the imagelgatégher-level algorithms such as detectors of importarage
features (edges, corners, objects, motion,...). Thetphilicreate simplified versions of the image data is veryre@g#ng as
well, when considering the analysis of the images at maltjoiales. In a more general manner, image regularizatiameis o
of the key stage of most computer vision algorithms sincéaiy@a fundamental role for solvirilposedcomputer vision
problems [53], including restoration, segmentation,stgtion, surface reconstruction, etc. This explains wiot af image
regularization formalisms have been already proposedtaidiksl in the literature.

Perona & Malik in their pioneering work [80] in the early 9@igere the first to imagine image regularization in terms of
anisotropic diffusion PDE’s (Partial Differential Equatis). Their method, applied on scalar-valued images (ohe\zy
pixel), has particularly raised a strong interest for PC#Sdal formulations, since it succeeded in smoothing imatgeida
nonlinear way, removing the noise quite well while allowthg preservation of significant image features, such aooost
and corners (discontinuities of the signal), despite arairfformulation that has been proved later to be unstat@] 1Firstly
created to describe physical laws and natural motions ohargc objects and fluids (strings, water, wind [126]), dsffan
PDE’s had been already widely studied and interesting #t@aid results coming from the fields of physics and mathesat
have found interesting implications for the purpose of dagaularization. Actually, PDE’s are local formulationgdathus,
they are well adapted to deal with degraded images whereasof data corruption are local or semi-local too. This is no
restrictive : Gaussian noise, scratches or compressidacistare, for instance, local degradations usually entared in
digital (original or digitized) images.

Following the way opened by Perona & Malik, many authors hpr@posed variants of diffusion PDE’s for image
regularization since then, mostly for the restoration eflacvalued datasets. Important theoretical contrilmgtio this field
concern the way the classical isotropic diffusion equafftaat flow) has been extended to deal with anisotropic sniggth
[67, 80, 88, 118], how diffusion PDE’s may be seen as gradiestents of various energy functionals [9, 25, 32, 59, 85],
and the link between regularization PDE’s and the concepiooflinear scale spaces [4, 68, 72]. Extensions of these
techniques to deal with color images and more generally irobéinnel datasets have been more recently tackled in
[21, 59, 78, 88, 89, 101, 109, 110, 118, 119] (among othees)ihg to more elaborated expressions : a coupling term
between image channels generally appears in the equalidhssion equations dealing with constrained multi-dirsgmal
datasets have been also proposed, allowing to regulariagesnof unit vectors [37, 61, 79, 96], orthonormal matrices
[33, 105], positive-definite matrices [33, 104], or imag¢addefined on implicit surfaces [16, 29, 97]. Usually, thisdkif
constrained PDE’s simply get an extra constraint term add¢de corresponding unconstrained equation and will not be
discussed here.

Despite this wide range of existing constrained and uncaim&d PDE formalisms for scalar and multi-channel imagbs,
proposed methods have something in common : a nonlinealaréggation PDE such asg—{ = R locally smootheghe



image! along one or several directions of the plane that are diftesé each image point, depending on the local image
configuration. Typically, the principal smoothing dirextiis always chosen to be parallel to the image contoursltiregin
ananisotropicregularization that does not destroy the edges. This hastaresting interpretation in terms s¢ale-space

as the image data are gently regularized step-by-step,tmaons sequence of smoother imadgs is generated whereas
the evolution time of the PDE goes by. Obviously, anisotropic regularizatigoathms must let the less significant data
features disappear first (preferably noise), while ther@stiing image details (edges) are preserved as long as ¢reyne
unimportant themselves within the image [4, 68, 72, 80, 1Rbughly speaking, regularization PDE’s may be seen as
iterative and nonlinear filters that simplify the imagdditby little and minimize then the image variations (Fig.1).

g
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(@) Initial image! ;—o) (b)t =50 (c)t = 250 (d) ¢t = 1000 (e)t = 3000

Figure 1: Nonlinear regularization PDE’s and the notionmiatropic scale-space.

Note therefore that such equations generally do not copviagards a very interesting solution. Basically, the image
obtained at convergence{ oo) is constant everywhere, corresponding to an image witaoytvariations. This is indeed
the most simplified image we can obtain. To avoid this unddsiver-simplification, regularization algorithms are alsu
based on a modified PDE veloci/ = R+« (Inoisy —I) including a so-calledata fidelity termweighted by a user-defined
parameterr € R*. It avoids the expected solution (regularized image) avemence to be too different from the original
noisy image (not constant, by the way). Another classicgtbration technique is done by stopping the pure regulisiza
flow % = R after a finite number of iterations (which becomes thus arpatar of the method). Here, we are mainly
interested in the regularization terR itself rather than the one containing the fidelity teRn. For a vast mathematical
study about linear or nonlinear fidelity terms, please ref¢v1, 74, 75].

As it is clear that local and oriented image smoothing is dribekey idea used by most PDE-based regularization methods
it naturally leads to the problem of defining a coherent geioyjrfeom a multi-channel image. It must be the first aim of a
good regularization algorithm. Following this simple anghgral principle, recent contributions [109, 110, 118]pused
two different and generic PDE-based frameworks able togdegigularization processes from any given underlyinglloca
smoothing geometry. These methods have two main interestene hand, they unify a lot of previously proposed equation
into generic diffusion PDE’s and provide a local geometnieipretation of the corresponding regularizations. @nather
hand, they clearly separate the design of the smoothing gegrirom the smoothing process itself : in a first step, one
retrieves the geometry of the structures inside the imagegiglly by the computation of the so-called structuredefisid).
Then, a local geometry of the desired smoothing is definedhbyntean of a second field diffusion tensorsdepending

on the first one. Finally, one step of the smoothing procssffits performed through one or several iterations of aifipec
diffusion PDE. This procedure is repeated until the imagedsilarized enough.

In this chapter, we will first discuss the definition of a logabmetry for multi-channel images, by reviewing and cormgar
proposed solutions in the literature [20, 21, 41, 86, 11&8tfien 1). Then, we will review important works already pospd

for scalar and multi-channel image regularization withitiffusion PDE framework. These methods may be classified int
three different approaches which are (1) variational fdations, (2) divergence expressions and (3) oriented lcéqohas. We

will mainly try to focus on the interpretation of the algdmibs in terms of local smoothing (section 2). We particuladynt

out the advantages and drawbacks of each equation in resd.ciben, we focus on a very recent alternative, formulated
as a tensor-driven diffusion that regularizes multi-chenmages while taking specific curvature constraints irtooaint
(section 3). This formulation is mathematically positidriEetween previous existing equations, in a way that it soest
issues encountered with classical regularization methddseover, we show that a theoretical interpretation ofilneature-
constrained formalism exists in terms of Line Integral Galaotions which is a simple filtering technique originallyoposed

by Cabral and Leedom in [23]. This direct analogy allows theign of an explicit numerical scheme that implements the
regularization PDE by successive integrations of pixeligalalong integral lines (section 4). This iterative schaamtwo



main advantages compared to classical PDE implementationne hand, it preserves thin image structures remarkably
well, since it naturally works at a sub-pixel accuracy, fato the use of a fourth-order Runge Kutta integration. Gn th
other hand, the algorithm is able to run up to three timesfastan classical explicit schemes since it is unconditigna
stable, even for large PDE time steps. The described meth&dsdiffusion PDE'’s a generic and very efficient approach fo
solving image processing problems needing multi-chammagie regularization.

We finally illustrate this effectiveness, in terms of congtignal speed and visual quality, with results on color imeastora-
tion, color image inpainting and non-linear resizing, agaf possible applications in the area of image regulannat
(section 5).

1 Defining a Local Geometry for Multi-Channel Images

1.1 Local geometric features

As stated in the introduction, image regularization mayd®nsas a filter that reduces local pixel variations. Moreipedy,
one wants to smooth a multi-channel imdge? — R"™ while preserving its edges (discontinuities in the imaderisities),
i.e. performs a local smoothing mostly along directionshef €dges, avoiding a smoothing orthogonal to these edges. At
a first glance, a naive idea would be to apply a scalar-valagdlarization filter on each channglof the multi-channel
imagel, doing this independently for ea¢h= 1...n. But, the correlation between image channels would be &phor this
case, and it might cause important disparities in the sniegthehavior, since local smoothing directions and amgétu
could be very different from each channel to another. Suclodged regularization methods generally lead to undelsira
over-smoothing effects destroying significant edge stmestin the image.
Multi-channel image regularization is rather based on apefit image smoothing which locally uses the same smoothing
directions and amplitudes for all image channglsNaturally, this means that one has first to measurdéoibed geometnof
a multi-channel imag&. Such a geometry consists actually in the definition of thegmrtant features at each image point
X =(z,y) € Qofl:
- Two orthogonal directioné&)  0x) € S (unit vectors ofR?) directed respectively across and along the edges (gen-
erally the maximum and minimum variations of the image isté@s atX). The directiord— generally corresponds
to the edge direction, when there is one, wiiitenaturally extends the notion gfadient directionfor multi-channel
images.

- A corresponding variation norov'(X) measuring thdocal strengthof an edge. This is the extension of thector
gradient normfor multi-channel images.

In order to construct such a vector geometry, different appines have been considered so far and are detailed below.

1.2 Geometry from a scalar feature

One simple method consists in computing first a scalar infdfjg using a vector to scalar functigh: R” — R that would
ideally model thhuman perceptionf vector-valued edges. It is particularly conceivabledolor images : one may choose
for instance the lightness function (perceptual respomsieet luminance) coming from thél EL AB color base [81] :

f=L"=116g9(Y)— 16 with Y =0.2125R + 0.7154G + 0.0721B

whereg : R — R is defined by

g(s) = s if s > 0.008856
g(s) =T7.787s + 15 else
Thus, we may define a vector-valued local vector geomigtfyd, 6_} of I by choosing
VO
I and N = || VD)
0_ 16,



However, this method has two major drawbacks. First, thimisalways possible to easily define a significant functidor
multi-channel images (particularly when the number of cteis n» > 3). Second, there are mathematically no functions
f that can detect all possible vector-valued variations.iffgtance, the lightness function defined above will not He &b
detectiso-lightnessrector contours in a color image. It is the case for the im#igstiated on Fig.2 : the contours inside
the colored yin-yang symbol will not be detected by = ||V f(I)||, since f(I) is constant therein. As a consequence,
the smoothing performed here will be either isotropic oeonted in a wrong direction : the existing color edges insiae t
yin-yang symbol will be probably blurred.

(d) Color image (e) Lightness
(@) Red channeR  (b) Green channel?  (c) Blue channeB (R, G, B) (scalar) image.*

Figure 2: Using lightnesg* to detect geometry of a color image fail for iso-lightnesstoars.

1.3 DiZenzo multi-valued geometry

In order to overcome this limitation, a very elegant solntitas been proposed by Di Zenzo in [41]. He considers a multi-
channel imagd : 2 — R" as a vector field, and looks for the local variations of theteenorm||dI||2, mainly given by a
variation matrixG = (g; ;). We get:

dl =1, dz +1,dy where I, = % and I, = Z—ZIJ (e R™)
then
|d1||? = dI" dI = ||L,||? dz* + 2 IL T, dady + ||L,||? dy?
i.e.

|dI|? = dX" G dX  where G =) VI VI and dX = < iilz >
i=1

G is denoted as thstructure tensarlt sums variation contributions from each image charpélt is easy to see tha is a
2 x 2 symmetric and semi positive-definite matrix. Its coeffits(g; ;) are simply :

g1 = E?:l Iz'zz
g2=9n = i LI
g22 = E?:l Iz'zy

In the common case of color imagks- (R, G, B), G is defined as :

2 2 2
G- ( R +G2+ B2 R.R, + GGy + B, By ) )

R.R, + GGy + BBy R+ G, + B,

The interesting point abodi is that its positive eigenvalues, ,_ givethe maximum and the minimum valueg @f||? while
the orthogonal eigenvectofis andé_ are the correspondingrientationsof these extrema, and are formally given by :

g11 + g22 £ VA < 2 g12 >
Ay /o =2— =" ~ and 0., _ 2
+/ 2 =1 g22 — g11 VA @)



whereA = (g11 — g22)% + 4 g%, . The vectorg,. are normalized to the unit vector afterward.

With this simple and efficient approach, Di Zenzo opened anahtvay to deal with the local vector geometry of multi-
channel images, through the use of tivéented orthogonal basi§d; , 6_) and thevariations measureg\;,A_). A
slight variant has been proposed by Weickert in [118]. Heaaproposed to study the eigenvalues and eigenvectors of a
Gaussian-smoothed versi@h, of the structure tensds :

=> (VL VI[)«G,]  where VI, =V(I;*Ga) (3)
=1

whereG, andG,, are 2D Gaussian kernels with variances respectively equalando. User-defined parametessand

o have an influence on the smoothness of the obtained struetuser field, and by extension, on the regularity of the
retrieved vector-valued image geometry. Itis worth tocmthat eigenvalues &, are well adapted to discriminate different
geometric cases :

- When\; ~ A_ ~ 0, there are very few vector variations around the curremi®i = (x,y) : the region isalmost
flat and does not contain any edges or corners (it is the casesfardtue of the strips in Fig.3a). For this configuration,
the variation normi\" we have to define should be low.

- WhenX; > A_, there are a lot of vector variations. The current point mayolsated on &ector edg€it is the case
for the edges of the strips in Fig.3a). For this configurattba variation normiV’ should be high.

- When), ~ A_ > 0, we are located on saddle point of the vector surfaoghich can be possibly eorner structure
in the image (for instance, the intersections of the stnipEig.3a). In this casg&/ should be even higher than for
the previous configuration. Regularization algorithmsehimdeed a tendency to smooth corners fastly. A very high
variation measure estimated on corner points would attertha smoothing there, which is often a desired effect.

Actually, a lot of proposed regularization algorithms agton multi-channel images have implicitly or explicitlydeal their
smoothing behavior from these Di Zenzo's attributes. Irtipalar, three different choices of vector gradient norkihave
been proposed so far in the literature to measure vectaedalariations :

- N = /)AL, as a natural extension of the scalar gradient norm viewéueagalue of maximum variatiori20, 86, 87]
(Fig.3b and Fig.4b). This norm will not particularly give jiortance to corners compared to straight edges.

- N_ = /Ay — \_, also calledcoherence norimhave been chosen in [89, 114, 116]. Note that this norm fails
detect discontinuities that are saddle points of the veabred surface. This is illustrated on the intersecticithe
strips (Fig.3c), as well as in the center and left-right paftthe child’s eye (Fig.4c). This will mainly perturb any
regularization process that uses this norm since someeazbibrarp corners, considered as homogeneous regions, will
be probably over-smoothed.

- Ny = \/A+ + A_, also denoted by V|| is often chosen [14, 21, 78, 96, 104, 105] since it detectegdgd corners
in a good way, and is easy to compute. Indeed, it does notneeguieigenvalue decomposition@fas the other norms
did, because

Ny = ||VI|| = /tracdG) = (4)

oIV
=1

Moreover, the normV, has the interesting property of giving preferences to aearners (Fig.3d). This is very
valuable for image restoration purposes, since the smugttan be attenuated on high-curvature structures which are
classically hard to preserve.

Note that for the scalar case & 1), the structure tensor calculus reduces to :

whenn =1, [dI||? =dX G'dX where G!'=VIVIT = ( L Ly >
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Figure 3: Comparing possible vector variation nottisN_ and A, for a synthetic color image.
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Figure 4: Comparing possible vector variation notkisV_ and N, for a real color image.

In this case, the eigenvecto’&/f and the eigenvalue’si/f of Gl are:

[y vIit
S vl AL =0
associated to
vI AL = V1|2
91 = 7’] = — +
* V1]

Basically, it means that the three above defined nakfps NV and A all reduce to|| VI| in the case of scalar-valued
images, which is a desired property.

Once alocal vector geometry is defined, we can use it as a mgasnany image analysis processes involving multi-chbnne
images (not only for regularization algorithms). For imgte, color edge detection may be performed by finding thiidsko
local maxima of the\; norm (Fig.5 and [66, 103, 107]). This vector geometry corapah has also been integrated as a
measure of contours in some multi-channel image segmentatéthods [86, 87].

For all reasons given above, the nanh = /A + A_ associated to the Di Zenzo geometry is probably one of the bes
measure for detecting local variations in multi-channedg®s and will be considered as it in the next parts of thistetlnap

2 PDE-based Smoothing of Multi-Valued Images : A Review

We review and propose a classification of classical smogthethods based on diffusion PDE’s into three different ap-
proaches, related to different interpretation levels @f tegularization processes, from the most global to the foost
ones. For each section, we will start describing the origéea for scalar-valued images, then extending it for rachiannel
datasets.



(a) Color image

Figure 5: Using a vector variation norm for color edge détect

2.1 Variational methods

Contrary to the formulation of the original Perona-Malikuegjon, several methods have been proposed to apprehend the

problem of image regularization as a global minimizatioogaedure, within a variational framework. Formalisms ditect

in [9, 25, 32, 88, 118] among numerous references, congibiat define generic energy functionals measuring globajéma
variations. The idea is that minimizing adapted variatiomctionals will flatten low image variations (then graduaémove
the noise), while preserving the high ones (avoiding theathing of image contours). The formulation of thdunctionals
gathers some of these approaches in a general frameworkwascegvery unifying way to proceed :

A noisy scalar imagel,,.;sy can be regularized by minimizing the followirgfunctional :

min, B(1) = [ (191]) a0 ©)
where¢ : R — R is an increasing functiondirecting the regularization behavior and penalizinchtggadient norms. The
minimization is performed via the correspondidiffusion PDE evolutioncoming from the Euler-Lagrange equations of
E(I):

I(t:O) = Inoisy

, 6
O _ gy (20510 ©
ot (IVI]]

Different choices of functiong lead to different proposed regularization methods. Onedaly finds the simple isotropic
smoothing (equivalent to a Gaussian convolution), as thitced by Tikhonov [99], as well as the well-known Peronaikal
[80] and Total Variation (TV) anisotropic flows [85]. Lot oégularization methods acting on scalar-valued images lheae
unified by thep-function formalism (Fig.6).

Function name o(s) Reference
Tikhonov 52 [99]
Perona-Malik 1 —exp(—s?/K?) [80]
Minimal surfaces 2V1 4 s2 -2 [31]
Geman-McClure s2/(1+ s?) [46]
Total Variation s [85]
Green 2log(cosh(s)) [52]

Figure 6: List of differenty-functions and corresponding references.



A natural extension of theé-functionals for the regularization afulti-channelimagesI could consist in minimizing the
following cost functionalF' (I) measuring a global multi-channel image variation :

min E(I) = [ ¢(N(I)) dQ (7)
LQ—R" Q
whereN (I) is one of the three local variation norms defined in sectign (1

But more generally, as vector-valued images possess twinaligariation measures; and_ (eigenvalues of the structure
tensorG) contrary to a single measult& I || for scalar images, it seems rather quite natural to minimizenctional defined
by a functiony : R? — R of two variables instead of a single one. Thdunctional below is thus a more complete extension
of the ¢-function formulation for multi-channel images.

(i, B = [ 90 o ®)

The Euler-Lagrange equations of (8) can be derived, anccestitua simple form of divergence-based PDE (see Appendix A
for details about this Euler-Lagrange derivation) :

o, . (9% , o O |l oy =
T —le(|:a)\+ 0,05 + e 0_0° | VI, (i=1.n) 9)

The choice of specific cases gffunctions leads to previous vector-valued regularizatipproaches defined as variational
methods, such as the whole range of vector-vali+ghctionals [21, 78, 97] :

V(AL A-) = (VAL +Ao)

or the Beltrami flow framework [58, 59, 60, 92, 94, 93] :

DA An) =V + AT+ )

Note that this last approach is also equivalent to define thamizing functionalE(I) as a Polyakov action which is actually a
physical measure of the area of the imdigeen as aD surface embedded in(a+2)D space. This geometric interpretation
helps in understanding how functional minimization cary@aole in smoothing images by forcing them to be more regular
here by finding a minimal surface (Fig.7).

Despite the interesting global geometric interpretatibmasiational formulations, such methods clearly lacks axitbility.
Indeed, they are formulated as global minimizations preegsdespite the local geometric smoothing propertiesatteat
intrinsically desired for regularization purposes. SUEieR are obtained by the Euler-Lagrange derivation of a fional
and cannot thus be finely tuned to adapt themselves to locahgteic cases (contours, corners, etc.). Unfortunately, t
adaptability is primordial in many situations especiallyam the level of noise is high.

2.2 Divergence-based diffusion PDE’s

One level of flexibility for designing regularization PDHEias been reached with the introduction of more generic givere
expressions [9, 5, 65, 88, 118]. Basically, the idea was ptace the functiony (| VI||)/||VI|| in the divergence of the
scalar-valued PDE (6) by expressions depending on mor@ppate image features. In one hand, this gives more freedom
to design regularization PDE’s that better fit local coriatsa On the other hand, one often losesdhabal interpretatiorof

the regularization process : generally, such designedtiemsalo not correspond to a functional minimization anyenor
Historically, authors of [5] first proposed to use a diffusifunction g(|| VI * G||) depending on the convolved gradient
norm|| VI « G|, rather than simply consideringvI| as a measure of image variations, for the regularizatiorcalts-

valued images :

o~ v (gl = G, V1)

whereG,, is a2D normalized Gaussian function.

This has initially been done to ensure the well-posednesieofegularization formulations. But, it also appeared tha
allowed to respect a more coherent local diffusion geomgrinvolving alarger neighborhoodn the computation of the
local image variations that influence the smoothing pracess



]

(al) Noisy image

(b1) Restored image (b2) Corresponding surface

Figure 7: Example of image denoising by surface area miritian.

A major generalization of divergence-based equationsdalas and multi-channel images has been more recently peapo
by Weickert in [115, 116, 117, 118]. Basically, the idea dstssin considering image pixels as chemical concentratan
temperatures which diffuse with respect to some physiee rick Law and continuity equations). He proposed thiyver
generic divergence-based equation, parametrized by diielf — P(2) of 2 x 2 diffusion tensors :

Z—av VL) =1 (10)

The tensor field defines agradient fluxand controls then the local diffusion behavior of the smogtiprocess (10). Note
that they-functional formalism described in previous section (2sljust a particular case of the PDE (10) withdefined

as .
oy T, O T
D= T 0,07 + e 69T

More specifically, Weickert proposed to design the diffagiensorD for each image poirK = (z, y), by selecting its two
eigenvectorsi, v and eigenvalued;, \» as functions of the spectral elements of the smoothed steit@nsoiG, (3) such

that :
AL =0

and 3 Gf Ap =) 11)
Az = B+ (1 —B)exp (ﬁ) else

(C > 0andg € [0,1] are user-fixed parameters of the method).

10



The tensoD is computed at each image point @ = A;uu” + \ovv7’.

It is worth to notice that the tensor field is the same for all image channdls ensuring that all; are smoothed by a
common multi-channel geometnyhich takes the correlation between image channels intowat (sinceD depends on
G, ), contrary to a uncorrelated channel-by-channel approach

Weickert assumed that the tensor shape at each Koiat(z, y) of the fieldD give the preferred smoothing geometry at this
point. The idea behind the choice (11) was then :

- On almost constant regions, we have ~ A\_ ~ 0 and then we will gef\; ~ A\ ~ 3,i.e D ~ « I4. The tensoD is
then defined to besotropicin flat regions.

- Along image contours, we have
Ar>A_ >0 andasaresult, Ao > X >0

Here, the diffusion tensaD will be thenanisotropic mainly directed by the smoothed directi@n of the image
contours.

However, it is important to notice that the amplitudes armeations of the local smoothing performed by the divergence
based PDE (10) are actually not precisely defined by the eigaracteristics (shapes) of the diffusion tenBoat X. This
may lead to a smoothing behavior that is not expected, arifited by the simple following example. Suppose we want to
anisotropically smooth a scalar image 2 — R everywhere along the gradient directi 5\\ with a constant strength af
This is of course for illustration purposes, since all imdgontinuities would be destroyed by choosing such a shiogt

geometry. Intuitively, we would defin® at each poinK € ) as:

VI vi '
VX €Q, Dex) = (W) (W)

leading to the simplification of (10) as

or . 1 T . B
T div (|VI|2 VIVI VI) =div(VI) = Al

whereAl = % + giyg stands for the Laplacian d@f As noticed in [62], the evolution of this well knowreat flow equation

is similar to the convolution of the imadeby a normalized Gaussian kerr@}. with a variancer = /2 t. So, this particular
choice ofanisotropictensord) leads to arsotropicsmoothing behavior, without preferred smoothing orieatet. Note that
choosingD = I (identity matrix) would give exactly the same result : diéfat tensors field® with very different shapes
(isotropic or anisotropic) may define the same regulawrdbiehavior. Actually, the divergence is a differential igter, so
the equation (10) implicitly depends on thpatial variationsof the tensor fieldD. Clearly, the divergence equation (10)
hampers the design of a significgtintwisesmoothing behavior.

2.3 Oriented heat flows

Oriented heat flows, also named oriented Laplacians fortionconsider that a local smoothing process can be decsedpo
into two orthogonal and uni-dimensional heat flows respebtioriented along two directions; andu;, (these vectors form-
ing an orthonormal basis) associated with two smoothingliamdesc; andcs. The smoothing amplitudes and orientations
are naturally different for each image point, since theypatleemselves to the local configuration of the image (Figi®e
resulting equation is written as the sum of these two heasflow

ol
ot
whereu; andu; are unit orthogonal vectors aiag, c; > 0.

I,,4, andl,,,, denote the second derivativesbin the directionsu; andu, and their vector components are formally
defined as :

- Cl:[ulul + C2]:112112 (12)

Vi=1l.mn, I, = u’H,u; and Liyyuy = us Huy

11



whereH, is the Hessian of;, defined on each poiX € Q by

%I, 921,
I,L_ IZ wz Im
m- (- ) -( 5 ) a3

zy Tyy

(x0.y0)

Figure 8: Principle of oriented Laplacians : Two 1D smootféme done along adapted directions.

Here, the diffusion behavior is entirely defined by the krenige of the smoothing directions, u; and the corresponding
weightsc; andcs.

This formulation has been first proposed in [63, 64] for thgutarization of scalar-valued imagés with the following
choices forcq, co anduy, us :

C1 =1
and
w =y = 1% &2 = g(|[V1 * Gol)

whereg : R — R is a function decreasing  (the pixel diffusion must vanish on high gradients). It alfoapermanent
anisotropic smoothing along the edggseven on very high gradients sineg = 1 everywhere in the image. The general
formalism of oriented Laplacians (12) allows also to findestkvell-known equations, such #se mean curvature flow
% = I¢¢, Obtained withe; = 1, ¢ = 0, u; = £ andvy = 7 [39]. Note that this wasiot possibleo get with divergence-
based expressions (10). Other works for scalar image negati@n has used similar variants of this technique [24, 67

Ringach and Sapiro [89] proposed an extension of the meamitwe flowl, = I, for multi-channel images, using an
oriented Laplacian formulation (12). They naturally usked Di Zenzo attributes to incorporate informations on thdtimu
channel geometry in their proposed equation :

ol

— =gl —A)I 14

5 g(A+ ) Lo o (14)
whereg : R — R is a positive decreasing function, avoiding the smoothiilgigh gradients regions. It was one of the first
attempts to construct an oriented Laplacian PDE directiynfa local vector-valued geometry. Indeed, all chanhglre
smoothed along eommon vector edge directiavith acommon intensityDespite this great idea, some drawbacks subsist :

- The coherence normV_ = /), — \_ is used here as a measure of vector-valued variations, ir ¢odreduce
diffusion on image contours. This may not be a good choiceestome corner structures will not respond highly to
the norm\/_ , as explained in section (1), and will be then over-smoathed

12



- Inflat regions {V_ — 0), the diffusion is made along a single directitn, which is mainly directed by the noise since
no coherent structures exist in these regions. Undesixtdrieeffects result from this mono-directional smoothing
This is particularly true here, since contrary to decoupkglilarizations, vector components ai@ blendedwith
this method (the diffusions in all image channéldollow a common direction). Isotropic smoothing would benmo
adapted in order to remove noise in such flat regions.

2.4 Trace-based diffusion PDE’s

A simple generalization of oriented Laplacians have beep@sed in [101, 109, 110]. The idea relies on the use of a gener
diffusion tensor fieldI' : QO — P(2) to describe the diffusion geometry of the equation (12)eiad of separately describing
local directiond ., , 6_ and amplitudes; , c; of smoothing. Actually, the proposed equation was just aitewf the previous
PDE (12), using &raceoperator :

oI;
Vi=1,..,n, 5 = trace(TH,;) (15)
whereH; stands for the Hessian &f (13) and the tensor fiel@ is computed as :
VX € Q, T(x) = ulu{ + co ngg

Note that in this case, each chanhgdf I is also smoothed with a common tensor fidld

Actually, equations (12) and (15) are strictly equivalént, this last one makes clearly appear the separation ofrtbething
geometry (defined by the tensor fiélty from the smoothing itself. This is actually close to thedad the Weickert's method
that led to the divergence PDE (10) : the regularization fgmisimplifies now to the design of a tensor filllcadapted to the
considered application. But in the case of trace-based &M tensor field that defines the local smoothing behadsr h
the interesting property afnicity : two differenttensor fields will necessarily lead tlifferentsmoothing behaviors. Indeed,
equation (15) has a simple geometric interpretation in savfitocal filtering with oriented Gaussian kernels.

Indeed, let consider first thal is a constant tensor field. Then, it can be demonstratedibdbtmal solution of the PDE
(15) is (see Appendix B for details) :

L, =1 % G(TY) (i =1.n) (16)

() (t=0)

where * stands for the convolution operator afifi'-!) is anoriented Gaussian kernedefined by :

Tp-1
G(T:t) (X) = L exp <_X7T X

47t

m ) with X = (z )T (17)

This is in fact a generalization of the Koenderink’s idea][6&ho proved this property in the field of computer vision foe
simpler case of thesotropic diffusion tenso' = I, resulting in the well-knowiheat flowequation :%Ig' = Al.

Fig.9 illustrates three Gaussian kern€lst?) (z, ) respectively obtained with isotropic and anisotropic tead" and the
corresponding evolutions of the diffusion PDE (15) on a catmage. It is worth to notice that the Gaussian kerr@{g-)
give the classical representations of the ten3owsith ellipses. Conversely, it is clear that the tensbreepresent the exact
geometry of the smoothing performed by the PDE (15).

WhenT is not constant (which is generally the case), i.e. reptssefield? — P(2) of variable diffusion tensors, the PDE
(15) becomesonlinearbut can be viewed as the application of temporally and spatiarying local masksGT+*(X) over
the imagel. Fig.10 illustrates three examples of spatially varyingsta fieldsT, represented with fields of ellipsoids, and
the corresponding evolutions of (15) on a color image. Astithe shape of each tensar gives the exact geometry of the
local smoothing procegserformed by the trace-based PDE (15) point by point. Asréeetis not a differential operator, the
local interpretation of the smoothing process as a conwtith an oriented Gaussian mask is valid here.

In the same way that structure tensors code for each imagéXixhe main directions of the edgés as well as the edge
strengthA. + A_, the diffusion tensor field will code similarly the preferred local smoothing direct®as well as the
desired smoothing amplitudes along these directions,doh émage pixeX. Of course,T(x) must depend on the local
geometry ofl, and is thus defined from the spectral elemevits\™ andd—, 8T of the smoothed structure tens@y,. For
image denoising purposes, the choice proposed in [101,11@9 s :

1

. _ 1
‘= f(>\+a>\—) (AT F A

m W|th P1 <p2 (18)

and ¢y = f(“;%L) =
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Figure 9: Trace-based PDE’s (15) viewed as convolutionstented 2D Gaussian kernels.
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Figure 10: Trace-based PDE’s (15) with non-constant diffusensor field<T.
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wherep;, p2 € R are parameters of the proposed method.

At this point, the desired smoothing behavior is intendeleo

- If a pixel X is located on an image contoung() is high), the smoothing oX would be performed mostly along the
contour d|rect|or9 X) (smcef ) << f(f,))’ with a smoothing strength inversely proportional to tbatour strength.

- If a pixel X is located on a homogeneous regia@() is low), the smoothing oiX would be performed in all possible
directions (isotropic smoothing), sing“gf) ~ f(f_) and therT" ~ 1, (identity matrix).

This is one possible choice fgr—, £ in order to satisfy basic image denoising requirementsualby, this is quite natural
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to design a smoothing behavior from the image strudbafereapplying the regularization process itself.

The trace-based equation (15) has been a great attempti@tefhe smoothing geometry from the smoothing proces§ its
while providing a geometrical interpretation on how the sithang is performed. It proved some natural links betwee&BD
and other local filtering techniques, as the Bilateral Fitig [11, 100]. Another similar approach based on non-Gauass
convolution kernels has been also proposed for the speasie of the Beltrami Flow in [92].

But the fact that the trace equation (15) behaves locallynasiented Gaussian smoothing whose strength and orientati
directly related to the tensdF x) has a major drawback. Indeed, on curved structures (likeecs), this Gaussian behavior
is not desirable when the local variation of the edge orientatibnis high, a Gaussian filter tends tound corners, even
by conducting the smoothing only alodg. This is due to the fact that an oriented Gaussian masloisurved itself
This classical behavior is also best known as the “mean tuneflow” effect, characterized by the PD% = 0?72}2' This
problem is illustrated on Fig.11b and Fig.12b where (15) beasn applied on synthetic and real color image @hdas
been defined as (18) (thgit # 0). One can easily see how image structures are subject togha ourvature flow effect,
resulting in rounding the corners of the square in Fig.11in dlending parallel thin curved structures in Fig.12b.

To avoid this over-smoothing effect, one may try to stop tboa of the diffusion PDE on corners (by vanishing tensors
T(x) there, i.ef~ = f* = 0). But this implies the detection of curved structures orspair corrupted images, which is
generally imprecise in the presence of noise, even whemtisenDi Zenzo geometry. Conversely, image under-smoothing
on edges may occur when limiting the diffusion too much oriaeg with high intensity variations (Fig.11c). There is a
difficult trade-off between complete noise removal and @nestion of curved structures, when using trace-based $QB).

(b) Applying trace-based (c) Applying trace-based (d) Applying our con-

PDE (15), PDE (15), strained PDE (29),
Withpy = 0.5, po = 1.2 withp; = 0.9,p2 = 1.2.  withpl = 0.5, ps = 1.2.

(@) Noisy synthetic color
image

Figure 11: Problems encountered when using trace-base® PTH} on curved image structures.

Actually, this kind of regularization processes does not edout theurvatureof the smoothing directions, and by extension,
of the curvature of the image contours. Taking this cunetaito account is a very desirable goal and has motivated tinke w
presented in the sequels : in section 3, we propose a clasgefibased regularization PDE’s that smooth an infadeng a
tensor fieldT', while implicitly taking curvatures of specific integral ss ofT' into account Roughly speaking, the method
will locally filter the image withcurved Gaussian kernelghen necessary, in order to better preserve image strsctboe
comparison purposes, results of the curvature-preseegjngtion is shown on Fig.11d and Fig.12c.

2.5 Links between existing regularization methods

The link between these three formulations is generally riatat, especially for vector-valued images. Actuallyjstwell
known for the classical case gffunctional regularization o$calarimages ¢ = 1) : One can start from a regularizing
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P

(b) Applying trace-bas;d PDE .(c) Applying our constrained
(a) Image of a fingerprint (15), PDE (29),
with p; = 0.5, p2 = 1.2. with p1 = 0.5, p2 = 1.2.

Figure 12: Comparisons between trace-based PDE’s (15)amnakw curvature-preserving PDE’s (29) on a real image.

functional minimization (A) and find the corresponding diyence-based (B) and oriented Laplacians (C) formulations

@:  min [ s1911) do (19)
= (B): % = div <¢ |(|LVII|.|H) VI)
s Zo2WVD gy g,

ot IVI]

wheren = VI/||VI| and¢.Ln. Note that this regularization generally leadsatusotropic smoothingin the sense that

it is performed in privileged spatial directions with diféat weights), despite thsotropic shapeof the underlying tensor

D=2 ﬁgﬁ 1) I4 in the divergence expression. It is also worth to mentiontthia global-to-local path (from variational to

trace-based equations) can be rarely be followed in thesewarder.

For multi-channel images, this link can be also found :

(@) in, [ ) o (20)
ol _ . . _OW g gr Oy
= (B) 5 = div(DVI;) where D= W 0,01 + D 0_6t

I; n .
= (CO) %t = Ztraee ((6;;D + Q)H,)
j=1

where thed;; is the Kronecker symbolé{; = 1 wheni = j, and0 elsewhere) Q% designates &amily of n? tensors
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(i,j = 1..n), defined as the symmetric parts of the following matriBés(i.e, Q¥ = (P¥ + pii’ )/2):

PY = o VIV,
+ Oa 07 + Oy g\ vrviTa
oAy ON_ A
op T ap T T
+ 2<( . —2)6,6% + (« +8A—_)9,9_ VI VI
Wlth A, A AL, A Mg fa( A, A A A, A
a = 1+ )\+)7f27( + andﬁ: +fa(Ay, );):)\:h( +A)
and o0 sz
= - d
h=gn 2 =50

The development (A}-(B) from the functional to the divergence formulation isalktd in Appendix A. The development
(B)=(C) from the divergence to the trace-based equation islddta Appendix C. This last development initially proposed
in [109, 110] unifies a whole range of previously proposedmecalued regularization algorithms (variational andsdgence
based PDE's) into an extended trace-based equation, ceahpbseveral channel-diffusion contributiotisat have direct
geometric interpretations in terms of local filtering by Gsian kernels. Though the geometric interpretation of trezadl
sum of trace equations is not direct, it is interesting totsa¢additional diffusion tensor€® clearly appear in the trace
expressions, and contribute to modify the inner ted3pwhich is finally not representative of the smoothing bebawWlore
generally, tensors appearing in traces and divergencesajnead to different smoothing behaviors.

3 Curvature-Preserving PDE’s

The framework ofturvature-preserving PDE dirst introduced in [102] defines a specific variant of mahiannel diffusion
PDE's. Its goal is to provide a generic tensor-driven regeddion method as the divergence-based PDE (10) and based
PDE (15), but also focuses on the preservation of thin custeattures. We review this very efficient formalism and show
how it can be understood from a local smoothing geometry pasit.

3.1 The single direction case

To illustrate the general idea of curvature-preserving BD&e first focus on image regularization along/ector field

w : Q) — R? instead of a tensor field. We consider then a local smoothing everywhere along aes:mgdzcuon” T with
a smoothing strengtfiw||. We denote the two spatial componentsoby wx), = (ux) v(x))*.
Thecurvature-preservingegularization PDE that smoothkalongw is defined by :
oI,
Vi=1,...,n, o trace(ww’ H;) + VI Jyw (21)

wherel,, stands for the Jacobian ef , andH; is the Hessian of;.

ou  du o1, 22,

ox Oy Ox? Oxdy
Jw = and H; =

v Ov 9L, 9L

Oz Oy Ox0y oy?

The PDE (21) adds a terRiI} J,, w to the trace-based equation (15) that smoofreengw with locally oriented Gaussian
kernels (see section 2.4). This extra term naturally dependhe variation of the vector fielst. Let us explain how (21) is
related tow.

Let C(’;) be the curve defining thiategral curveof w, starting fromX and parametrized by € R :

CO) = X

(22)
ack
e = w(CE)
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Whena — +oco the integral curv@x) is trackedforward, andbackwardwhena — —oo (Fig.13). We denote by the
family of integral curves ofw.
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vPTIN P rr2p i 2 7
LR 202 b R S A B A R S
Lk S N .
o (b) xmpleoflntegralcurveswhewnstheIowestelgenvector
(a) Integral curve of a general field. of the structure tensd& of a color imagel (one block is one

color pixel).

Figure 13: Integral curvé® of a vector fieldw : Q — R2.

A second-order Taylor development(qﬁ) arounda =0is :

acx n? 9*C
X X (a) (a) 3
Ch = Cot+hZ . 2 Fa famo T O

h2
= X+ hW(x) + 5 JW(X)W(X) =+ 0(h3)

with » — 0, andO(h™) = h™ ¢,. Then, we can compute a second-order Taylor developmeh(@@fL)) arounda = 0,
which corresponds to the variations of the image intensigr & when following the integral curvéX :

2

h
Ii(C(),i)) = I; (X + hW(X) + > JW(x)W(X) + O(h3)>

h h?
= Ii(X) + hVIi{X) (W(X) + 5 JW(X)W(X)) + Etrace(w(x)wfx)Hi(x)) + O(h3)

The term trac{w(x)w(Tx)Hi(x)) = % corresponds to the second directional derivativé; @longw.

The second derivative of the functian— I; (C( )) ata = 0is then:

P21,(CX)
"\ 7(a) _ 1 X
ey = m h2 L [ + ek, - 20
= ,11111 72 |:h2 VITJW(X) wW(x) + h? traCG(W(X)W{X)Hi(x)) + O(h3)]
= trace(w(x)w{x)Hi(x)) + VIiTJW(x>W(X) (23)

Note that this is exactly the right term in the proposed cumepreserving PDE (21).
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Actually, (21) can be seen individually for all integral was of 7 instead of each poiniX € Q : consider another point
Y € CX. Then, there exist € R such thaty = C(’E). Indeed,CX andCY describe the same curve (22) with different

. . - oL (clty) ’L,(Ccky) . .
parametrization ¥a € R, CY¥, =C%,,. As(21)is verified orlY, then—; lame = ~ Bz |a=c' 1HIS IS ObViOUSly

true fore € R since (21) is verified for all poinf¥” lying on the integral curvéX. Then, the PDE (21) may be also written
as:

aIZ(C(a)) _ aQIz(C(a))
ot T da?
We may recognize in (24) ane-dimensional heat flow constrained ©n This is actually very different from a heat-flow
orientedby w, as in the formulatior% = gif;' since thecurvatures of integral curves of are now implicitly taken
into account In particular, the constrained equation (21) has the éstarg property to vanish when image intensities are
perfectly constant on the integral curéewhatever the curvature ¢fis. In this context, defining a fields that is tangent
everywhere to the image structures will allow the presémeaaf these structures, even if they are curved (such asecgxn
This is not the case with divergence or trace-based PDE}((B). This curvature-preserving property of (21) isstiated
on Fig.11d and Fig.12b.
The constrained equation (21) is altiptic PDE since the matrixvw” is positive definite. The existence and unicity of the
solutions of (21) are not directly approached here. Anywagection 3.2, we show that its solution can be approximbyed
the technigue of Line Integral Convolutions, which is a wedlsed analytical approach.

VC € F, Ya € R, (24)

3.2 Curvature-Preserving PDE’s and Line Integral Convoluions

Line Integral Convolutions (LIC) have been first introduded23] as a technique to render a textured imagé&" that
represents a vector fielt : O — R2. The idea, originally expressed under a discrete formuasists in smoothing an
imageI™°is¢ - containing only noise - by averaging its pixel values altimg integral curves ofv. Actually, a continuous
formulation of a LIC is then :

+oo
vX €, I(L)é)c = N / Inolse (C ) (25)
wheref : R — R is an even function (strictly decreasing@oon R*) andC* is defined as théntegral curve(22) of
w throughX. The normalization factoV allows the preservation of the average pixel value aléfgand is equal to

N = f+oo dp

As noticed in section 3.1, the curvature-preserving PDE ¢ah be seen as the one-dimensional heat flow (24) conglraine

on the integral curvé® < F. Using the variable substitutidin,) = I( (a)) (24) can be also written # '('a) The
solutionL!" at timet is known to be the convolution d*=°! by a normalized Gaussian kerr@| (see [39, 62]) :
[t +oo 1 p2
L(a) = . (p) Gt (a—p) dp with Gt(p) = \/ﬁ exp _E (26)

SubstitutingLL in (5.4) witha = 0, and remembering tha‘ﬁé) =X andGy(_p) = Gy

+oo
VX € Q, IE’;]() = / 1= ) Gy, dp (27)

The equation (27) is a particular form of the continuous b&ed formulation (25) with a Gaussian weighting function
f = Gy. Here, the normalization factor i§ = ff;o Gi(p) dp = 1. Intuitively, the evolution of the curvature-preserving
PDE (21) may be seen as the application of local convolutiynsormalized one-dimensional Gaussian kerradtsg
integral curveg of w. This kind of anisotropic image smoothing considers thearaedfiltering, instead of just an oriented
one.

Applying this setting on a multi-channel imagewith w being the lowest eigenvector of the structure tensor fi&l¢.e.

the contour direction) allows the anisotropic smoothind efith edge preservation, even if these edges are curved. This
is illustrated on Fig.13b, where few integral liné¥ are computed, around a typical T-junction structure. Nate the
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streamlines rotate when arriving at the junction, with a-piXel precision. The streamlines have been computed with a
4™_order Runge-Kutta scheme.

Note that (27) is an analytical solution of (21) whendoes not evolve over timéThis property is generally not verified
when dealing with general nonlinear regularization PDi#&kere the smoothing geometry is re-evaluated at each tiepe st
(thus defining a temporal non-linearity). In order to getaitthis kind of non-linearity, we will then to perform sevéra
successive iterations of the LIC scheme (27), where theovéield w is updated at each iteration. This is actually a good
way of approximating (21). Classical explicit schemes Ugumnsider the smoothing geometw as constant between
two successive PDE iteratioi§ andIl*+4!. Thus, the curvature-preserving equation (21) will be ifitty discretized by
several iterations of the LIC formulation (27). This will detailed in section 4.

3.3 Between Traces and Divergences

We illustrate here how the curvature-preserving PDE (21y braregarded compared to trace and divergence expressions
(10), (15), for the case of single direction smoothifig= ww?’.
In this case, the divergence PDE (10) may be developed as :

_ _ uQ%—l—uU%—Z
div(ww” VL) = div
oL, | ,2 9L
uvg—i—v By
. . . 2u%+ug—;+vg—;
2 i i 2 i T
(u 8x2+ uv8x8y+v 3y2)+ E 2vg—z+u%+v%
3 3 d a
ua—g—i—va—z ua—Z—i—ua—Z
= trace(ww’H,) + VI} o 0w |+ P P
TV wgiog [T ogaog

= trace(ww' H;) + VI Jow + div(w)VIw
Thus, we recognize in these three different terms :
- The first term corresponds to the trace PDE (15), that snesddtallyI alongw, using oriented Gaussian kernels.

- The two first terms correspond to tharvature-constrainedegularization PDE (21), that smoothes locdllglongw
while taking the curvature of integral curvé®f w into account.

- The three terms together correspond to the classicalgbnee PDE (10) that performs local diffusionsIodlong
w. This last term diyw)VI!'w is mainly responsible for the perturbations of the effextvnoothing direction, as
described in section 2.2. It is not desirable for image ragzétion purposes.

Itis interesting to observe that the curvature-constiiFieE (21) is then “mathematically” positioned between thee (15)
and divergence formulations (10), and allows at the same tira full respect of the pre-defined smoothing directiens
while preserving curved images structures.

Note that we can also write the curvature-preserving PDEE42h divergence-based PDE minus a constraint term :

trace(waHi) + VI;TJWW = div (WWT VIZ-) - diV(W)VIZ-TW

Two particular cases of directions are worth studying, in the case of scalar-valued images () :

- Whenw = ”VV—I;H (isophote direction), then VITJ,w = —I, vanishing then the velocity of the curvature-
preserving evolution equation (21), by counterbalandmgttace-based term (which is nothing more thanntigan
curvature motionin this case). No smoothing will be then performed. This i#equnatural since pixel along the
isophotes have constant values, so averaging those véloekisiot modify the image. Note by comparison that the

velocity of the corresponding divergence-based exprasﬁio(wa VIi) also vanishes here.
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- Whenw = % (gradient direction), then VI7J,w = 0, and the velocity of the curvature-preserving PDE (21)
becomes simplyw, which really corresponds to a smoothing of the image albeggtadient direction (the same as
the unconstrained trace-based PDE (15)). Note by compeitisd the velocity of the corresponding divergence-based

expression ig\ [ in this case, which corresponds to an isotropic smoothineifmage, instead of an anisotropic one.

These two particular cases allows to better understandffieesshce of regularization behaviors between the traiserdence
and curvature-preserving formulations.

Note also that in case whevweis a divergence free field (i.e diw) = 0), the divergence-based PDE (10) and the curvature-
preserving formulation (21) are strictly equivalent. Tisisery rarely the case anyway.

3.4 Extension to multi-directional smoothing

In [102], the single-direction smoothing PDE (21) has bedrrmded so that it can deal with a tensor-valued geoniBtry

Q — P(2), instead of a vector-valued geometry This is important, since a diffusion tensor describes mmohe complex
smoothing behaviors than single directions. In partigulamay represents botanisotropicor isotropic regularization
behaviors. The extension of the curvature-preserving P i not straightforward : the notions of curvature anégnél
curves of tensors-valued fiel@3are not as natural as with direction fields

To tackle this problem, we proposed to locally decomposenadtedriven smoothing process into several vector-driven
smoothing processes along different orientations. Werfoste that

T T COS «x
/ aaag: dao= =1, where a, =
a=0 2 i
SN &«
Then, any2 x 2 tensorT may be written as :
2 T
T=—\/T(/ aaagda)\/f
7T a=0
whereVT = /fTuu” + /f—vv" stands for the square root @ = ftuu” + f~vv’. One can easily verify that
(vVT)? = T and(v/T)” = VT. Thus, the tensdT’ may be decomposed as :
2 (7 =
T = — / \/Taaaa\/f do
T Ja=0
2 T
= — / (VTao)(VTan)T do (28)
T Ja=0

We have split the tensdF into a sum ofatomictensors(v/Ta, )(vTa.)”, each being purely anisotropic and directed
only along the direction of the vectalTa, € R2. The equation (28) naturally suggests to decompose angrtelnisen
regularization PDE into a sum of single direction smootlpnocesses, each of them respecting the overall georietipr
instance :

- If T = I, (identity matrix), the tensor is isotropic and/ex € [0, 7], v Ta, = a,. The resulting smoothing will be
then performed in all directions, of the plane with the same strength.

- If T = uu” (whereu € S?), the tensor is purely anisotropic anter € [0, 7], vV Tao = (u”a,)u. The resulting
smoothing will be then performed only along the directioaf the tensofT.

Then, using (28) and considering that each single directinaothing must be done with a curvature-preserving approac
(21), we end up with the following curvature-constraineglarization PDE, acting on a multi-channel imdgeQ2 — R"
and driven by a tensor-valued smoothing geomdtry

oL, _ 2 / trace((\/Taa)(\/Taa)THi) + Vit Jﬁaaﬁaa do
a=0

Vi=1,...
! et ot w
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which can be simplified as :

I 2 "
Vi=1,...,n, %t — tracdTH;) + ;wf / _OJ T, VTaq da (29)

o=

wherea,, = (cosa sina)7, andJﬁaa stands for the Jacobian of the vector fi€ld— /Ta,. Note that this kind of
smoothing decomposition along all orientations of the plean be also found in [113]. As in the single direction smimgth
case, (29) may be seen as a trace-based equation (15), whexgaterm has been added in order to respect the curvature
of all integral lines passing through the tensor-valuechgetoy T.

4 Implementation considerations

In order to implement the regularization method (29), one banefit from the LIC-based interpretation of curvature-
preserving PDE’s presented in section 3.2. Indeed, we galicily discretize (29) by the following Euler scheme :

odt ("=
ittt — gt . = R(VTa,
+5 k; (VTaa)

wherea = k7 /N (in the intervall0, 7]), dt is the usual temporal discretization step &v) represents a discretization of
the mono-directional smoothing PDE velocity (21) that pree curvatures along a vector fiedd If we write this expression

as :Ilt+dt = L (fo:—ol I + 24t R(\/Taa)), we may express it as the averaging of different Gaussiawiged LIC's
along vector fields/Ta,, :

N-1

1
[t+dt] _ L [t]
I - N (; ILIC(\/Taa)> ’
=0

where each Gaussian variance has a standard devi#tion
Basically, the difficulty here is the LIC computation, whisbeds the tracking of integral curves of a vector field. Hex,
used a very simple method based on the classical Runge-83ftantegration scheme. Faster LIC implementations have
been proposed in [95] but do not deal with Gaussian pondéuimgfions, as needed here.

This simple observation leads then to the following fasbetgm for the implementation of one iteration of the curwat
preserving PDE (29) :

- Compute the smoothed structure tensor fi@lg from I(*!
arl! ? arl arl
n ox ox oy

Go = Go Z [ [ 1 2
P o1l o1l a1l
ox oy dy

o will depend on the noise scale. We used relatively low va{besveer) and1.5) for our experiments in section 5.

Compute the eigenvalues , A\~ and eigenvectorg', 6~ of G,.

Compute the smoothing geometry tensor fi€elffom G, : T = m 0-60-" + m o+o+"

For all« in [0, 7] (discretized with a user-fixed step) :

- Compute the vector fieldr = VT a,.
- Perform a Line Integral Convolution @ alongC* in the forward and backward directions.

Average all LIC’s computed in step 4.

The main parameters of the algorithm akeps, o, dt and the number of PDE iteration$ that are applied. The character-
istics of this scheme, compared to the classical finiteediffice one is :
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- It allows the preservation of thin image structures fromuanerical point of view : the smoothing is performed along
integral curves ofv, with a sub-pixel accuracy. Preci$® Runge-Kutta interpolation [83] is used to track the intégra
curvesC in the image.

- It allows to choose very large time stegis since the scheme we proposed is unconditionally stableéedd,dt is
simply proportional to the overall smoothing variance & Gaussian-pondering convolutions done al6rg F.

- As a result, the regularization algorithm performs verstfaery few iterations are necessary to get the result, even
if each iteration is more time-consuming. For our applimasi presented in section 5, we were even able to choose
only nb = 1 iteration with very large time step&. In fact, this leads to a rough approximation of (29), sineel@st
the temporal non-linearity property of the PDE. But for irmagvith few noise, this gave surprisingly good results.
Actually, the spatial non-linearity seems to play a moreantgnt role than the temporal non-linearity in the PDE
evolution.

The smoothing is done as an averaging of multiple LIC’s ifiedlént directionsy. The choice of the discretization stép

is important in this context. Actually, in regions where 8reoothing needs to be mostly anisotropic, only few valuas of
are necessary since in all cases, the smoothing will be diomg the same single direction. But in homogeneous regions
needing isotropic smoothing, a smalt&r will give much better results. Practically speaking, wesdg, = 45° which is
enough to get a good precision for isotropic smoothing.

On Fig.14, we illustrate the efficiency of the scheme, corapo the classical finite-difference one. A synthetic naisgge

is anisotropically smoothed with the PDE (29), wjth = 0.01 andp, = 100 (smoothing mostly along isophotés, with

a strength ofl). The LIC-based scheme (Fig.14c) clearly better presettvestructure along time This is due to the
important role played by the sub-pixel accuracy properthefunderlying LIC computation.

(b) Regularization using a finite-
(a) Noisy color image. difference  scheme (stopped at

(c) Regularization using the LIC-based

t = 100). scheme (stopped at= 100).

Figure 14: Comparisons between classical explicit PDEmelse and LIC-based implementation of the PDE (29).

5 Applications

We illustrate the wide variety of problems that can be tatklg the regularization PDE’s proposed throughout this tdrap
Particularly, we use the curvature-preserving regultidrapproach described in section 3 in the following exaraptieal-
ing with color images. We show results of color image demgjsinpainting and resizing by nonlinear interpolationvesi
processing time have been obtained on a 2.8Ghz i686 Inteépsor.

5.1 Colorimage denoising and artifacts removal

Image denoising is of course a direct application of regzédion methods. Sensor inaccuracies, digital quantifinator
compression artifacts are indeed some of the various noisees that can affect a digital image, and suppressing them
a desirable goal. It generally leads to small random vamatithat affect pixels of the image and that must be removed.
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In Fig.15-19, we illustrate how the curvature-preservimEFframework (29) can be successfully applied to remove such
artifacts while preserving the essential structures optioeessed images.

- Fig.15 shows an application of the regularization methothe famou$12 x 512 “Baboon” color image, artificially
degraded by adding uncorrelated Gaussian noig&o6, B). This color image has been then denoised with equation
(29). Thanks to the proposed LIC-based numerical impleatemt, only one PDE iteration has been necessary to
denoise the image, with parametgis= 0.5, p, = 0.7, ¢ = 1.5 anddt = 50. Processing time i$9.3 seconds for the
entire image.

Fig.16 illustrates a real case where a color photograplbéas digitized from a grainy paper, leading to the apparitio
of watered effects on the digital picture. Using the PDEedaegularization method (29) allows to clearly remove
the grains while preserving quite fine structures (palmleaés). Shown image is 852 x 133 portion of the original
one. Only one PDE iteration has been necessary,pyith 0.5, po = 0.7, 0 = 1 anddt = 10. Processing time i$1
seconds for the entire image (Siz&6 x 367).

- Fig.17 shows the restoration of a digital photograph simoten low luminosity conditions by a cellular phone. Such
devices have usually poor quality cameras, leading to tparépn of important digital noise (more precisely, Poiss
noise) on the acquired color images. Processed color imaga kize 0262 x 280 and has been restoreddrseconds
(one PDE iteration), with parameteps = 0.2, po = 0.5, 0 = 2, dt = 120. Note how the curvature-preserving
PDE (29) is able to adapt itself locally to the multi-chaninghge geometry, in order to preserve thin structures while
removing the noise quite well.

- Image regularization can also be useful when dealing wlikidypes of noise. The enhancement of JPEG-compressed
image is such an example of interest. Fig.18 illustrate tippression of compression artifacts in color images. A
JPEG compressed color image of st83 x 249, where the JPEG quality ratio has been sdi)% is processed by the
multi-channel image regularization algorithm. Usual lleffects inherent to the DCT compression are visible on the
compressed image. One PDE iteration is applied then,wyits 0.5, po = 0.9, 0 = 2, dt = 200, in order to get the
regularized result (right). Processing time&ig¢ seconds for the entire image.

- Fig.19 illustrates another regularization with a diffietréype of noise. This time, the regularization method isduse
improve a digital true-color image quantified266 colors by the Floyd-Steinberg algorithm (si&&5 x 287) which
introduces some dithering effects in the image. One PDHtitar has been applied here, with = 0.5, p; = 0.8,

o =1,dt = 30. A 136 x 118 portion of the image is shown. Processing timé2s3 seconds for the entire image.
This kind of reconstruction may be interesting for image posssion algorithms, allowing them to retrieve a true color
images, even by storing them with a quantified palette.

5.2 Colorimage inpainting

Image inpainting is a very new and challenging applicatighich consists in filling-in missing image regions (defingd b
the user) byguessing pixel valuesuch that the reconstructed image still looks natural. d2édigi the user provides one
color imagel : 2 — R3, and onemaskimageM :  — {0,1}. The inpainting algorithm must fill-in the regions where
M (X) = 1, by the mean of some intelligent interpolations. Inpaigttgorithms can be used for instance to remove various
structures in images (scratches, logos or real objectspthaisually bigger than other image artifacts. Image mpeaj has
been first proposed as a method based on a variational faiorulsy Masnou and Morel [70], followed by many solutions
based on diffusion or transport PDE’s [15, 17, 30, 109, 1t@$.also worth to cite some papers related to inpaintingpouit

use of PDE’s [38, 55], among others.

In this article, we see the inpainting process as a direcliGgijpn of the proposed curvature-preserving PDE (29). We
apply the diffusion equation only on the regions to inpaatipwing the neighbor pixels of these regions to diffusedas a
nonlinear completion of the image data along isophotetimes is thus naturally done, reconstructing the misseagspof

the image, since the performed smoothing tries to followlsecent multi-valued image geometry computed from the known
parts of the image. We illustrate the concept of inpaintirtip\WDE's in Fig.20-24.

- Fig.20 illustrates a simple case where one wants to rensxtérom a color image, by guessing the pixel colors behind
the text. The mask used here is easily detected from the diegjimmage by considering only green pixels. Result of
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Noisy color image (left), denoised image (right), detafts shown on the bottom row.

Figure 16: Denoising of the color image “Tunisia Desert@ining watered effects.
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Noisy color image (left), denoised image (right), detarts shown on the bottom row.

Figure 17: Denoising of the color image “Lolotte”, real cophotograph.
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JPEG color image (left), regularized image (right), dstaile shown on the bottom row.

Figure 18: Removing blocs artifacts from the JPEG comprksstor image “Baby”.

¥

Quantized color image (left), regularized image (righgtédls).

Figure 19: Removing quantization noise in the quantizedrdolage “Penguin”.
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the image inpainting is shown on the right. Note how struegurave been naturally completed in a coherent way. This
example also shows the limitation of the reconstructionmit€omes to reconstruct textured regions. For instance,
the algorithm has not been able to reconstruct one eye of tineaw on the left. This is anyway a very hard task, and

it is not surprising that diffusion equations that perforntydocal smoothing fail in such complex cases.

- Fig.21 shows how the PDE-based inpainting technique caaldme used to remove real objects from digital pho-
tographs. A500 x 500 color image (left) is inpainted with a user-defined mask @ey, corresponding to the region
overlapping the initial man’s glasses. The inpainted im@igt) is obtained it minutesl1 seconds, afte200 iter-
ations of the PDE (29) with parameters = 0.001, p = 100, 0 = 4, dt = 150. Note thatp; << ps encourages
smoothing only along the isophote directions with a stremftl everywhere. Another similar example of real object
removal can be found in Fig.24, where a cage automaticadbpgiear in a color photograph of a parrot.

- Fig.22-23 illustrate the reconstruction capabilitiesoaf inpainting technique. Here, half of the pixels of twoarol
images have been suppressed by masking them with checkertlugped mask with squares of respective siBesl 6
and32 x 32. The images are then reconstructed using several itesatibthe PDE (29) applied only inside the
inpainting masks, with parameteps = 0.001, po = 100, 0 = 4 anddt = 50 This kind of application is very
interesting for image transmission within a network. It t@nused to generate coherent reconstructed images even if
corrupted network packets have been received.

For each inpainting result shown in this article, the itiz@tion of the pixel values inside the inpainting masks at 0 has
been done by white noise. Actually, the inpainting algarntis not much dependent of the initialization step : the eiquat
(29) diffuses neighborhood values inside the inpaintingknantil convergence, and there is then a strong border tiondi
We didn’t see much difference between different types dfdlization (noise, zero-filling or linear interpolatian)

5.3 Colorimage interpolation

With the same kind of techniques, one can easily perform @maggnification by edge-preserving interpolation. Stgrtin
from a linear or bicubic interpolation of a small image, ampglgting the PDE (29) on the image (excepted on the original
known pixels that form a sparse inpainting mask), we can ecgenmagnified images that have been regularized while taking
their local geometry into account. It allows to remove udat or jagging effects inherent to classical linear intdagion
techniques. This is a technique which is actually very gimib image inpainting with a very sparse grid for the inpaimt
mask.

- Fig.25 illustrates one example of image resizing. An o@diii95 x 173 color image is resized by a facter4 with
classical nearest-neighbor, linear and bicubic intetpmia, then by the PDE-based technique (29). It is quiterclea
that the non-linear regularization filter, driven by the gerageometry, allows to remove the aliasing effects usually
encountered with simple interpolation methods, while ectly preserving the small structures of the image.

Notice that the original known points of the images are abvaseserved during the regularizing PDE flow, ensuring that
resizing back the image to its original dimension (sub-dargpalways results in the original input data.

5.4 Flow visualization

We present here a last application of regularization PDdt'sisualization purposes. Considering a 2D vector fiEldQ2 —

R2, we have several ways to visualize it. We can first use veetphcs (Fig.26) (left), but we need to subsample the field
since this kind of representation is not adapted to reptasy dense flows. A better solution is as follows. We smooth a
completely noisy (color) imagk with a regularizing flow equivalent to (29) but whéeFeis directed by the directions of,
instead of the local geometry df It means that we have to define the tensor flBlth (29) as :

1
VX eQ, D) = m]-‘]-'T (30)

This is a field of fully anisotropic tensors, each time orghélong the flowr.

This technique is in fact equivalent to using a single LIGfil23]. But it is interesting to see that when the PDE evoluti

timet goes by, a visualizatioscale-spacef F is explicitly constructed (Fig.27). Here, the used regaétion equation (30)

ensures that the smoothing of the pixels is done exactlyeimittection of the flowF. This is not the case in [13, 22, 40],
where the authors proposed a similar idea using a divergleased expression. Using similar divergence-based tgabsi

would raise a risk of smoothing the image in false directj@ssthis has been pointed out in section 2.2.
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Corrupted color image (left), inpainted image (right). &kt are shown on the bottom row.

Figure 20: Removing undesirable text in color image by amimjing method.

Original color image (left), inpainting mask (middle), aipted image (right).

Figure 21: Removing a real object in a color image by an inpagmethod.
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Original color image (left), masked color image (middlecaonstruction (right).

Figure 22: Reconstruction of 50% of a color image by an infragmethod.
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Masked color image (left), reconstruction (right).

Figure 23: Reconstruction of 50% of a color image by an infragmethod.
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Original color image (left), inpainting mask (middle), mipted image (right).

Figure 24: Removing a real object in a color image by an inpagmethod.

Conclusion

Multi-channel image regularization is a fundamental pssc& many image processing and computer vision algorithms
and it is then primordial to get a full control of this proceas well as to understand what the used equations are exactly
doing from a geometric point of view. In this chapter, we hdescribed the most classical PDE-based methods proposed
for the regularization of multi-channel images and introelia very efficient curvature-preserving framework thaegally
outperforms its competitors. This is not only due to theipatar aim of preserving fine and curved structures, but also
thanks to the proposed numerical scheme that is especfatlient since it works at a subpixel level. Clearly, this &iof
multi-channel image regularization technique can playl@airoa lot of image processing applications. The processineg,
which was one of the famous drawback of PDE-based methodstia problem anymore. All these reasons makes the
framework of multi-valued diffusion PDE’s a very good cheior image regularization purposes. This has been illtestra

in this chapter with results on color image denoising, infiag and resizing. But many other applications may benefihf

the proposed curvature-preserving framework.

It is worth to notice that other application results of thevaiure-preserving algorithm can be found at the followivep
page :

http://www.greyc.ensicaen.fr/"dtschump/greycstorati on/

The binaries of the algorithm can be also downloaded anddest different architectures, as well as the source code)(C+
which are available as a part of the open source image piliagdigary : The Cimg Library{111].
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() Thumbnail image.

=] Fe

(b) Details from the image resized by nearest-neighborpotation.

(c) Details from the image resized by linear interpolation.

=] Fe

(c) Details from the image resized by bicubic interpolation

(d) Details from the image resized by a non-linear reguédion PDE.

Figure 25: Comparisons of image resizing methods, Neawsgtibor (first row), Linear (second row), Bicubic (thirdwp
and PDE-based (last row) interpolations.
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Figure 26: Visualization of @D vector field : using arrows (left), after 5 PDE iter. (middlafter 15 PDE iter. (right).

Appendix A
In this appendix, we demonstrate how the minimization offthmetional
(i, B0 = [ 0.2 a0 (31)

can be performed by a gradient descent and its correspoR@liEglow. The Euler-Lagrange equations corresponding to the
functional (31) are :

o

, 01,
Ol = div (i=1..n) (32)

ot N

8I¢y

Actually, the vector ;2% 22-)7 can be written in a more comprehensive form.
i 0L,
From the chain-rule property of the derivation, we have :

o oAy OA_ o
oI;, oI, 0l Oy
= (33)
o Oy OA_ o
ol; oI, oI ON_

We know formally the expression§-- since the function’ is directly defined from the....
Finding thegy* and 37 is more tricky. Here is a simple way to proceed :

As the A are the eigenvalues of the structure tenGo (gx;), we may decompose its derivatives (with respedt; toand
I;,), in terms of derivatives with respect to thg :

Ot OA+ Ogm O+ 0+ Ogri
= = 4
ol;, ;391@1 ol;, and ol ; Ogr 01;, (34)

Ty
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Figure 27: Visualization scale-space generated with seguation PDE’s.
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The expressiong?:: and 89’“ are particularly simple :

3911 - 0912 - 0922 .
oL;, 2L, oL, L, oL, 0
and and
3911 - 0912 - 3922 -
oL, 0 oL, = oL, 2k
i.e (34) can be written as :
a)\i 8/\:i: 8/\:i:
ol a911 9912
— VI (35)
Oy OAt 9 Oy
or;, 0912 0922
Thus, one last obstacle remains to be crossed, that is fitigénfgrmal expressions @L
Remind that the\ . andf_. are the eigenvalues and eigenvectors of the structurertéhso
G=X\ 0,67 +2_0_6"
The derivation of this tensor, with respect to one of its fioieht g;; is :
oG oAy OX_
— = 0407 + — 0_07 36
O 3gkz * G (36)
89+ T 00_
+ 9 + A —6°
3 ki
BHT o0™
+ A0 +A_ 60—
" ogu Dgui
Moreover, as thé,. are unitary and orthogonal eigenvectors, we have :
007 00
—to, =0T T =0
0760, =0"0_ =1 g T ogm
and (37)
076_ =070, =0 ae?e_zeT%zo
O " Ogr

We first multiply the equation (36) b§L at the left, byd.. at the right, then use the properties (37). It allows highgpifia
cations, and leads to these two relations :

g 0G N r0G
Agn T gu 09k “O0gn

Equations (38) formally tell us how eigenvalues of a diftusiensolG vary with respect to a particular coefficieny of G.
Actually, this interesting property can be proved for angngyetric matrix. For instance, authors of [77] proposed alam
demonstration in a purely matrix form, leading to the sanselte They used it to deal with general covariance matrices.

L 96 _ (00
an 8922_ 0 1

0+ and (38)

Moreover in our case, the matric§q% are very simple to write :

6G_(10) ac._(o
3911 0 0 ’ 3912 1

With all these elements, we can express (35) as :

O =

Oy N
or;, oI;,
=20,07VI; and =20_0"VI (39)
Oy N
ol ol

Ty Ty
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Finally, replacing (39) in the Euler-Lagrange equation8)(and (32), gives the vector-valued gradient descent of the
functional (8) :

. Ly qio ([20 4 g 20y g
nin QU)(/\JF,)\,) aQ = 5 — 2 div <[8/\ 0,0 6A_9 0~ | VI, (40)
(fori =1..n) O
Note that (40) is a divergence-based equation such that :
(9]1' T ) 3¢ T a’l/) T
5 = div(DVI;)) where D= a)\ 0,0, + 25))\—_ 0_6-
D € P(2) is then & x 2 diffusion tensor, whose eigenvalues are :
oY _ 00
)\1 = 2K and AQ = K

associated to these corresponding orthonormal eigemgecto
u =60, and uwy=0_

It is also worth to mention that computing this gradient @esds done exactly in the same way, when dealing with image do
mains() defined in higher dimensional spac&€s¢ R? wherep > 2) More particularly, the case of 3D volume regularization
(p = 3) can be written as :

. oL _ o (100, gr, 00 2 |
I:gli%"/ﬂz/]()\l’/\%/\3) dQ) — ot —2le(|:8/\1919 8/\29292 a)\ 6‘393 VIZ

In this case, the,; » 3 are the three eigenvalues of the 3 structure tenso&, andé, » 3 are the corresponding orthonormal
eigenvectors.

Appendix B

In this appendix, we demonstrate that the solution of theegetrace-based PDE :

oL _ trace(TH,;)

Vi=1,..
LT el ot

is the convolution of the imagke
I.

L(t)

i(t=0)

« G(TY (i =1.n)
by an oriented Gaussian kerr@(™-*) defined as :

GTH(X) = % exp

it

< XTT-1X

; _ T
g > with X = (z y)

To demonstrate this, we simply derive the kernel expressidn®) in time and in space :

AG(T.t) L XTT-1xX ) XTT-1X
= — X [ e
ot Ariz P At At
and Tt
1 XTr-1xX
(T,¢) - o - A -1
VG s p( o ) T 'X
1 XTr-1xX XXTT-1
H t = - e ':[‘_1 Iy - —
G stz P < At ) < d 2 )
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whereVG(T*) andHr..) are respectively the gradient and the Hessia@'dt?).
It means that

1 XTT-1X XXTT-1
trace (T Hgerny) = ~ a2 P (— pr ) trace (Hd - T)
_ 1 o _XTT‘1X o_ XTT-1X
- T2 P 1t 2t
oG(T)
B ot
And as the convolution is a linear operation, we have
(T, + G(TD) aG(TH)
e — — sk —
ot 0 ot

= I, *trace (T Hgro)
trace (T HIiO*G(T,t))

as well as

o (Li, *GT) =1,
which tells us that the initial condition &at= 0 is coherent both for the PDE and the convolution processedime Gaussian

functionG(T:Y) is normalized. This statement is thus true for each ingtahthe PDE flow.

Appendix C

In this appendix, we develop tensor-driven divergence BDID their trace-based counterpart. Most divergencetas
regularization PDE’s acting on multivalued images havedtlewing form :

01;
ot

whereD is a diffusion tensor baseahly on first orderoperators. The fact is thd@ is often computed from the structure
tensorG = Z};l VIJ-VIJ-T and depends mainly on the spatial derivatilgsandl; . Intuitively, as the divergencdiv () =

a% + 3% is itself a first order derivative operator, we should be ablerite (41) only with first and second spatial derivatives
L, I, I;,,, I;,, andI; . Thus, it could be expressed with oriented Laplacians im émage channel; as well, i.e an

x Yy xx?

expression based on the trace oper%lg)r: trace (DHj;).

= div(DVI,) (i=1.n) (41)

We want to make the link between the two different diffusiendorsD and T in the divergence-based and trace-based
regularization PDE's, in the case whEnis not constant
ot ot

As we noticed in the previous section, these two formulatiare almost equivalent, up to an additional term depending o
thevariation of the tensor fiel :

= div (DVI;) and

= trace (TH;)

div (DVI;) = trace (DH},) + VI! div (D) (42)

wherediv () is thematrix divergence
A natural idea is then to decompose the additional t&ffl div (D) into oriented Laplaciansexpressed with additional

diffusion tensor<) in the trace operator.
For this purpose, we will consider that the divergence teixs@ defined at each poitX € 2 by

D = fi(Ap,A2) 0007 + fo(Ay, M) 0-0T  with  f10:R* =R (43)
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It means thaD is only expressed from the eigenvalugsand the eigenvectors. of the structure tensde :
G=X 0,07+ 66"

This is indeed a very generic hypothesis that is verified byntljority of the proposed vector-valued regularizatiothods,
for instance the one proposed in Appendix A :

0

fidg,A) = 0 2

oI, _ OAt
5t = div (DVI) with  (43) and

_ g

f2(AA2) = 2o

In order to develop the additional diffusion terW\Idefv (D) in the equation (42), we propose to wri2 as a linear
combination ofG andly :

D = a(A,A2)G + B(A+, A ) (44)
i.e we separate thisotropicandanisotropicparts ofD, with
_ fl()\+a A*) - f2(/\+a A*) _ )\+f2(/\+7 )\*) - )\*fl(/\Jrv )\*)
o= W and 8= T (45)
Indeed, we have
0G4 pl, = TS Ay 0407 + 2 0_67) + AefamAh (007 +6_07)
Ap — Ao A — A
1
= N o (007 Ay fr = A_f1) +0-07 (A\y fa— A_f2)]
= f10.07 + f0_07
= D O

Here we assumed that. # A_ (i.e the structure tensdk is anisotropic). Anyway, i is isotropic, one generally chooses
anisotropicdiffusion tenso too, in the divergence operator of (42), f&+, A_) = fa(A4, A_). In this case, we choose
a=0 andﬁ = fl()ur, A,)

This decomposition is useful to rewrite the matrix divergediv (D) into:
div (D) = adiv (G) + GVa + V3 (46)
and the additional term of the equation (42) would be congpage:

vITdiv(D) = trace (dfv (D) VIT )

= atrace (dfv (G) VIZ-T) (47)
+ trace (GVO&VIZ-T) (48)
+ trace (VﬁVIiT) (49)

In the following, we propose to find formal expressions of)(448) and (49).

e First, remember that the structure ten€brs defined as :

G= Zn: A

Jj=1
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We have then :

- L 2L,
div(G) = div Jo Iy )
@ = (N
B Z": 21 Ijm I ijy + 1,15,
B +2I i,
7j=1
= i( JII+IJ ))+(I IJ::: I Ijry)
j=1 Jy Jzz ) I Iﬂry I Iﬂyy
= Y ALVI;+H,VI

I
-

J

whereA; andH; are respectively the Laplacian and the Hessian of the imaggonent;.
Then, we can write the expression 47 as :

atrace (div ) Z atrace (H; [VIL,"VI14 + VI, VL") (50)

o We finally have to comput&¥ « andV 3, in the expression (48) and (49). This can be done by the deasition :

da dox B Bk
Va= g VAt g VAL and V= ST+ SV (51)

and as the\, eigenvalues of the structure ten€gy depends on thé;, and;, :
At
Vs = v
- ()

oA oA
- an < glki b gxi v )
+ 7. OA+
= L, + 5= I

ol;, “J=y Jyy

Ot

- aT,
Z Hi | axi
j=1

a1,

In Appendix A, we derived eigenvalues of a structure terowith respect to the spatial image derivatives. We ended up
with the following relation :

O\t
ot | =20.0TvI,
al,,
Then, .
Ve =Y 2H;0.01VI; (52)

J=1

We can replace (52) into the expressions of (51), in ordentbtfie spatial gradients efandg :

dax
Va = §:2H ( 0,07 + o 9+9T> VIi;
(53)
_ T T
Ve = §:2H ( 0,07 + 53— 0+0% >v1

Using (53), we finally compute the two missing parts (48) at®) of the additional ternVIfdfv (D):
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Oa

trace (GVonIiT) = Z trace <2 GH; (6)\

0,607 + oy 9T> vgwf)
j=1

O
(54)

trace (VﬁVIiT)

Ztraee (2 H; (88/\6 0,07 + 88/\6 0_ 9T) VIjVIiT)

e The final step consists in putting together the equationsgb (54), in order to express the additional tﬁtifdfv (D)
in the PDE (42).
Ilev Z trace P” (55)

where theP? are the following2 x 2 matrices :

P7 = aVII'VIy
dox Ty dax T T
+ <8)\ 0,67 K@ 0 >wjv1i G
9B \o 6T 4 96 T T
2 0,0 ——)0_6T | VI;VI; 56
+ <( ax“ +lat53-) VI;VI; (56)

Note that the indices j in the notatiorlP® do not designatéhe coefficients of a matri®, but the parameters of the family
consisting ofn? matricesP® (each of them is & x 2 matrix).

The matriced®* are symmetric, but generally not ti’ (wherei # j), since the gradient§I; andVI; are not aligned in
the general case.

Yet, we want to express the equation (55) only with symmaeitrédrices, in order to interpret it as a sum of local smoothing
processes oriented lafjffusion tensorsFortunately, the trace operator has this simple property :

A+ AT
trace (AH) = trace (%H)

where(A + AT)/2is a2 x 2 symmetrianatrix (the symmetric part oA).
Thus, we define the symmetric matric®¥/, corresponding to the symmetric parts of i€ :

g P 4 Pii”
Q= ——— (57)

and we have : .
VI'div(D) = trace (H;Q")
j=1
Finally, the divergence-based PDE (42) can be written as :

div(DVI;) =) _trace ((5;;D + Q7)H;) (58)
j=1
whered;; is the Kronecker’s symbol :
g0 iy
P11 ifi=g

This makes the link between divergence PDE’s and sums ofiatmate-based PDE’s. A direct geometric interpretation of
(58) is not direct anyway.
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