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Abstract

We review recent methods based on diffusion PDE’s (Partial Differential Equations) for the purpose of multi-channel
image regularization. Such methods have the ability to smooth multi-channel images anisotropically and can preserve then
image contours while removing noise or other undesired local artifacts. We point out the pros and cons of the existing equa-
tions, providing at each time a local geometric interpretation of the corresponding processes. We focus then on an alternate
and generic tensor-driven formulation, able to regularizeimages while specifically taking the curvatures of local image struc-
tures into account. This particular diffusion PDE variant is actually well suited for the preservation of thin structures and
gives regularization results where important image features can be particularly well preserved compared to its competitors.
A direct link between this curvature-preserving equation and a continuous formulation of the Line Integral Convolution tech-
nique (Cabral and Leedom, 1993) is demonstrated. It allows the design of a very fast and stable numerical scheme which
implements the multi-valued regularization method by successive integrations of the pixel values along curved integral lines.
Besides, the proposed implementation, based on a fourth-order Runge Kutta numerical integration, can be applied with a
subpixel accuracy and preserves then thin image structuresmuch better than classical finite-differences discretizations, usu-
ally chosen to implement PDE-based diffusions. We finally illustrate the efficiency of this diffusion PDE’s for multi-channel
image regularization - in terms of speed and visual quality -with various applications and results on color images, including
image denoising, inpainting and edge-preserving interpolation.

Keywords : Multi-Channel Images Regularization, Anisotropic Smoothing, Diffusion PDE’s, Tensor-Valued Geometry,
Denoising, Inpainting, Nonlinear Interpolation.

Preliminary Notations

- Throughout this chapter, we will represent amulti-channelor multi-valued imageby a continuous functionI : Ω → R
n,

whereΩ ⊂ R
2 is the definition domain of the image (basically a2D rectangleW ×H) andn ∈ N

+ is the dimension of each
vector-valued image pixelI(X) located atX = (x y)T ∈ Ω. The notationIi stands for theith channelof the imageI.
Note thatIi can be considered itself as a scalar-valued imageIi : Ω → R. Thus, we have

∀X = (x, y) ∈ Ω, I(X) =
(

I1(X) I2(X) ... In(X)

)T

For the common case of color images, we naturally getn = 3, i.e. three vector components (R,G,B) per pixel, retrieved
respectively from the red (I1), green (I2) and blue (I3) channels of a color imageI.

- We will also intensely use2nd-order diffusion tensorsin equations described in this chapter. A diffusion tensorD is
assimilated to a2× 2 symmetricandpositive-definitematrix, having then two positive eigenvaluesλ1, λ2 and two associated
orthonormal eigenvectorsu1⊥u2. Theshapeof a tensorD may be seen as anellipse, oriented by the vector basisu1⊥u2

and elongated byλ1 andλ2, as illustrated below.
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(

a b
b c

)

= λ1 u1u
T
1 + λ2 u2u

T
2

λ1u1

λ2u2

o

Whenλ2 >> λ1 (lenghtened ellipse), the tensorD is said to beanisotropicand hasu2 has its principal orientation. When
λ1 = λ2 = β, the tensorD is isotropicand thus equal to a weighted version of the 2x2 identity matrix Id

λ1 = λ2 = β =⇒ D = β Id =

(

β 0
0 β

)

An isotropictensorD have no privileged orientations, all vectors ofR
2 being possible eigenvectors ofD.

- Finally, we will denoteGσ, a normalized2D Gaussian function with a standard deviation ofσ :

Gσ(x, y) =
1

2πσ2
exp

(

−x
2 + y2

2σ2

)

Introduction

Obtaining regularized versions of noisy or corrupted imagedata has always been a desirable goal in the fields of computer
vision and image processing. Removing noise or scratches from degraded images is indeed a fundamental pre-processing step
that can possibly ease the further analysis of the image databy higher-level algorithms such as detectors of important image
features (edges, corners, objects, motion,...). The ability to create simplified versions of the image data is very interesting as
well, when considering the analysis of the images at multiple scales. In a more general manner, image regularization is one
of the key stage of most computer vision algorithms since it plays a fundamental role for solvingill-posedcomputer vision
problems [53], including restoration, segmentation, registration, surface reconstruction, etc. This explains why alot of image
regularization formalisms have been already proposed and studied in the literature.
Perona & Malik in their pioneering work [80] in the early 90’swere the first to imagine image regularization in terms of
anisotropic diffusion PDE’s (Partial Differential Equations). Their method, applied on scalar-valued images (one value by
pixel), has particularly raised a strong interest for PDE-based formulations, since it succeeded in smoothing image data in a
nonlinear way, removing the noise quite well while allowingthe preservation of significant image features, such as contours
and corners (discontinuities of the signal), despite an initial formulation that has been proved later to be unstable [122]. Firstly
created to describe physical laws and natural motions of mechanic objects and fluids (strings, water, wind [126]), diffusion
PDE’s had been already widely studied and interesting theoretical results coming from the fields of physics and mathematics
have found interesting implications for the purpose of dataregularization. Actually, PDE’s are local formulations and thus,
they are well adapted to deal with degraded images where sources of data corruption are local or semi-local too. This is not
restrictive : Gaussian noise, scratches or compression artifacts are, for instance, local degradations usually encountered in
digital (original or digitized) images.
Following the way opened by Perona & Malik, many authors haveproposed variants of diffusion PDE’s for image
regularization since then, mostly for the restoration of scalar-valued datasets. Important theoretical contributions in this field
concern the way the classical isotropic diffusion equation(heat flow) has been extended to deal with anisotropic smoothing
[67, 80, 88, 118], how diffusion PDE’s may be seen as gradientdescents of various energy functionals [9, 25, 32, 59, 85],
and the link between regularization PDE’s and the concept ofnonlinear scale spaces [4, 68, 72]. Extensions of these
techniques to deal with color images and more generally multi-channel datasets have been more recently tackled in
[21, 59, 78, 88, 89, 101, 109, 110, 118, 119] (among others), leading to more elaborated expressions : a coupling term
between image channels generally appears in the equations.Diffusion equations dealing with constrained multi-dimensional
datasets have been also proposed, allowing to regularize images of unit vectors [37, 61, 79, 96], orthonormal matrices
[33, 105], positive-definite matrices [33, 104], or image data defined on implicit surfaces [16, 29, 97]. Usually, this kind of
constrained PDE’s simply get an extra constraint term addedto the corresponding unconstrained equation and will not be
discussed here.

Despite this wide range of existing constrained and unconstrained PDE formalisms for scalar and multi-channel images,all
proposed methods have something in common : a nonlinear regularization PDE such as∂I∂t = R locally smoothesthe
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imageI along one or several directions of the plane that are different at each image point, depending on the local image
configuration. Typically, the principal smoothing direction is always chosen to be parallel to the image contours, resulting in
ananisotropicregularization that does not destroy the edges. This has an interesting interpretation in terms ofscale-space:
as the image data are gently regularized step-by-step, a continuous sequence of smoother imagesI(t) is generated whereas
the evolution timet of the PDE goes by. Obviously, anisotropic regularization algorithms must let the less significant data
features disappear first (preferably noise), while the interesting image details (edges) are preserved as long as they become
unimportant themselves within the image [4, 68, 72, 80, 127]. Roughly speaking, regularization PDE’s may be seen as
iterative and nonlinear filters that simplify the image little by little and minimize then the image variations (Fig.1).

(a) Initial imageI(t=0) (b) t = 50 (c) t = 250 (d) t = 1000 (e) t = 3000

Figure 1: Nonlinear regularization PDE’s and the notion of anisotropic scale-space.

Note therefore that such equations generally do not converge towards a very interesting solution. Basically, the image
obtained at convergence (t → ∞) is constant everywhere, corresponding to an image withoutany variations. This is indeed
the most simplified image we can obtain. To avoid this undesired over-simplification, regularization algorithms are usually
based on a modified PDE velocityR′

= R+α (Inoisy−I) including a so-calleddata fidelity termweighted by a user-defined
parameterα ∈ R

+. It avoids the expected solution (regularized image) at convergence to be too different from the original
noisy image (not constant, by the way). Another classical restoration technique is done by stopping the pure regularization
flow ∂I

∂t = R after a finite number of iterations (which becomes thus a parameter of the method). Here, we are mainly
interested in the regularization termR itself rather than the one containing the fidelity termR′

. For a vast mathematical
study about linear or nonlinear fidelity terms, please referto [71, 74, 75].
As it is clear that local and oriented image smoothing is one of the key idea used by most PDE-based regularization methods,
it naturally leads to the problem of defining a coherent geometry from a multi-channel image. It must be the first aim of a
good regularization algorithm. Following this simple and general principle, recent contributions [109, 110, 118] proposed
two different and generic PDE-based frameworks able to design regularization processes from any given underlying local
smoothing geometry. These methods have two main interests :on one hand, they unify a lot of previously proposed equations
into generic diffusion PDE’s and provide a local geometric interpretation of the corresponding regularizations. On the other
hand, they clearly separate the design of the smoothing geometry from the smoothing process itself : in a first step, one
retrieves the geometry of the structures inside the image (generally by the computation of the so-called structure tensor field).
Then, a local geometry of the desired smoothing is defined by the mean of a second field ofdiffusion tensors, depending
on the first one. Finally, one step of the smoothing process itself is performed through one or several iterations of a specific
diffusion PDE. This procedure is repeated until the image isregularized enough.

In this chapter, we will first discuss the definition of a localgeometry for multi-channel images, by reviewing and comparing
proposed solutions in the literature [20, 21, 41, 86, 118] (section 1). Then, we will review important works already proposed
for scalar and multi-channel image regularization within adiffusion PDE framework. These methods may be classified into
three different approaches which are (1) variational formulations, (2) divergence expressions and (3) oriented Laplacians. We
will mainly try to focus on the interpretation of the algorithms in terms of local smoothing (section 2). We particularlypoint
out the advantages and drawbacks of each equation in real cases. Then, we focus on a very recent alternative, formulated
as a tensor-driven diffusion that regularizes multi-channel images while taking specific curvature constraints into account
(section 3). This formulation is mathematically positioned between previous existing equations, in a way that it solves most
issues encountered with classical regularization methods. Moreover, we show that a theoretical interpretation of thecurvature-
constrained formalism exists in terms of Line Integral Convolutions which is a simple filtering technique originally proposed
by Cabral and Leedom in [23]. This direct analogy allows the design of an explicit numerical scheme that implements the
regularization PDE by successive integrations of pixel values along integral lines (section 4). This iterative schemehas two
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main advantages compared to classical PDE implementations: on one hand, it preserves thin image structures remarkably
well, since it naturally works at a sub-pixel accuracy, thanks to the use of a fourth-order Runge Kutta integration. On the
other hand, the algorithm is able to run up to three times faster than classical explicit schemes since it is unconditionally
stable, even for large PDE time steps. The described method makes diffusion PDE’s a generic and very efficient approach for
solving image processing problems needing multi-channel image regularization.
We finally illustrate this effectiveness, in terms of computational speed and visual quality, with results on color image restora-
tion, color image inpainting and non-linear resizing, among all possible applications in the area of image regularization
(section 5).

1 Defining a Local Geometry for Multi-Channel Images

1.1 Local geometric features

As stated in the introduction, image regularization may be seen as a filter that reduces local pixel variations. More precisely,
one wants to smooth a multi-channel imageI : Ω → R

n while preserving its edges (discontinuities in the image intensities),
i.e. performs a local smoothing mostly along directions of the edges, avoiding a smoothing orthogonal to these edges. At
a first glance, a naive idea would be to apply a scalar-valued regularization filter on each channelIi of the multi-channel
imageI, doing this independently for eachi = 1...n. But, the correlation between image channels would be ignored in this
case, and it might cause important disparities in the smoothing behavior, since local smoothing directions and amplitudes
could be very different from each channel to another. Such decoupled regularization methods generally lead to undesirable
over-smoothing effects destroying significant edge structures in the image.
Multi-channel image regularization is rather based on a coherent image smoothing which locally uses the same smoothing
directions and amplitudes for all image channelsIi. Naturally, this means that one has first to measure thelocal geometryof
a multi-channel imageI. Such a geometry consists actually in the definition of theseimportant features at each image point
X = (x, y) ∈ Ω of I :

- Two orthogonal directionsθ+(X) , θ
−
(X) ∈ S1 (unit vectors ofR2) directed respectively across and along the edges (gen-

erally the maximum and minimum variations of the image intensities atX). The directionθ− generally corresponds
to the edge direction, when there is one, whileθ+ naturally extends the notion ofgradient directionfor multi-channel
images.

- A corresponding variation normN (X) measuring thelocal strengthof an edge. This is the extension of thevector
gradient normfor multi-channel images.

In order to construct such a vector geometry, different approaches have been considered so far and are detailed below.

1.2 Geometry from a scalar feature

One simple method consists in computing first a scalar imagef(I), using a vector to scalar functionf : R
n → R that would

ideally model thehuman perceptionof vector-valued edges. It is particularly conceivable forcolor images : one may choose
for instance the lightness function (perceptual response to the luminance) coming from theCIELAB color base [81] :

f = L∗ = 116 g(Y ) − 16 with Y = 0.2125R+ 0.7154G+ 0.0721B

whereg : R → R is defined by
{

g(s) = 3
√
s if s > 0.008856

g(s) = 7.787s+ 16
116 else

Thus, we may define a vector-valued local vector geometry{N , θ+, θ−} of I by choosing














θ+ =
∇f(I)

‖∇f(I)‖

θ− ⊥ θ+

and N = ‖∇f(I)‖
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However, this method has two major drawbacks. First, this isnot always possible to easily define a significant functionf for
multi-channel images (particularly when the number of channel isn > 3). Second, there are mathematically no functions
f that can detect all possible vector-valued variations. Forinstance, the lightness function defined above will not be able to
detectiso-lightnessvector contours in a color image. It is the case for the image illustrated on Fig.2 : the contours inside
the colored yin-yang symbol will not be detected byN = ‖∇f(I)‖, sincef(I) is constant therein. As a consequence,
the smoothing performed here will be either isotropic or oriented in a wrong direction : the existing color edges inside the
yin-yang symbol will be probably blurred.

(a) Red channelR (b) Green channelG (c) Blue channelB
(d) Color image
(R, G, B)

(e) Lightness
(scalar) imageL∗

Figure 2: Using lightnessL∗ to detect geometry of a color image fail for iso-lightness contours.

1.3 Di Zenzo multi-valued geometry

In order to overcome this limitation, a very elegant solution has been proposed by Di Zenzo in [41]. He considers a multi-
channel imageI : Ω → R

n as a vector field, and looks for the local variations of the vector norm‖dI‖2, mainly given by a
variation matrixG = (gi,j). We get :

dI = Ix dx+ Iy dy where Ix =
∂I

∂x
and Iy =

∂I

∂y
(∈ R

n)

then
‖dI‖2 = dIT dI = ‖Ix‖2 dx2 + 2 ITx Iy dxdy + ‖Iy‖2 dy2

i.e.

‖dI‖2 = dXT G dX where G =

n
∑

i=1

∇Ii ∇ITi and dX =

(

dx
dy

)

G is denoted as thestructure tensor. It sums variation contributions from each image channelIi. It is easy to see thatG is a
2 × 2 symmetric and semi positive-definite matrix. Its coefficients (gi,j) are simply :























g11 =
∑n

i=1 I
2
ix

g12 = g21 =
∑n

i=1 IixIiy

g22 =
∑n

i=1 I
2
iy

In the common case of color imagesI = (R,G,B), G is defined as :

G =

(

R2
x +G2

x +B2
x RxRy +GxGy +BxBy

RxRy +GxGy +BxBy R2
y +G2

y +B2
y

)

(1)

The interesting point aboutG is that its positive eigenvaluesλ+/− give the maximum and the minimum values of‖dI‖2 while
the orthogonal eigenvectorsθ+ andθ− are the correspondingorientationsof these extrema, and are formally given by :

λ+/− =
g11 + g22 ±

√
∆

2
and θ+/− //

(

2 g12
g22 − g11 ±

√
∆

)

(2)
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where∆ = (g11 − g22)
2 + 4 g2

12 . The vectorsθ± are normalized to the unit vector afterward.
With this simple and efficient approach, Di Zenzo opened a natural way to deal with the local vector geometry of multi-
channel images, through the use of theoriented orthogonal basis(θ+ , θ−) and thevariations measures(λ+, λ−). A
slight variant has been proposed by Weickert in [118]. He rather proposed to study the eigenvalues and eigenvectors of a
Gaussian-smoothed versionGσ of the structure tensorG :

Gσ =
n
∑

i=1

[(

∇Iiα∇ITiα
)

∗Gσ
]

where ∇Iiα = ∇(Ii ∗Gα) (3)

whereGα andGσ are 2D Gaussian kernels with variances respectively equal to α andσ. User-defined parametersα and
σ have an influence on the smoothness of the obtained structuretensor field, and by extension, on the regularity of the
retrieved vector-valued image geometry. It is worth to notice that eigenvalues ofGσ are well adapted to discriminate different
geometric cases :

- Whenλ+ ≃ λ− ≃ 0, there are very few vector variations around the current point X = (x, y) : the region isalmost
flat and does not contain any edges or corners (it is the case for the inside of the strips in Fig.3a). For this configuration,
the variation normN we have to define should be low.

- Whenλ+ ≫ λ−, there are a lot of vector variations. The current point may be located on avector edge(it is the case
for the edges of the strips in Fig.3a). For this configuration, the variation normN should be high.

- Whenλ+ ≃ λ− ≫ 0, we are located on asaddle point of the vector surface, which can be possibly acorner structure
in the image (for instance, the intersections of the strips in Fig.3a). In this caseN should be even higher than for
the previous configuration. Regularization algorithms have indeed a tendency to smooth corners fastly. A very high
variation measure estimated on corner points would attenuate the smoothing there, which is often a desired effect.

Actually, a lot of proposed regularization algorithms acting on multi-channel images have implicitly or explicitly based their
smoothing behavior from these Di Zenzo’s attributes. In particular, three different choices of vector gradient normsN have
been proposed so far in the literature to measure vector-valued variations :

- N =
√

λ+, as a natural extension of the scalar gradient norm viewed asthe value of maximum variations[20, 86, 87]
(Fig.3b and Fig.4b). This norm will not particularly give importance to corners compared to straight edges.

- N− =
√

λ+ − λ−, also calledcoherence norm, have been chosen in [89, 114, 116]. Note that this norm failsto
detect discontinuities that are saddle points of the vector-valued surface. This is illustrated on the intersections of the
strips (Fig.3c), as well as in the center and left-right parts of the child’s eye (Fig.4c). This will mainly perturb any
regularization process that uses this norm since some colored sharp corners, considered as homogeneous regions, will
be probably over-smoothed.

- N+ =
√

λ+ + λ−, also denoted by‖∇I‖ is often chosen [14, 21, 78, 96, 104, 105] since it detects edges and corners
in a good way, and is easy to compute. Indeed, it does not require an eigenvalue decomposition ofG as the other norms
did, because

N+ = ‖∇I‖ =
√

trace(G) =

√

√

√

√

n
∑

i=1

‖∇Ii‖2 (4)

Moreover, the normN+ has the interesting property of giving preferences to certain corners (Fig.3d). This is very
valuable for image restoration purposes, since the smoothing can be attenuated on high-curvature structures which are
classically hard to preserve.

Note that for the scalar case (n = 1), the structure tensor calculus reduces to :

when n = 1 , ‖dI‖2 = dX G1 dX where G1 = ∇I∇IT =

(

I2
x IxIy

IxIy I2
y

)
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(a) Color checkerboard
(size40 × 40)

(b) N =
√

λ+ (c) N− =
√

λ+ − λ− (d) N+ =
√

λ+ + λ−

Figure 3: Comparing possible vector variation normsN ,N− andN+ for a synthetic color image.

(a) Color photograph
(small portion60 × 40)

(b) N =
√

λ+ (c) N− =
√

λ+ − λ− (d) N+ =
√

λ+ + λ−

Figure 4: Comparing possible vector variation normsN ,N− andN+ for a real color image.

In this case, the eigenvectorsθ1+/− and the eigenvaluesλ1
+/− of G1 are :























θ1− = ξ =
∇I⊥
‖∇I‖

θ1+ = η =
∇I
‖∇I‖

associated to







λ1
− = 0

λ1
+ = ‖∇I‖2

Basically, it means that the three above defined normsN+, N− andN all reduce to‖∇I‖ in the case of scalar-valued
images, which is a desired property.

Once a local vector geometry is defined, we can use it as a measure in many image analysis processes involving multi-channel
images (not only for regularization algorithms). For instance, color edge detection may be performed by finding thresholded
local maxima of theN+ norm (Fig.5 and [66, 103, 107]). This vector geometry computation has also been integrated as a
measure of contours in some multi-channel image segmentation methods [86, 87].
For all reasons given above, the normN+ =

√

λ+ + λ− associated to the Di Zenzo geometry is probably one of the best
measure for detecting local variations in multi-channel images and will be considered as it in the next parts of this chapter.

2 PDE-based Smoothing of Multi-Valued Images : A Review

We review and propose a classification of classical smoothing methods based on diffusion PDE’s into three different ap-
proaches, related to different interpretation levels of the regularization processes, from the most global to the mostlocal
ones. For each section, we will start describing the original idea for scalar-valued images, then extending it for multi-channel
datasets.
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(a) Color image (b) Detecting color edges with the normN+ =
√

λ+ + λ−

Figure 5: Using a vector variation norm for color edge detection.

2.1 Variational methods

Contrary to the formulation of the original Perona-Malik equation, several methods have been proposed to apprehend the
problem of image regularization as a global minimization procedure, within a variational framework. Formalisms described
in [9, 25, 32, 88, 118] among numerous references, contributed to define generic energy functionals measuring global image
variations. The idea is that minimizing adapted variation functionals will flatten low image variations (then gradually remove
the noise), while preserving the high ones (avoiding the smoothing of image contours). The formulation of theφ-functionals
gathers some of these approaches in a general framework and gives a very unifying way to proceed :
A noisyscalar imageInoisy can be regularized by minimizing the followingφ-functional :

min
I:Ω→R

E(I) =

∫

Ω

φ(‖∇I‖) dΩ (5)

whereφ : R → R is an increasing function, directing the regularization behavior and penalizing high gradient norms. The
minimization is performed via the correspondingdiffusion PDE evolution, coming from the Euler-Lagrange equations of
E(I) :



















I(t=0) = Inoisy

∂I

∂t
= div

(

φ
′

(‖∇I‖)
‖∇I‖ ∇I

) (6)

Different choices of functionsφ lead to different proposed regularization methods. One especially finds the simple isotropic
smoothing (equivalent to a Gaussian convolution), as introduced by Tikhonov [99], as well as the well-known Perona-Malik
[80] and Total Variation (TV) anisotropic flows [85]. Lot of regularization methods acting on scalar-valued images havebeen
unified by theφ-function formalism (Fig.6).

Function name φ(s) Reference
Tikhonov s2 [99]
Perona-Malik 1 − exp(−s2/K2) [80]
Minimal surfaces 2

√
1 + s2 − 2 [31]

Geman-McClure s2/(1 + s2) [46]
Total Variation s [85]
Green 2log(cosh(s)) [52]

Figure 6: List of differentφ-functions and corresponding references.
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A natural extension of theφ-functionals for the regularization ofmulti-channelimagesI could consist in minimizing the
following cost functionalE(I) measuring a global multi-channel image variation :

min
I:Ω→Rn

E(I) =

∫

Ω

φ(N (I)) dΩ (7)

whereN (I) is one of the three local variation norms defined in section (1).
But more generally, as vector-valued images possess two distinct variation measuresλ+ andλ− (eigenvalues of the structure
tensorG) contrary to a single measure‖∇I‖ for scalar images, it seems rather quite natural to minimizea functional defined
by a functionψ : R

2 → R of two variables instead of a single one. Theψ-functional below is thus a more complete extension
of theφ-function formulation for multi-channel images.

min
I:Ω→Rn

E(I) =

∫

Ω

ψ(λ+, λ−) dΩ (8)

The Euler-Lagrange equations of (8) can be derived, and reduce to a simple form of divergence-based PDE (see Appendix A
for details about this Euler-Lagrange derivation) :

∂Ii
∂t

= div

([

∂ψ

∂λ+
θ+θ

T
+ +

∂ψ

∂λ−
θ−θ

T
−

]

∇Ii
)

(i = 1..n) (9)

The choice of specific cases ofψ-functions leads to previous vector-valued regularization approaches defined as variational
methods, such as the whole range of vector-valuedφ-functionals [21, 78, 97] :

ψ(λ+, λ−) = φ(
√

λ+ + λ−)

or the Beltrami flow framework [58, 59, 60, 92, 94, 93] :

ψ(λ+, λ−) =
√

(1 + λ+)(1 + λ−)

Note that this last approach is also equivalent to define the minimizing functionalE(I) as a Polyakov action which is actually a
physical measure of the area of the imageI seen as a2D surface embedded in a(n+2)D space. This geometric interpretation
helps in understanding how functional minimization can play a role in smoothing images by forcing them to be more regular,
here by finding a minimal surface (Fig.7).

Despite the interesting global geometric interpretation of variational formulations, such methods clearly lacks in flexibility.
Indeed, they are formulated as global minimizations processes, despite the local geometric smoothing properties thatare
intrinsically desired for regularization purposes. Such PDE’s are obtained by the Euler-Lagrange derivation of a functional
and cannot thus be finely tuned to adapt themselves to local geometric cases (contours, corners, etc.). Unfortunately, this
adaptability is primordial in many situations especially when the level of noise is high.

2.2 Divergence-based diffusion PDE’s

One level of flexibility for designing regularization PDE’shas been reached with the introduction of more generic divergence
expressions [9, 5, 65, 88, 118]. Basically, the idea was to replace the functionφ

′

(‖∇I‖)/‖∇I‖ in the divergence of the
scalar-valued PDE (6) by expressions depending on more appropriate image features. In one hand, this gives more freedom
to design regularization PDE’s that better fit local constraints. On the other hand, one often loses theglobal interpretationof
the regularization process : generally, such designed equations do not correspond to a functional minimization anymore.
Historically, authors of [5] first proposed to use a diffusivity function g(‖∇I ∗ Gσ‖) depending on the convolved gradient
norm‖∇I ∗Gσ‖, rather than simply considering‖∇I‖ as a measure of image variations, for the regularization of scalar-
valued images :

∂I

∂t
= div (g(‖∇I ∗Gσ‖) ∇I)

whereGσ is a2D normalized Gaussian function.
This has initially been done to ensure the well-posedness ofthe regularization formulations. But, it also appeared that it
allowed to respect a more coherent local diffusion geometryby involving a larger neighborhoodin the computation of the
local image variations that influence the smoothing process.

9



(a1) Noisy image (a2) Corresponding surface

(b1) Restored image (b2) Corresponding surface

Figure 7: Example of image denoising by surface area minimization.

A major generalization of divergence-based equations for scalar and multi-channel images has been more recently proposed
by Weickert in [115, 116, 117, 118]. Basically, the idea consists in considering image pixels as chemical concentrations or
temperatures which diffuse with respect to some physical laws (Fick Law and continuity equations). He proposed this very
generic divergence-based equation, parametrized by a fieldD : Ω → P(2) of 2 × 2 diffusion tensors :

∂Ii
∂t

= div (D∇Ii) (i = 1..n) (10)

The tensor fieldD defines agradient fluxand controls then the local diffusion behavior of the smoothing process (10). Note
that theψ-functional formalism described in previous section (2.1)is just a particular case of the PDE (10) withD defined
as :

D =
∂ψ

∂λ+
θ+θ

T
+ +

∂ψ

∂λ−
θ−θ

T
−

More specifically, Weickert proposed to design the diffusion tensorD for each image pointX = (x, y), by selecting its two
eigenvectorsu,v and eigenvaluesλ1, λ2 as functions of the spectral elements of the smoothed structure tensorGσ (3) such
that :







u = θ+

v = θ−
and



















λ1 = β

λ2 =

{

β (if λ+ = λ−)

β + (1 − β)exp
(

−C
(λ+−λ−)2

)

else

(11)

(C > 0 andβ ∈ [0, 1] are user-fixed parameters of the method).
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The tensorD is computed at each image point as :D = λ1uuT + λ2vvT .

It is worth to notice that the tensor fieldD is the same for all image channelsIi, ensuring that allIi are smoothed by a
common multi-channel geometry, which takes the correlation between image channels into account (sinceD depends on
Gσ), contrary to a uncorrelated channel-by-channel approach.

Weickert assumed that the tensor shape at each pointX = (x, y) of the fieldD give the preferred smoothing geometry at this
point. The idea behind the choice (11) was then :

- On almost constant regions, we haveλ+ ≃ λ− ≃ 0 and then we will getλ1 ≃ λ2 ≃ β, i.eD ≃ α Id. The tensorD is
then defined to beisotropic in flat regions.

- Along image contours, we have

λ+ ≫ λ− ≫ 0 and as a result, λ2 > λ1 > 0

Here, the diffusion tensorD will be thenanisotropic, mainly directed by the smoothed directionθ− of the image
contours.

However, it is important to notice that the amplitudes and directions of the local smoothing performed by the divergence-
based PDE (10) are actually not precisely defined by the eigencharacteristics (shapes) of the diffusion tensorD atX. This
may lead to a smoothing behavior that is not expected, as illustrated by the simple following example. Suppose we want to
anisotropically smooth a scalar imageI : Ω → R everywhere along the gradient direction∇I‖∇I‖ with a constant strength of1.
This is of course for illustration purposes, since all imagediscontinuities would be destroyed by choosing such a smoothing
geometry. Intuitively, we would defineD at each pointX ∈ Ω as :

∀X ∈ Ω, D(X) =

( ∇I
‖∇I‖

)( ∇I
‖∇I‖

)T

leading to the simplification of (10) as

∂I

∂t
= div

(

1

‖∇I‖2
∇I∇IT∇I

)

= div (∇I) = ∆I

where∆I = ∂2I
∂x2 + ∂2I

∂y2 stands for the Laplacian ofI. As noticed in [62], the evolution of this well knownheat flow equation

is similar to the convolution of the imageI by a normalized Gaussian kernelGσ with a varianceσ =
√

2 t. So, this particular
choice ofanisotropictensorsD leads to anisotropicsmoothing behavior, without preferred smoothing orientations. Note that
choosingD = Id (identity matrix) would give exactly the same result : different tensors fieldsD with very different shapes
(isotropic or anisotropic) may define the same regularization behavior. Actually, the divergence is a differential operator, so
the equation (10) implicitly depends on thespatial variationsof the tensor fieldD. Clearly, the divergence equation (10)
hampers the design of a significantpointwisesmoothing behavior.

2.3 Oriented heat flows

Oriented heat flows, also named oriented Laplacians formulations consider that a local smoothing process can be decomposed
into two orthogonal and uni-dimensional heat flows respectively oriented along two directionsu1 andu2 (these vectors form-
ing an orthonormal basis) associated with two smoothing amplitudesc1 andc2. The smoothing amplitudes and orientations
are naturally different for each image point, since they adapt themselves to the local configuration of the image (Fig.8). The
resulting equation is written as the sum of these two heat flows :

∂I

∂t
= c1Iu1u1 + c2Iu2u2 (12)

whereu1 andu2 are unit orthogonal vectors andc1, c2 ≥ 0.
Iu1u1 andIu2u2 denote the second derivatives ofI in the directionsu1 andu2 and their vector components are formally
defined as :

∀i = 1..n, Iiu1u1
= uT1 Hiu1 and Iiu2u2

= uT2 Hiu2

11



whereHi is the Hessian ofIi, defined on each pointX ∈ Ω by

Hi =

(

Iixx
Iixy

Iixy
Iiyy

)

=

(

∂2Ii

∂x2
∂2Ii

∂x∂y
∂2Ii

∂x∂y
∂2Ii

∂y2

)

(13)

Figure 8: Principle of oriented Laplacians : Two 1D smoothing are done along adapted directions.

Here, the diffusion behavior is entirely defined by the knowledge of the smoothing directionsu1,u2 and the corresponding
weightsc1 andc2.

This formulation has been first proposed in [63, 64] for the regularization of scalar-valued imagesI, with the following
choices forc1, c2 andu1,u2 :











u1 = ξ = ∇I⊥
‖∇I‖

u2 = η = ∇I
‖∇I‖

and







c1 = 1

c2 = g(‖∇I ∗Gσ‖)

whereg : R → R is a function decreasing to0 (the pixel diffusion must vanish on high gradients). It allows apermanent
anisotropic smoothing along the edgesξ, even on very high gradients sincec1 = 1 everywhere in the image. The general
formalism of oriented Laplacians (12) allows also to find other well-known equations, such asthe mean curvature flow
∂I
∂t = Iξξ, obtained withc1 = 1, c2 = 0, u1 = ξ andv2 = η [39]. Note that this wasnot possibleto get with divergence-
based expressions (10). Other works for scalar image regularization has used similar variants of this technique [24, 67].

Ringach and Sapiro [89] proposed an extension of the mean curvature flowIt = Iξξ for multi-channel images, using an
oriented Laplacian formulation (12). They naturally used the Di Zenzo attributes to incorporate informations on the multi-
channel geometry in their proposed equation :

∂I

∂t
= g(λ+ − λ−) Iθ−θ− (14)

whereg : R → R is a positive decreasing function, avoiding the smoothing of high gradients regions. It was one of the first
attempts to construct an oriented Laplacian PDE directly from a local vector-valued geometry. Indeed, all channelsIi are
smoothed along acommon vector edge directionwith acommon intensity. Despite this great idea, some drawbacks subsist :

- The coherence normN− =
√

λ+ − λ− is used here as a measure of vector-valued variations, in order to reduce
diffusion on image contours. This may not be a good choice since some corner structures will not respond highly to
the normN− , as explained in section (1), and will be then over-smoothed.

12



- In flat regions (N− → 0), the diffusion is made along a single directionθ−, which is mainly directed by the noise since
no coherent structures exist in these regions. Undesired texture effects result from this mono-directional smoothing.
This is particularly true here, since contrary to decoupledregularizations, vector components arenot blendedwith
this method (the diffusions in all image channelsIi follow a common direction). Isotropic smoothing would be more
adapted in order to remove noise in such flat regions.

2.4 Trace-based diffusion PDE’s

A simple generalization of oriented Laplacians have been proposed in [101, 109, 110]. The idea relies on the use of a generic
diffusion tensor fieldT : Ω → P(2) to describe the diffusion geometry of the equation (12), instead of separately describing
local directionsθ+, θ− and amplitudesc1, c2 of smoothing. Actually, the proposed equation was just a rewrite of the previous
PDE (12), using atraceoperator :

∀i = 1, .., n,
∂Ii
∂t

= trace(THi) (15)

whereHi stands for the Hessian ofIi (13) and the tensor fieldT is computed as :

∀X ∈ Ω, T(X) = c1 u1u
T
1 + c2 v2v

T
2

Note that in this case, each channelIi of I is also smoothed with a common tensor fieldT.
Actually, equations (12) and (15) are strictly equivalent,but this last one makes clearly appear the separation of the smoothing
geometry (defined by the tensor fieldT) from the smoothing itself. This is actually close to the idea of the Weickert’s method
that led to the divergence PDE (10) : the regularization problem simplifies now to the design of a tensor fieldT adapted to the
considered application. But in the case of trace-based PDE’s, the tensor field that defines the local smoothing behavior has
the interesting property ofunicity : two differenttensor fields will necessarily lead todifferentsmoothing behaviors. Indeed,
equation (15) has a simple geometric interpretation in terms of local filteringwith oriented Gaussian kernels.
Indeed, let consider first thatT is a constant tensor field. Then, it can be demonstrated that the formal solution of the PDE
(15) is (see Appendix B for details) :

Ii(t) = Ii(t=0)
∗ G(T,t) (i = 1..n) (16)

where ∗ stands for the convolution operator andG(T,t) is anoriented Gaussian kernel, defined by :

G(T,t)(X) =
1

4πt
exp

(

−XTT−1X

4t

)

with X = (x y)T (17)

This is in fact a generalization of the Koenderink’s idea [62], who proved this property in the field of computer vision forthe
simpler case of theisotropic diffusion tensorT = Id, resulting in the well-knownheat flowequation :∂Ii

∂t = ∆Ii.
Fig.9 illustrates three Gaussian kernelsG(T,t)(x, y) respectively obtained with isotropic and anisotropic tensorsT and the
corresponding evolutions of the diffusion PDE (15) on a color image. It is worth to notice that the Gaussian kernelsG(T,t)

give the classical representations of the tensorsT with ellipses. Conversely, it is clear that the tensorsT represent the exact
geometry of the smoothing performed by the PDE (15).
WhenT is not constant (which is generally the case), i.e. represents a fieldΩ → P(2) of variable diffusion tensors, the PDE
(15) becomesnonlinearbut can be viewed as the application of temporally and spatially varying local masksGT,t(X) over
the imageI. Fig.10 illustrates three examples of spatially varying tensor fieldsT, represented with fields of ellipsoids, and
the corresponding evolutions of (15) on a color image. As before,the shape of each tensorT gives the exact geometry of the
local smoothing processperformed by the trace-based PDE (15) point by point. As the trace is not a differential operator, the
local interpretation of the smoothing process as a convolution with an oriented Gaussian mask is valid here.

In the same way that structure tensors code for each image pixel X the main directions of the edgesθ− as well as the edge
strengthλ+ + λ−, the diffusion tensor fieldT will code similarly the preferred local smoothing directions as well as the
desired smoothing amplitudes along these directions, for each image pixelX. Of course,T(X) must depend on the local
geometry ofI, and is thus defined from the spectral elementsλ−, λ+ andθ−, θ+ of the smoothed structure tensorGσ. For
image denoising purposes, the choice proposed in [101, 109,110] is :

c1 = f−
(λ+,λ−) =

1

(1 + λ+ + λ−)p1
and c2 = f+

(λ+,λ−) =
1

(1 + λ+ + λ−)p2
with p1 < p2 (18)
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Figure 9: Trace-based PDE’s (15) viewed as convolutions by oriented 2D Gaussian kernels.

Figure 10: Trace-based PDE’s (15) with non-constant diffusion tensor fieldsT.

wherep1, p2 ∈ R are parameters of the proposed method.

At this point, the desired smoothing behavior is intended tobe :

- If a pixel X is located on an image contour (λ+
(X) is high), the smoothing onX would be performed mostly along the

contour directionθ−(X) (sincef+
(.,.) << f−

(.,.)), with a smoothing strength inversely proportional to the contour strength.

- If a pixelX is located on a homogeneous region (λ+
(X) is low), the smoothing onX would be performed in all possible

directions (isotropic smoothing), sincef+
(.,.) ≃ f−

(.,.) and thenT ≃ Id (identity matrix).

This is one possible choice forf−, f+ in order to satisfy basic image denoising requirements. Actually, this is quite natural

14



to design a smoothing behavior from the image structurebeforeapplying the regularization process itself.
The trace-based equation (15) has been a great attempt to separate the smoothing geometry from the smoothing process itself,
while providing a geometrical interpretation on how the smoothing is performed. It proved some natural links between PDE’s
and other local filtering techniques, as the Bilateral Filtering [11, 100]. Another similar approach based on non-Gaussian
convolution kernels has been also proposed for the specific case of the Beltrami Flow in [92].
But the fact that the trace equation (15) behaves locally as an oriented Gaussian smoothing whose strength and orientation is
directly related to the tensorT(X) has a major drawback. Indeed, on curved structures (like corners), this Gaussian behavior
is not desirable: when the local variation of the edge orientationθ− is high, a Gaussian filter tends toroundcorners, even
by conducting the smoothing only alongθ−. This is due to the fact that an oriented Gaussian mask isnot curved itself.
This classical behavior is also best known as the “mean curvature flow” effect, characterized by the PDE∂I∂t = ∂2

I

∂θ−2 . This
problem is illustrated on Fig.11b and Fig.12b where (15) hasbeen applied on synthetic and real color image andT has
been defined as (18) (thenf− 6= 0). One can easily see how image structures are subject to the mean curvature flow effect,
resulting in rounding the corners of the square in Fig.11b, or in blending parallel thin curved structures in Fig.12b.
To avoid this over-smoothing effect, one may try to stop the action of the diffusion PDE on corners (by vanishing tensors
T(X) there, i.ef− = f+ = 0). But this implies the detection of curved structures on noisy or corrupted images, which is
generally imprecise in the presence of noise, even when using the Di Zenzo geometry. Conversely, image under-smoothing
on edges may occur when limiting the diffusion too much on regions with high intensity variations (Fig.11c). There is a
difficult trade-off between complete noise removal and preservation of curved structures, when using trace-based PDE’s (15).

(a) Noisy synthetic color
image

(b) Applying trace-based
PDE (15),
with p1 = 0.5, p2 = 1.2.

(c) Applying trace-based
PDE (15),
with p1 = 0.9, p2 = 1.2.

(d) Applying our con-
strained PDE (29),
with p1 = 0.5, p2 = 1.2.

Figure 11: Problems encountered when using trace-based PDE’s (15) on curved image structures.

Actually, this kind of regularization processes does not care about thecurvatureof the smoothing directions, and by extension,
of the curvature of the image contours. Taking this curvature into account is a very desirable goal and has motivated the work
presented in the sequels : in section 3, we propose a class of trace-based regularization PDE’s that smooth an imageI along a
tensor fieldT, while implicitly taking curvatures of specific integral curves ofT into account. Roughly speaking, the method
will locally filter the image withcurved Gaussian kernelswhen necessary, in order to better preserve image structures. For
comparison purposes, results of the curvature-preservingequation is shown on Fig.11d and Fig.12c.

2.5 Links between existing regularization methods

The link between these three formulations is generally not trivial, especially for vector-valued images. Actually, itis well
known for the classical case ofφ-functional regularization ofscalar images (n = 1) : One can start from a regularizing
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(a) Image of a fingerprint
(b) Applying trace-based PDE
(15),
with p1 = 0.5, p2 = 1.2.

(c) Applying our constrained
PDE (29),
with p1 = 0.5, p2 = 1.2.

Figure 12: Comparisons between trace-based PDE’s (15) and our new curvature-preserving PDE’s (29) on a real image.

functional minimization (A) and find the corresponding divergence-based (B) and oriented Laplacians (C) formulations:

(A) : min
I:Ω→R

∫

Ω

φ(‖∇I‖) dΩ (19)

⇒ (B) :
∂I

∂t
= div

(

φ
′

(‖∇I‖)
‖∇I‖ ∇I

)

⇒ (C) :
∂I

∂t
=
φ

′

(‖∇I‖)
‖∇I‖ Iξξ + φ

′′

(‖∇I‖) Iηη

whereη = ∇I/‖∇I‖ andξ⊥η. Note that this regularization generally leads toanisotropic smoothing(in the sense that
it is performed in privileged spatial directions with different weights), despite theisotropic shapeof the underlying tensor

D = φ
′
(‖∇I‖)
‖∇I‖ Id in the divergence expression. It is also worth to mention that this global-to-local path (from variational to

trace-based equations) can be rarely be followed in the inverse order.

For multi-channel images, this link can be also found :

(A) min
I:Ω→Rn

∫

Ω

ψ(λ+, λ−) dΩ (20)

⇒ (B)
∂Ii
∂t

= div (D ∇Ii) where D =
∂ψ

∂λ+
θ+θ

T
+ +

∂ψ

∂λ−
θ−θ

T
−

⇒ (C)
∂Ii
∂t

=

n
∑

j=1

trace
(

(δijD + Qij)Hj

)

where theδij is the Kronecker symbol (δij = 1 when i = j, and0 elsewhere) ,Qij designates afamily of n2 tensors

16



(i, j = 1..n), defined as the symmetric parts of the following matricesPij (i.e, Qij = (Pij + PijT

)/2 ) :

Pij = α ∇ITi ∇IjId

+ 2

(

∂α

∂λ+
θ+θ

T
+ +

∂α

∂λ−
θ−θ

T
−

)

∇Ij∇ITi G

+ 2

(

(α+
∂β

∂λ+
)θ+θ

T
+ + (α+

∂β

∂λ−
)θ−θ

T
−

)

∇Ij∇ITi

with
α = f1(λ+,λ−)−f2(λ+,λ−)

λ+−λ−
and β = λ+f2(λ+,λ−)−λ−f1(λ+,λ−)

λ+−λ−

and

f1 =
∂ψ

∂λ+
and f2 =

∂ψ

∂λ−
The development (A)⇒(B) from the functional to the divergence formulation is detailed in Appendix A. The development
(B)⇒(C) from the divergence to the trace-based equation is detailed in Appendix C. This last development initially proposed
in [109, 110] unifies a whole range of previously proposed vector-valued regularization algorithms (variational and divergence
based PDE’s) into an extended trace-based equation, composed of several channel-diffusion contributionsthat have direct
geometric interpretations in terms of local filtering by Gaussian kernels. Though the geometric interpretation of the overall
sum of trace equations is not direct, it is interesting to seethatadditional diffusion tensorsQij clearly appear in the trace
expressions, and contribute to modify the inner tensorD, which is finally not representative of the smoothing behavior. More
generally, tensors appearing in traces and divergences generally lead to different smoothing behaviors.

3 Curvature-Preserving PDE’s

The framework ofcurvature-preserving PDE’s, first introduced in [102] defines a specific variant of multi-channel diffusion
PDE’s. Its goal is to provide a generic tensor-driven regularization method as the divergence-based PDE (10) and trace-based
PDE (15), but also focuses on the preservation of thin curvedstructures. We review this very efficient formalism and show
how it can be understood from a local smoothing geometry viewpoint.

3.1 The single direction case

To illustrate the general idea of curvature-preserving PDE’s, we first focus on image regularization along avector field
w : Ω → R

2 instead of a tensor fieldT. We consider then a local smoothing everywhere along a single direction w

‖w‖ , with

a smoothing strength‖w‖. We denote the two spatial components ofw by w(X) = (u(X) v(X))
T .

Thecurvature-preservingregularization PDE that smoothesI alongw is defined by :

∀i = 1, . . . , n,
∂Ii
∂t

= trace
(

wwT Hi

)

+ ∇ITi Jww (21)

whereJw stands for the Jacobian ofw , andHi is the Hessian ofIi.

Jw =





∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y



 and Hi =







∂2Ii

∂x2
∂2Ii

∂x∂y

∂2Ii

∂x∂y
∂2Ii

∂y2







The PDE (21) adds a term∇ITi Jww to the trace-based equation (15) that smoothesI alongw with locally oriented Gaussian
kernels (see section 2.4). This extra term naturally depends on the variation of the vector fieldw. Let us explain how (21) is
related tow.

Let CX

(a) be the curve defining theintegral curveof w, starting fromX and parametrized bya ∈ R :










CX

(0) = X

∂CX

(a)

∂a = w(CX

(a))

(22)
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Whena → +∞ the integral curveCX

(a) is trackedforward, andbackwardwhena → −∞ (Fig.13). We denote byF the
family of integral curves ofw.

(a) Integral curve of a general fieldw.
(b) Example of integral curves whenw is the lowest eigenvector
of the structure tensorG of a color imageI (one block is one
color pixel).

Figure 13: Integral curveCX of a vector fieldw : Ω → R
2.

A second-order Taylor development ofCX

(a) arounda = 0 is :

CX

(h) = CX

(0) + h
∂CX

(a)

∂a |a=0
+
h2

2

∂2CX

(a)

∂a2 |a=0
+O(h3)

= X + hw(X) +
h2

2
Jw(X)

w(X) +O(h3)

with h → 0, andO(hn) = hn ǫn. Then, we can compute a second-order Taylor development ofIi(CX

(a)) arounda = 0,

which corresponds to the variations of the image intensity nearX when following the integral curveCX :

Ii(CX

(h)) = Ii

(

X + hw(X) +
h2

2
Jw(X)

w(X) +O(h3)

)

= Ii(X) + h∇IiT(X) (w(X) +
h

2
Jw(X)

w(X)) +
h2

2
trace

(

w(X)w
T
(X)Hi(X)

)

+O(h3)

The term trace
(

w(X)w
T
(X)Hi(X)

)

= ∂2Ii

∂w2 corresponds to the second directional derivative ofIi alongw.

The second derivative of the functiona→ Ii(CX

(a)) ata = 0 is then :

∂2Ii(CX

(a))

∂a2 |a=0
= lim

h→0

1

h2

[

Ii(CX

(h)) + Ii(CX

(−h)) − 2Ii(CX

(0))
]

= lim
h→0

1

h2

[

h2 ∇ITi Jw(X)
w(X) + h2 trace

(

w(X)w
T
(X)Hi(X)

)

+O(h3)
]

= trace
(

w(X)w
T
(X)Hi(X)

)

+ ∇ITi Jw(X)
w(X) (23)

Note that this is exactly the right term in the proposed curvature-preserving PDE (21).
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Actually, (21) can be seen individually for all integral curves ofF instead of each pointX ∈ Ω : consider another point
Y ∈ CX. Then, there existǫ ∈ R such thatY = CX

(ǫ). Indeed,CX andCY describe the same curve (22) with different

parametrization :∀a ∈ R, CY

(a) = CX

(ǫ+a). As (21) is verified onY, then
∂Ii(CX

(a))

∂t |a=ǫ =
∂2Ii(CX

(a))

∂a2 |a=ǫ. This is obviously

true forǫ ∈ R since (21) is verified for all pointsY lying on the integral curveCX. Then, the PDE (21) may be also written
as :

∀C ∈ F , ∀a ∈ R,
∂Ii(C(a))

∂t
=
∂2Ii(C(a))

∂a2
(24)

We may recognize in (24) aone-dimensional heat flow constrained onC. This is actually very different from a heat-flow
orientedby w, as in the formulation∂Ii

∂t = ∂2Ii

∂w2 since thecurvatures of integral curves ofw are now implicitly taken
into account. In particular, the constrained equation (21) has the interesting property to vanish when image intensities are
perfectly constant on the integral curveC, whatever the curvature ofC is. In this context, defining a fieldw that is tangent
everywhere to the image structures will allow the preservation of these structures, even if they are curved (such as corners).
This is not the case with divergence or trace-based PDE’s (10),(15). This curvature-preserving property of (21) is illustrated
on Fig.11d and Fig.12b.
The constrained equation (21) is anelliptic PDE since the matrixwwT is positive definite. The existence and unicity of the
solutions of (21) are not directly approached here. Anyway,in section 3.2, we show that its solution can be approximatedby
the technique of Line Integral Convolutions, which is a well-posed analytical approach.

3.2 Curvature-Preserving PDE’s and Line Integral Convolutions

Line Integral Convolutions (LIC) have been first introducedin [23] as a technique to render a textured imageILIC that
represents a vector fieldw : Ω → R

2. The idea, originally expressed under a discrete formula, consists in smoothing an
imageInoise - containing only noise - by averaging its pixel values alongthe integral curves ofw. Actually, a continuous
formulation of a LIC is then :

∀X ∈ Ω, ILIC(X) =
1

N

∫ +∞

−∞
f(p) Inoise(CX

(p)) dp (25)

wheref : R → R is an even function (strictly decreasing to0 on R
+) andCX is defined as theintegral curve(22) of

w throughX. The normalization factorN allows the preservation of the average pixel value alongCX and is equal to
N =

∫ +∞
−∞ f(p) dp.

As noticed in section 3.1, the curvature-preserving PDE (21) can be seen as the one-dimensional heat flow (24) constrained
on the integral curveCX ∈ F . Using the variable substitutionL(a) = I(CX

(a)), (24) can be also written as∂L∂t (a) = L
′′

(a). The

solutionL[t] at timet is known to be the convolution ofL[t=0] by a normalized Gaussian kernelGt (see [39, 62]) :

L
[t]
(a) =

∫ +∞

−∞
L

[t=0]
(p) Gt(a−p) dp with Gt(p) =

1√
4πt

exp

(

−p
2

4t

)

(26)

SubstitutingL in (5.4) witha = 0, and remembering thatCX

(0) = X andGt(−p) = Gt(p) :

∀X ∈ Ω, I
[t]
(X) =

∫ +∞

−∞
I[t=0](CX

(p)) Gt(p) dp (27)

The equation (27) is a particular form of the continuous LIC-based formulation (25) with a Gaussian weighting function
f = Gt. Here, the normalization factor isN =

∫ +∞
−∞ Gt(p) dp = 1. Intuitively, the evolution of the curvature-preserving

PDE (21) may be seen as the application of local convolutionsby normalized one-dimensional Gaussian kernelsalong
integral curvesC of w. This kind of anisotropic image smoothing considers then acurvedfiltering, instead of just an oriented
one.
Applying this setting on a multi-channel imageI, with w being the lowest eigenvector of the structure tensor fieldG (i.e.
the contour direction) allows the anisotropic smoothing ofI with edge preservation, even if these edges are curved. This
is illustrated on Fig.13b, where few integral linesCX are computed, around a typical T-junction structure. Note how the
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streamlines rotate when arriving at the junction, with a sub-pixel precision. The streamlines have been computed with a
4th-order Runge-Kutta scheme.

Note that (27) is an analytical solution of (21) whenw does not evolve over time. This property is generally not verified
when dealing with general nonlinear regularization PDE’s,where the smoothing geometry is re-evaluated at each time step
(thus defining a temporal non-linearity). In order to get ridof this kind of non-linearity, we will then to perform several
successive iterations of the LIC scheme (27), where the vector field w is updated at each iteration. This is actually a good
way of approximating (21). Classical explicit schemes usually consider the smoothing geometryw as constant between
two successive PDE iterationsI[t] andI[t+dt]. Thus, the curvature-preserving equation (21) will be efficiently discretized by
several iterations of the LIC formulation (27). This will bedetailed in section 4.

3.3 Between Traces and Divergences

We illustrate here how the curvature-preserving PDE (21) may be regarded compared to trace and divergence expressions
(10), (15), for the case of single direction smoothingT = wwT .
In this case, the divergence PDE (10) may be developed as :

div
(

wwT ∇Ii
)

= div





u2 ∂Ii

∂x + uv ∂Ii

∂y

uv ∂Ii
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= trace
(

wwTHi

)

+ ∇ITi Jww + div(w)∇ITi w

Thus, we recognize in these three different terms :

- The first term corresponds to the trace PDE (15), that smoothes locallyI alongw, using oriented Gaussian kernels.

- The two first terms correspond to thecurvature-constrainedregularization PDE (21), that smoothes locallyI alongw

while taking the curvature of integral curvesC of w into account.

- The three terms together correspond to the classical divergence PDE (10) that performs local diffusions ofI along
w. This last term div(w)∇ITi w is mainly responsible for the perturbations of the effective smoothing direction, as
described in section 2.2. It is not desirable for image regularization purposes.

It is interesting to observe that the curvature-constrained PDE (21) is then “mathematically” positioned between the trace (15)
and divergence formulations (10), and allows at the same time the full respect of the pre-defined smoothing directionsw,
while preserving curved images structures.
Note that we can also write the curvature-preserving PDE (21) as a divergence-based PDE minus a constraint term :

trace
(

wwTHi

)

+ ∇ITi Jww = div
(

wwT ∇Ii
)

− div(w)∇ITi w

Two particular cases of directionsw are worth studying, in the case of scalar-valued images (n = 1) :

- Whenw = ∇I⊥
‖∇I‖ (isophote direction), then ∇ITJww = −Iww, vanishing then the velocity of the curvature-

preserving evolution equation (21), by counterbalancing the trace-based term (which is nothing more than themean
curvature motionin this case). No smoothing will be then performed. This is quite natural since pixel along the
isophotes have constant values, so averaging those values should not modify the image. Note by comparison that the
velocity of the corresponding divergence-based expression div

(

wwT ∇Ii
)

also vanishes here.
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- Whenw = ∇I
‖∇I‖ (gradient direction), then ∇ITJww = 0, and the velocity of the curvature-preserving PDE (21)

becomes simplyIww, which really corresponds to a smoothing of the image along the gradient direction (the same as
the unconstrained trace-based PDE (15)). Note by comparison that the velocity of the corresponding divergence-based
expression is∆I in this case, which corresponds to an isotropic smoothing ofthe image, instead of an anisotropic one.

These two particular cases allows to better understand the difference of regularization behaviors between the trace, divergence
and curvature-preserving formulations.
Note also that in case wherew is a divergence free field (i.e div(w) = 0), the divergence-based PDE (10) and the curvature-
preserving formulation (21) are strictly equivalent. Thisis very rarely the case anyway.

3.4 Extension to multi-directional smoothing

In [102], the single-direction smoothing PDE (21) has been extended so that it can deal with a tensor-valued geometryT :
Ω → P(2), instead of a vector-valued geometryw. This is important, since a diffusion tensor describes muchmore complex
smoothing behaviors than single directions. In particular, it may represents bothanisotropicor isotropic regularization
behaviors. The extension of the curvature-preserving PDE (21) is not straightforward : the notions of curvature and integral
curves of tensors-valued fieldsT are not as natural as with direction fieldsw.
To tackle this problem, we proposed to locally decompose a tensor-driven smoothing process into several vector-driven
smoothing processes along different orientations. We firstnotice that

∫ π

α=0

aαa
T
α dα =

π

2
Id where aα =





cosα

sinα





Then, any2 × 2 tensorT may be written as :

T =
2

π

√
T

(∫ π

α=0

aαa
T
α dα

)√
T

where
√

T =
√

f+uuT +
√

f−vvT stands for the square root ofT = f+uuT + f−vvT . One can easily verify that
(
√

T)2 = T and(
√

T)T =
√

T. Thus, the tensorT may be decomposed as :

T =
2

π

∫ π

α=0

√
Taαa

T
α

√
T
T
dα

=
2

π

∫ π

α=0

(
√

Taα)(
√

Taα)T dα (28)

We have split the tensorT into a sum ofatomic tensors(
√

Taα)(
√

Taα)T , each being purely anisotropic and directed
only along the direction of the vector

√
Taα ∈ R

2. The equation (28) naturally suggests to decompose any tensor-driven
regularization PDE into a sum of single direction smoothingprocesses, each of them respecting the overall geometryT. For
instance :

- If T = Id (identity matrix), the tensor is isotropic and :∀α ∈ [0, π],
√

Taα = aα. The resulting smoothing will be
then performed in all directionsaα of the plane with the same strength.

- If T = uuT (whereu ∈ S1), the tensor is purely anisotropic and :∀α ∈ [0, π],
√

Taα = (uT aα)u. The resulting
smoothing will be then performed only along the directionu of the tensorT.

Then, using (28) and considering that each single directionsmoothing must be done with a curvature-preserving approach
(21), we end up with the following curvature-constrained regularization PDE, acting on a multi-channel imageI : Ω → R

n

and driven by a tensor-valued smoothing geometryT :

∀i = 1, . . . , n,
∂Ii
∂t

=
2

π

∫ π

α=0

trace
(

(
√

Taα)(
√

Taα)THi

)

+ ∇ITi J√
Taα

√
Taα dα
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which can be simplified as :

∀i = 1, . . . , n,
∂Ii
∂t

= trace(THi) +
2

π
∇ITi

∫ π

α=0

J√
Taα

√
Taα dα (29)

whereaα = (cosα sinα)T , andJ√
Taα

stands for the Jacobian of the vector fieldΩ →
√

Taα. Note that this kind of
smoothing decomposition along all orientations of the plane can be also found in [113]. As in the single direction smoothing
case, (29) may be seen as a trace-based equation (15), where an extra term has been added in order to respect the curvature
of all integral lines passing through the tensor-valued geometryT.

4 Implementation considerations

In order to implement the regularization method (29), one can benefit from the LIC-based interpretation of curvature-
preserving PDE’s presented in section 3.2. Indeed, we can explicitly discretize (29) by the following Euler scheme :

I[t+dt] = I[t] +
2dt

N

(

N−1
∑

k=0

R(
√

Taα)

)

whereα = kπ/N (in the interval[0, π]), dt is the usual temporal discretization step andR(w) represents a discretization of
the mono-directional smoothing PDE velocity (21) that preserve curvatures along a vector fieldw. If we write this expression

as :I[t+dt] = 1
N

(

∑N−1
k=0 I[t] + 2dt R(

√
Taα)

)

, we may express it as the averaging of different Gaussian-pondered LIC’s

along vector fields
√

Taα :

I[t+dt] =
1

N

(

N−1
∑

k=0

I
[t]

LIC(
√

Taα)

)

,

where each Gaussian variance has a standard deviationdt.
Basically, the difficulty here is the LIC computation, whichneeds the tracking of integral curves of a vector field. Here,we
used a very simple method based on the classical Runge-Kutta[83] integration scheme. Faster LIC implementations have
been proposed in [95] but do not deal with Gaussian ponderingfunctions, as needed here.
This simple observation leads then to the following fast algorithm for the implementation of one iteration of the curvature-
preserving PDE (29) :

- Compute the smoothed structure tensor fieldGσ from I[t] :

Gσ = Gσ ∗
n
∑

i=1
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σ will depend on the noise scale. We used relatively low values(between0 and1.5) for our experiments in section 5.

- Compute the eigenvaluesλ+, λ− and eigenvectorsθ+, θ− of Gσ.

- Compute the smoothing geometry tensor fieldT from Gσ : T = 1
(1+λ++λ−)p1

θ−θ−
T

+ 1
(1+λ++λ−)p2

θ+θ+
T

- For allα in [0, π] (discretized with a user-fixed stepdα) :

- Compute the vector fieldw =
√

T aα.

- Perform a Line Integral Convolution ofI[t] alongCX in the forward and backward directions.

- Average all LIC’s computed in step 4.

The main parameters of the algorithm arep1, p2, σ, dt and the number of PDE iterationsnb that are applied. The character-
istics of this scheme, compared to the classical finite-difference one is :
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- It allows the preservation of thin image structures from a numerical point of view : the smoothing is performed along
integral curves ofw, with a sub-pixel accuracy. Precise4th Runge-Kutta interpolation [83] is used to track the integral
curvesC in the image.

- It allows to choose very large time stepsdt, since the scheme we proposed is unconditionally stable. Indeed,dt is
simply proportional to the overall smoothing variance of the Gaussian-pondering convolutions done alongC ∈ F .

- As a result, the regularization algorithm performs very fast. Very few iterations are necessary to get the result, even
if each iteration is more time-consuming. For our applications, presented in section 5, we were even able to choose
only nb = 1 iteration with very large time stepsdt. In fact, this leads to a rough approximation of (29), since we lost
the temporal non-linearity property of the PDE. But for images with few noise, this gave surprisingly good results.
Actually, the spatial non-linearity seems to play a more important role than the temporal non-linearity in the PDE
evolution.

The smoothing is done as an averaging of multiple LIC’s in different directionsα. The choice of the discretization stepdα
is important in this context. Actually, in regions where thesmoothing needs to be mostly anisotropic, only few values ofα
are necessary since in all cases, the smoothing will be done along the same single direction. But in homogeneous regions
needing isotropic smoothing, a smallerdα will give much better results. Practically speaking, we chosedα = 45o which is
enough to get a good precision for isotropic smoothing.
On Fig.14, we illustrate the efficiency of the scheme, compared to the classical finite-difference one. A synthetic noisyimage
is anisotropically smoothed with the PDE (29), withp1 = 0.01 andp2 = 100 (smoothing mostly along isophotesθ−, with
a strength of1). The LIC-based scheme (Fig.14c) clearly better preservesthe structure along timet. This is due to the
important role played by the sub-pixel accuracy property ofthe underlying LIC computation.

(a) Noisy color image.
(b) Regularization using a finite-
difference scheme (stopped at
t = 100).

(c) Regularization using the LIC-based
scheme (stopped att = 100).

Figure 14: Comparisons between classical explicit PDE schemes, and LIC-based implementation of the PDE (29).

5 Applications

We illustrate the wide variety of problems that can be tackled by the regularization PDE’s proposed throughout this chapter.
Particularly, we use the curvature-preserving regularization approach described in section 3 in the following examples, deal-
ing with color images. We show results of color image denoising, inpainting and resizing by nonlinear interpolation. Given
processing time have been obtained on a 2.8Ghz i686 Intel processor.

5.1 Color image denoising and artifacts removal

Image denoising is of course a direct application of regularization methods. Sensor inaccuracies, digital quantifications or
compression artifacts are indeed some of the various noise sources that can affect a digital image, and suppressing themis
a desirable goal. It generally leads to small random variations that affect pixels of the image and that must be removed.
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In Fig.15-19, we illustrate how the curvature-preserving PDE framework (29) can be successfully applied to remove such
artifacts while preserving the essential structures of theprocessed images.

- Fig.15 shows an application of the regularization method on the famous512 × 512 “Baboon” color image, artificially
degraded by adding uncorrelated Gaussian noise on(R,G,B). This color image has been then denoised with equation
(29). Thanks to the proposed LIC-based numerical implementation, only one PDE iteration has been necessary to
denoise the image, with parametersp1 = 0.5, p2 = 0.7, σ = 1.5 anddt = 50. Processing time is19.3 seconds for the
entire image.

- Fig.16 illustrates a real case where a color photograph hasbeen digitized from a grainy paper, leading to the apparition
of watered effects on the digital picture. Using the PDE-based regularization method (29) allows to clearly remove
the grains while preserving quite fine structures (palm treeleafs). Shown image is a152 × 133 portion of the original
one. Only one PDE iteration has been necessary, withp1 = 0.5, p2 = 0.7, σ = 1 anddt = 10. Processing time is11
seconds for the entire image (size586 × 367).

- Fig.17 shows the restoration of a digital photograph shot under low luminosity conditions by a cellular phone. Such
devices have usually poor quality cameras, leading to the apparition of important digital noise (more precisely, Poisson
noise) on the acquired color images. Processed color image has a size of262× 280 and has been restored in4 seconds
(one PDE iteration), with parametersp1 = 0.2, p2 = 0.5, σ = 2, dt = 120. Note how the curvature-preserving
PDE (29) is able to adapt itself locally to the multi-channelimage geometry, in order to preserve thin structures while
removing the noise quite well.

- Image regularization can also be useful when dealing with other types of noise. The enhancement of JPEG-compressed
image is such an example of interest. Fig.18 illustrate the suppression of compression artifacts in color images. A
JPEG compressed color image of size283× 249, where the JPEG quality ratio has been set to10% is processed by the
multi-channel image regularization algorithm. Usual block effects inherent to the DCT compression are visible on the
compressed image. One PDE iteration is applied then, withp1 = 0.5, p2 = 0.9, σ = 2, dt = 200, in order to get the
regularized result (right). Processing time is5.4 seconds for the entire image.

- Fig.19 illustrates another regularization with a different type of noise. This time, the regularization method is used to
improve a digital true-color image quantified in256 colors by the Floyd-Steinberg algorithm (size=355 × 287) which
introduces some dithering effects in the image. One PDE iteration has been applied here, withp1 = 0.5, p2 = 0.8,
σ = 1, dt = 30. A 136 × 118 portion of the image is shown. Processing time is12.8 seconds for the entire image.
This kind of reconstruction may be interesting for image compression algorithms, allowing them to retrieve a true color
images, even by storing them with a quantified palette.

5.2 Color image inpainting

Image inpainting is a very new and challenging application,which consists in filling-in missing image regions (defined by
the user) byguessing pixel valuessuch that the reconstructed image still looks natural. Basically, the user provides one
color imageI : Ω → R

3, and onemaskimageM : Ω → {0, 1}. The inpainting algorithm must fill-in the regions where
M(X) = 1, by the mean of some intelligent interpolations. Inpainting algorithms can be used for instance to remove various
structures in images (scratches, logos or real objects) that are usually bigger than other image artifacts. Image inpainting has
been first proposed as a method based on a variational formulation by Masnou and Morel [70], followed by many solutions
based on diffusion or transport PDE’s [15, 17, 30, 109, 110].It is also worth to cite some papers related to inpainting without
use of PDE’s [38, 55], among others.
In this article, we see the inpainting process as a direct application of the proposed curvature-preserving PDE (29). We
apply the diffusion equation only on the regions to inpaint,allowing the neighbor pixels of these regions to diffuse inside : a
nonlinear completion of the image data along isophotes directions is thus naturally done, reconstructing the missing parts of
the image, since the performed smoothing tries to follow a coherent multi-valued image geometry computed from the known
parts of the image. We illustrate the concept of inpainting with PDE’s in Fig.20-24.

- Fig.20 illustrates a simple case where one wants to remove text from a color image, by guessing the pixel colors behind
the text. The mask used here is easily detected from the degraded image by considering only green pixels. Result of
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Noisy color image (left), denoised image (middle), zoom on the eye (right).

Figure 15: Denoising of the color image “Baboon” corrupted with artificial Gaussian noise.

Noisy color image (left), denoised image (right), details are shown on the bottom row.

Figure 16: Denoising of the color image “Tunisia Desert”, containing watered effects.
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Noisy color image (left), denoised image (right), details are shown on the bottom row.

Figure 17: Denoising of the color image “Lolotte”, real color photograph.
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JPEG color image (left), regularized image (right), details are shown on the bottom row.

Figure 18: Removing blocs artifacts from the JPEG compressed color image “Baby”.

Quantized color image (left), regularized image (right) (details).

Figure 19: Removing quantization noise in the quantized color image “Penguin”.
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the image inpainting is shown on the right. Note how structures have been naturally completed in a coherent way. This
example also shows the limitation of the reconstruction when it comes to reconstruct textured regions. For instance,
the algorithm has not been able to reconstruct one eye of the woman on the left. This is anyway a very hard task, and
it is not surprising that diffusion equations that perform only local smoothing fail in such complex cases.

- Fig.21 shows how the PDE-based inpainting technique can bealso used to remove real objects from digital pho-
tographs. A500 × 500 color image (left) is inpainted with a user-defined mask (middle), corresponding to the region
overlapping the initial man’s glasses. The inpainted image(right) is obtained in4 minutes11 seconds, after200 iter-
ations of the PDE (29) with parametersp1 = 0.001, p2 = 100, σ = 4, dt = 150. Note thatp1 << p2 encourages
smoothing only along the isophote directions with a strength of 1 everywhere. Another similar example of real object
removal can be found in Fig.24, where a cage automatically disappear in a color photograph of a parrot.

- Fig.22-23 illustrate the reconstruction capabilities ofour inpainting technique. Here, half of the pixels of two color
images have been suppressed by masking them with checkerboard-shapedmask with squares of respective sizes16×16
and32 × 32. The images are then reconstructed using several iterations of the PDE (29) applied only inside the
inpainting masks, with parametersp1 = 0.001, p2 = 100, σ = 4 anddt = 50 This kind of application is very
interesting for image transmission within a network. It canbe used to generate coherent reconstructed images even if
corrupted network packets have been received.

For each inpainting result shown in this article, the initialization of the pixel values inside the inpainting masks att = 0 has
been done by white noise. Actually, the inpainting algorithm is not much dependent of the initialization step : the equation
(29) diffuses neighborhood values inside the inpainting mask until convergence, and there is then a strong border condition.
We didn’t see much difference between different types of initialization (noise, zero-filling or linear interpolation).

5.3 Color image interpolation

With the same kind of techniques, one can easily perform image magnification by edge-preserving interpolation. Starting
from a linear or bicubic interpolation of a small image, and applying the PDE (29) on the image (excepted on the original
known pixels that form a sparse inpainting mask), we can compute magnified images that have been regularized while taking
their local geometry into account. It allows to remove usualbloc or jagging effects inherent to classical linear interpolation
techniques. This is a technique which is actually very similar to image inpainting with a very sparse grid for the inpainting
mask.

- Fig.25 illustrates one example of image resizing. An original 195 × 173 color image is resized by a factor×4 with
classical nearest-neighbor, linear and bicubic interpolations, then by the PDE-based technique (29). It is quite clear
that the non-linear regularization filter, driven by the image geometry, allows to remove the aliasing effects usually
encountered with simple interpolation methods, while correctly preserving the small structures of the image.

Notice that the original known points of the images are always preserved during the regularizing PDE flow, ensuring that
resizing back the image to its original dimension (sub-sampling) always results in the original input data.

5.4 Flow visualization

We present here a last application of regularization PDE’s for visualization purposes. Considering a 2D vector fieldF : Ω →
R

2, we have several ways to visualize it. We can first use vector graphics (Fig.26) (left), but we need to subsample the field
since this kind of representation is not adapted to represent very dense flows. A better solution is as follows. We smooth a
completely noisy (color) imageI, with a regularizing flow equivalent to (29) but whereT is directed by the directions ofF ,
instead of the local geometry ofI. It means that we have to define the tensor fieldD in (29) as :

∀X ∈ Ω, D(X) =
1

‖F‖FFT (30)

This is a field of fully anisotropic tensors, each time oriented along the flowF .
This technique is in fact equivalent to using a single LIC filter [23]. But it is interesting to see that when the PDE evolution
timet goes by, a visualizationscale-spaceof F is explicitly constructed (Fig.27). Here, the used regularization equation (30)
ensures that the smoothing of the pixels is done exactly in the direction of the flowF . This is not the case in [13, 22, 40],
where the authors proposed a similar idea using a divergence-based expression. Using similar divergence-based techniques
would raise a risk of smoothing the image in false directions, as this has been pointed out in section 2.2.
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Corrupted color image (left), inpainted image (right). Details are shown on the bottom row.

Figure 20: Removing undesirable text in color image by an inpainting method.

Original color image (left), inpainting mask (middle), inpainted image (right).

Figure 21: Removing a real object in a color image by an inpainting method.
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Original color image (left), masked color image (middle), reconstruction (right).

Figure 22: Reconstruction of 50% of a color image by an inpainting method.

Masked color image (left), reconstruction (right).

Figure 23: Reconstruction of 50% of a color image by an inpainting method.
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Original color image (left), inpainting mask (middle), inpainted image (right).

Figure 24: Removing a real object in a color image by an inpainting method.

Conclusion

Multi-channel image regularization is a fundamental process in many image processing and computer vision algorithms
and it is then primordial to get a full control of this process, as well as to understand what the used equations are exactly
doing from a geometric point of view. In this chapter, we havedescribed the most classical PDE-based methods proposed
for the regularization of multi-channel images and introduced a very efficient curvature-preserving framework that generally
outperforms its competitors. This is not only due to the particular aim of preserving fine and curved structures, but also
thanks to the proposed numerical scheme that is especially efficient since it works at a subpixel level. Clearly, this kind of
multi-channel image regularization technique can play a role in a lot of image processing applications. The processingtime,
which was one of the famous drawback of PDE-based methods, isnot a problem anymore. All these reasons makes the
framework of multi-valued diffusion PDE’s a very good choice for image regularization purposes. This has been illustrated
in this chapter with results on color image denoising, inpainting and resizing. But many other applications may benefit from
the proposed curvature-preserving framework.

It is worth to notice that other application results of the curvature-preserving algorithm can be found at the followingweb
page :

http://www.greyc.ensicaen.fr/˜dtschump/greycstorati on/

The binaries of the algorithm can be also downloaded and tested on different architectures, as well as the source code (C++)
which are available as a part of the open source image processing library : The CImg Library[111].
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(a) Thumbnail image.

(b) Details from the image resized by nearest-neighbor interpolation.

(c) Details from the image resized by linear interpolation.

(c) Details from the image resized by bicubic interpolation.

(d) Details from the image resized by a non-linear regularization PDE.

Figure 25: Comparisons of image resizing methods, Nearest-neighbor (first row), Linear (second row), Bicubic (third row)
and PDE-based (last row) interpolations.
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Figure 26: Visualization of a2D vector field : using arrows (left), after 5 PDE iter. (middle), after 15 PDE iter. (right).

Appendix A

In this appendix, we demonstrate how the minimization of thefunctional

min
I:Ω→Rn

E(I) =

∫

Ω

ψ(λ+, λ−) dΩ (31)

can be performed by a gradient descent and its correspondingPDE flow. The Euler-Lagrange equations corresponding to the
functional (31) are :
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Actually, the vector( ∂ψ
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, ∂ψ
∂Iiy

)T can be written in a more comprehensive form.

From the chain-rule property of the derivation, we have :
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(33)

We know formally the expressions∂ψ∂λ±
since the functionψ is directly defined from theλ±.

Finding the∂λ±

∂Iix
and ∂λ±

∂Iiy
is more tricky. Here is a simple way to proceed :

As theλ± are the eigenvalues of the structure tensorG = (gkl), we may decompose its derivatives (with respect toIix and
Iiy ), in terms of derivatives with respect to thegkl :

∂λ±
∂Iix

=
∑

k,l

∂λ±
∂gkl

∂gkl
∂Iix

and
∂λ±
∂Iiy

=
∑

k,l

∂λ±
∂gkl

∂gkl
∂Iiy

(34)
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Figure 27: Visualization scale-space generated with regularization PDE’s.
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The expressions∂gkl

∂Iix
and ∂gkl

∂Iiy
are particularly simple :























∂g11
∂Iix

= 2Iix

∂g11
∂Iiy

= 0

and























∂g12
∂Iix

= Iiy

∂g12
∂Iiy

= Iix

and























∂g22
∂Iix

= 0

∂g22
∂Iiy

= 2Iiy

i.e (34) can be written as :












∂λ±
∂Iix

∂λ±
∂Iiy













=











2
∂λ±
∂g11

∂λ±
∂g12

∂λ±
∂g12

2
∂λ±
∂g22











∇Ii (35)

Thus, one last obstacle remains to be crossed, that is findingthe formal expressions of∂λ±

∂gkl
.

Remind that theλ± andθ± are the eigenvalues and eigenvectors of the structure tensor G :

G = λ+ θ+θ
T
+ + λ− θ−θ

T
−

The derivation of this tensor, with respect to one of its coefficientgkl is :

∂G

∂gkl
=

∂λ+

∂gkl
θ+θ

T
+ +

∂λ−
∂gkl

θ−θ
T
− (36)

+ λ+
∂θ+
∂gkl

θT+ + λ−
∂θ−
∂gkl

θT−

+ λ+ θ+
∂θT+
∂gkl

+ λ− θ−
∂θT−
∂gkl

Moreover, as theθ± are unitary and orthogonal eigenvectors, we have :







θT+θ+ = θT−θ− = 1

θT+θ− = θT−θ+ = 0
and























∂θT+
∂gkl

θ+ = θT+
∂θ+
∂gkl

= 0

∂θT−
∂gkl

θ− = θT−
∂θ−
∂gkl

= 0

(37)

We first multiply the equation (36) byθT± at the left, byθ± at the right, then use the properties (37). It allows high simplifi-
cations, and leads to these two relations :

∂λ+

∂gkl
= θT+

∂G

∂gkl
θ+ and

∂λ−
∂gkl

= θT−
∂G

∂gkl
θ− (38)

Equations (38) formally tell us how eigenvalues of a diffusion tensorG vary with respect to a particular coefficientgkl of G.
Actually, this interesting property can be proved for any symmetric matrix. For instance, authors of [77] proposed a similar
demonstration in a purely matrix form, leading to the same result. They used it to deal with general covariance matrices.

Moreover in our case, the matrices∂G∂gkl
are very simple to write :

∂G

∂g11
=

(

1 0
0 0

)

,
∂G

∂g12
=

(

0 1
1 0

)

and
∂G

∂g22
=

(

0 0
0 1

)

With all these elements, we can express (35) as :












∂λ+

∂Iix

∂λ+

∂Iiy













= 2 θ+θ
T
+∇Ii and













∂λ−
∂Iix

∂λ−
∂Iiy













= 2 θ−θ
T
−∇Ii (39)
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Finally, replacing (39) in the Euler-Lagrange equations (33) and (32), gives the vector-valued gradient descent of the
functional (8) :

min
I:Ω→Rn

∫

Ω

ψ(λ+, λ−) dΩ =⇒ ∂Ii
∂t

= 2 div

([

∂ψ

∂λ+
θ+θ

T
+ +

∂ψ

∂λ−
θ−θ

T
−

]

∇Ii
)

(40)

(for i = 1..n) �

Note that (40) is a divergence-based equation such that :

∂Ii
∂t

= div (D∇Ii) where D = 2
∂ψ

∂λ+
θ+θ

T
+ + 2

∂ψ

∂λ−
θ−θ

T
−

D ∈ P(2) is then a2 × 2 diffusion tensor, whose eigenvalues are :

λ1 = 2
∂ψ

∂λ+
and λ2 = 2

∂ψ

∂λ−

associated to these corresponding orthonormal eigenvectors :

u1 = θ+ and u2 = θ−

It is also worth to mention that computing this gradient descent is done exactly in the same way, when dealing with image do-
mainsΩ defined in higher dimensional spaces (Ω ⊂ R

p wherep > 2) More particularly, the case of 3D volume regularization
(p = 3) can be written as :

min
I:Ω→Rn

∫

Ω

ψ(λ1, λ2, λ3) dΩ =⇒ ∂Ii
∂t

= 2 div

([

∂ψ

∂λ1
θ1θ

T
1 +

∂ψ

∂λ2
θ2θ

T
2 +

∂ψ

∂λ3
θ3θ

T
3

]

∇Ii
)

In this case, theλ1,2,3 are the three eigenvalues of the3× 3 structure tensorG, andθ1,2,3 are the corresponding orthonormal
eigenvectors.

Appendix B

In this appendix, we demonstrate that the solution of the generic trace-based PDE :

∀i = 1, .., n,
∂Ii
∂t

= trace(THi)

is the convolution of the imageI
Ii(t) = Ii(t=0)

∗ G(T,t) (i = 1..n)

by an oriented Gaussian kernelG(T,t) defined as :

G(T,t)(X) =
1

4πt
exp

(

−XTT−1X

4t

)

with X = (x y)T

To demonstrate this, we simply derive the kernel expressionG(T,t) in time and in space :

∂G(T,t)

∂t
= − 1

4πt2
exp

(

−XTT−1X

4t

)(

1 − XTT−1X

4t

)

and






















∇G(T,t) = − 1

8πt2
exp

(

−XTT−1X

4t

)

T−1X

HG(T,t) = − 1

8πt2
exp

(

−XTT−1X

4t

)

T−1

(

Id − XXTT−1

2t

)
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where∇G(T,t) andHG(T,t) are respectively the gradient and the Hessian ofG(T,t).
It means that

trace (T HG(T,t)) = − 1

8πt2
exp

(

−XTT−1X

4t

)

trace

(

Id − XXTT−1

2t

)

= − 1

8πt2
exp

(

−XTT−1X

4t

)(

2 − XTT−1X

2t

)

=
∂G(T,t)

∂t

And as the convolution is a linear operation, we have

∂(Ii0 ∗G(T,t))

∂t
= Ii0 ∗

∂G(T,t)

∂t
= Ii0 ∗ trace (T HG(T,t))

= trace
(

T HIi0∗G(T,t)

)

as well as
lim
t→0

(Ii(t) ∗G(T,t)) = Ii0

which tells us that the initial condition att = 0 is coherent both for the PDE and the convolution process, since the Gaussian
functionG(T,t) is normalized. This statement is thus true for each instantt of the PDE flow.

Appendix C

In this appendix, we develop tensor-driven divergence PDE’s into their trace-based counterpart. Most divergence-based
regularization PDE’s acting on multivalued images have thefollowing form :

∂Ii
∂t

= div (D∇Ii) (i = 1..n) (41)

whereD is a diffusion tensor basedonly on first orderoperators. The fact is thatD is often computed from the structure
tensorG =

∑n
j=1 ∇Ij∇ITj and depends mainly on the spatial derivativesIix andIiy . Intuitively, as the divergencediv () =

∂
∂x + ∂

∂y is itself a first order derivative operator, we should be ableto write (41) only with first and second spatial derivatives
Iix , Iiy , Iixx

, Iixy
andIiyy

. Thus, it could be expressed with oriented Laplacians in each image channelIi as well, i.e an
expression based on the trace operator∂Ii

∂t = trace (DHi).

We want to make the link between the two different diffusion tensorsD andT in the divergence-based and trace-based
regularization PDE’s, in the case whenD is not constant:

∂Ii
∂t

= div (D∇Ii) and
∂Ii
∂t

= trace (THi)

As we noticed in the previous section, these two formulations are almost equivalent, up to an additional term depending on
thevariation of the tensor fieldD :

div (D∇Ii) = trace (DHIi
) + ∇ITi ~div (D) (42)

where ~div () is thematrix divergence.
A natural idea is then to decompose the additional term∇ITi ~div (D) into oriented Laplacians, expressed with additional
diffusion tensorsQ in the trace operator.

For this purpose, we will consider that the divergence tensor D is defined at each pointX ∈ Ω by

D = f1(λ+, λ−) θ+θ
T
+ + f2(λ+, λ−) θ−θ

T
− with f1/2 : R

2 → R (43)
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It means thatD is only expressed from the eigenvaluesλ± and the eigenvectorsθ± of the structure tensorG :

G = λ+ θ+θ
T
+ + λ− θ−θ

T
−

This is indeed a very generic hypothesis that is verified by the majority of the proposed vector-valued regularization methods,
for instance the one proposed in Appendix A :

∂Ii
∂t

= div (D∇Ii) with (43) and



















f1(λ+, λ−) = 2
∂ψ

∂λ+

f2(λ+, λ−) = 2
∂ψ

∂λ−

In order to develop the additional diffusion term∇ITi ~div (D) in the equation (42), we propose to writeD as a linear
combination ofG andId :

D = α(λ+, λ−)G + β(λ+, λ−)Id (44)

i.e we separate theisotropicandanisotropicparts ofD, with

α =
f1(λ+, λ−) − f2(λ+, λ−)

λ+ − λ−
and β =

λ+f2(λ+, λ−) − λ−f1(λ+, λ−)

λ+ − λ−
(45)

Indeed, we have

αG + βId =
f1 − f2
λ+ − λ−

(λ+ θ+θ
T
+ + λ− θ−θ

T
−) +

λ+f2 − λ−f1
λ+ − λ−

(θ+θ
T
+ + θ−θ

T
−)

=
1

λ+ − λ−

[

θ+θ
T
+ (λ+f1 − λ−f1) + θ−θ

T
− (λ+f2 − λ−f2)

]

= f1 θ+θ
T
+ + f2 θ−θ

T
−

= D �

Here we assumed thatλ+ 6= λ− (i.e the structure tensorG is anisotropic). Anyway, ifG is isotropic, one generally chooses
anisotropicdiffusion tensorD too, in the divergence operator of (42), i.ef1(λ+, λ−) = f2(λ+, λ−). In this case, we choose
α = 0 andβ = f1(λ+, λ−).

This decomposition is useful to rewrite the matrix divergence ~div (D) into :

~div (D) = α ~div (G) + G∇α+ ∇β (46)

and the additional term of the equation (42) would be computed as :

∇IT ~div (D) = trace
(

~div (D)∇ITi
)

= αtrace
(

~div (G)∇ITi
)

(47)

+ trace
(

G∇α∇ITi
)

(48)

+ trace
(

∇β∇ITi
)

(49)

In the following, we propose to find formal expressions of (47), (48) and (49).

• First, remember that the structure tensorG is defined as :

G =
n
∑

j=1

∇Ij∇IjT
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We have then :

~div (G) =

n
∑

j=1

~div

(

I2
jx

IjxIjy
IjxIjy I2

jy

)

=

n
∑

j=1

(

2 IjxIjxx
+ IjxIjyy

+ IjyIjxy

IjxIjxy
+ IjyIjxx

+ 2 IjyIjyy

)

=

n
∑

j=1

(

Ijx(Ijxx
+ Ijyy

)
Ijy (Ijxx

+ Ijyy
)

)

+

(

IjxIjxx
+ IjyIjxy

IjxIjxy
+ IjyIjyy

)

=

n
∑

j=1

∆Ij∇Ij + Hj∇Ij

where∆Ij andHj are respectively the Laplacian and the Hessian of the image componentIj .
Then, we can write the expression 47 as :

αtrace
(

~div (G)∇IiT
)

=

n
∑

j=1

αtrace
(

Hj

[

∇IiT∇IjId + ∇Ij∇IiT
])

(50)

• We finally have to compute∇α and∇β, in the expression (48) and (49). This can be done by the decomposition :

∇α =
∂α

∂λ+
∇λ+ +

∂α

∂λ−
∇λ− and ∇β =

∂β

∂λ+
∇λ+ +

∂β

∂λ−
∇λ− (51)

and as theλ±, eigenvalues of the structure tensorG, depends on theIjx andIjy :

∇λ± =

(

λ±x

λ±y

)

=

n
∑

j=1

( ∂λ±

∂Ijx
Ijxx

+ ∂λ±

∂Ijy
Ijxy

∂λ±

∂Ijx
Ijxy

+ ∂λ±

∂Ijy
Ijyy

)

=

n
∑

j=1

HIj





∂λ±

∂Ixj

∂λ±

∂Iyj





In Appendix A, we derived eigenvalues of a structure tensorG, with respect to the spatial image derivatives. We ended up
with the following relation :





∂λ±

∂Ixj

∂λ±

∂Iyj



 = 2θ±θ
T
±∇Ij

Then,

∇λ± =

n
∑

j=1

2Hjθ±θ
T
±∇Ij (52)

We can replace (52) into the expressions of (51), in order to find the spatial gradients ofα andβ :






























∇α =

n
∑

j=1

2Hj

(

∂α

∂λ+
θ+θ

T
+ +

∂α

∂λ−
θ+θ

T
+

)

∇Ij

∇β =

n
∑

j=1

2Hj

(

∂β

∂λ+
θ+θ

T
+ +

∂β

∂λ−
θ+θ

T
+

)

∇Ij

(53)

Using (53), we finally compute the two missing parts (48) and (49) of the additional term∇ITi ~div (D) :
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trace
(

G∇α∇ITi
)

=
n
∑

j=1

trace

(

2 GHj

(

∂α

∂λ+
θ+θ

T
+ +

∂α

∂λ−
θ−θ

T
−

)

∇Ij∇ITi
)

trace
(

∇β∇ITi
)

=

n
∑

j=1

trace

(

2 Hj

(

∂β

∂λ+
θ+θ

T
+ +

∂β

∂λ−
θ−θ

T
−

)

∇Ij∇ITi
)

(54)

• The final step consists in putting together the equations (50) and (54), in order to express the additional term∇ITi ~div (D)
in the PDE (42).

∇ITi ~div (D) =
n
∑

j=1

trace
(

HjP
ij
)

(55)

where thePij are the following2 × 2 matrices :

Pij = α ∇ITi ∇IjId

+ 2

(

∂α

∂λ+
θ+θ

T
+ +

∂α

∂λ−
θ−θ

T
−

)

∇Ij∇ITi G

+ 2

(

(α +
∂β

∂λ+
)θ+θ

T
+ + (α+

∂β

∂λ−
)θ−θ

T
−

)

∇Ij∇ITi (56)

Note that the indicesi, j in the notationPij do not designatethe coefficients of a matrixP, but the parameters of the family
consisting ofn2 matricesPij (each of them is a2 × 2 matrix).
The matricesPii are symmetric, but generally not thePij (wherei 6= j), since the gradients∇Ii and∇Ij are not aligned in
the general case.
Yet, we want to express the equation (55) only with symmetricmatrices, in order to interpret it as a sum of local smoothing
processes oriented bydiffusion tensors. Fortunately, the trace operator has this simple property :

trace (AH) = trace

(

A + AT

2
H

)

where(A + AT )/2 is a2 × 2 symmetricmatrix (the symmetric part ofA).

Thus, we define the symmetric matricesQij , corresponding to the symmetric parts of thePij :

Qij =
Pij + PijT

2
(57)

and we have :

∇ITi ~div (D) =

n
∑

j=1

trace
(

HjQ
ij
)

Finally, the divergence-based PDE (42) can be written as :

div (D∇Ii) =

n
∑

j=1

trace
(

(δijD + Qij)Hj

)

(58)

whereδij is the Kronecker’s symbol :

δij =

{

0 if i 6= j
1 if i = j

This makes the link between divergence PDE’s and sums of atomic trace-based PDE’s. A direct geometric interpretation of
(58) is not direct anyway.
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[107] D. Tschumperlé and R. Deriche.Diffusion PDE’s on Vector-Valued images.IEEE Signal Processing Magazine,
19(5):16–25, 2002.
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