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Abstract

We analyse a concept of generalized Bose-Einstein condensation (g-BEC) for the perfect Bose
gas (PBG) in Casimir boxes via relation between concepts of long cycles and Off-Diagonal-Long-
Range-Order (ODLRO) usually considered as an adequate way to describe the standard BEC in the
fundamental state of the cubic box. We revise definitions of theses concepts, called scaled Bose-
Einstein condensation (s-BEC), scaled short/long cycles (s-short/long cycles) and scaled ODLRO
(s-ODLRO) which are based on some scaling arguments.

The principle result is that the classification of the g-BEC in three types (I,II,III) implies a
hierarchy of long cycles (depending of their size) and a hierarchy of ODLRO (depending of the size
of spatial delocalization of the condensate).
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1 Introduction: BEC in Casimir boxes

In this section we give a list of the different concepts concerning the BEC such as generalized BEC, cycles,
ODLRO permit to understand the original Bose-Einstein condensation phenomenon via those different
complementary points of view.

1.1 About the concept of generalized Bose-Einstein condensation and ODLRO

The history of the generalized Bose-Einstein condensation (g-BEC) began with H.Casimir in 1968 who
studied the ideal Bose gas in an anisotropic boxes. He showed that condensation may come from infinite
number of levels macroscopically occupied. Later in 1982 M.van den Berg, J.Lewis [vdB-L] and in 1986
M.van den Berg, J.Lewis and J.Pulé [vdB-L-P] gave a definition of the concept of the generalized Bose-
Einstein condensation.

Consider the grand-canonical (β, µ) perfect Bose gas (PBG) in Casimir boxes Λ = L1×L2×L3 ∈ R
d=3,

of volume |Λ| = V with sides length Lν = V αν , ν = 1, 2, 3, where α1 > α2 > α3 > 0, α1 + α2 + α3 = 1.

For the single-particle hamiltonian H
(N=1)
Λ = T

(1)
Λ := −(~2/2m)∆ with periodic boundary conditions, we

get the dual vector-spaces Λ∗ defined by:

Λ∗ =

{

k ∈ R
3 : k = (

2πn1

V α1
,
2πn2

V α2
,
2πn3

V α3
); nν ∈ Z

1

}

. (1.1)

In the grand-canonical ensemble, the mean values of the k-mode particle densities {ρΛ(k)}k∈Λ∗ are:

ρΛ(k) :=
1

V
〈NΛ(k)〉Λ(β, µ) =

1

V

1

eβ(ǫΛ(k)−µ) − 1
, (1.2)

where ǫΛ(k) = ~
2k2/2m, k ∈ Λ∗ are the eigenvalue of the Laplacian with periodic boundary conditions,

〈NΛ(k)〉Λ(β, µ) is the Gibbs expectation of the particles number operator NΛ(k) in the mode k. The
total density of particles is ρΛ(β, µ) :=

∑

k∈Λ∗ ρΛ(k)
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Recall that the eigenfunctions {Ψ(N=1)
Λ,k (x)}k∈Λ∗ of the single particle hamiltonian T

(1)
Λ are:

Ψ
(1)
Λ,k(x) =

1√
V

eik.x . (1.3)

We consider now the fixed density of particles. The chemical potential is then a unique solution of
the equation ρ = ρΛ(β, µ), which we denote by µΛ := µΛ(β, ρ).

The van den Berg-Lewis-Pulé formulation of the concept of g-BEC in Casimir boxes is:

Definition 1.1 We say that for the grand-canonical PBG there is g-BEC with a fixed total density of
particle ρ, if we have:

ρ0(β, ρ) := lim
ǫ↓0

lim
V ↑∞

∑

{k∈Λ∗:‖k‖6ǫ}
ρΛ(k) > 0 , (1.4)

where ρΛ(k) are defined by (1.2) for µ = µΛ(β, ρ).

This criterion of condensation means that all single particle states Ψ
(1)
Λ,k ∈ H(1)

Λ in the vicinity of the
ground state form a macroscopic ”atom”.

This motivate the following classification:

Definition 1.2 • One gets g-BEC of type I if a finite number of single particle states are macroscopically
occupied.

• There is g-BEC of type II imply that an infinite number of single particle states are macroscopically
occupied.

• The g-BEC is called type III, if all single particle states are microscopically occupied, although
ρ0(β, ρ) > 0.

This concept allows the study PBG in Casimir boxes and to give an illustration of the different types
of g-BEC.

As usually one introduces for the PBG the critical density, ρc(β) defined by:

ρc(β) := sup
µ<0

lim
V ↑∞

ρΛ(β, µ) = g3/2(1)/λ3
β, (1.5)

where gs(z) :=
∑∞

j=1 zj/js is related to the Riemann zeta-function ζ(s) := gs(1). Here λβ = ~
√

2πβ/m
is the thermal De Broglie length.

Due to [vdB-L-P] to we have the following proposition:

Proposition 1.1 If one consider the PBG in Casimir boxes with 1/2 > α1, then for a fixed particles
density ρ > ρc(β) the chemical potential is µΛ = −A/βV + o(1/V ), with A > 0 and there is g-BEC of
the type I in the zero mode k = 0. Here A is the solution of the equation :

ρ − ρc(β) =
1

A
. (1.6)

If 1/2 = α1, then the chemical potential is µΛ = −B/βV + o(1/V ), with B > 0 and there is g-BEC
of the type II in the infinite number of modes:

lim
V ↑∞

ρΛ(k) =
1

B + λ2
βn2

1

, for k = (2πn1/V α1 , 0, 0), n1 ∈ Z
1 ,

= 0, for k 6= (2πn1/V α1 , 0, 0), n1 ∈ Z
1 .

Here B is the solution of the equation:

ρ − ρc(β) =
∑

n1∈Z1

1

B + λ2
βn2

1

. (1.7)
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If 1/2 < α1, then the chemical potential µΛ = −C/βV δ + o(1/V δ), with δ = 2(1 − α1) and C > 0.
The corresponding g-BEC is the type III: for all k ∈ Λ∗ we have limV ↑∞ ρΛ(k) = 0 although ρ0(β, ρ) > 0
and C is the solution of the equation:

ρ − ρc(β) =
π

λβC1/2
. (1.8)

In 1951 O.Penrose and later in 1956 O.Penrose and L.Onsager [P-O] proposed a criterion of BEC well
adapted to both ideal or interacting gases: there is Bose-Einstein condensation if and only if there is Off-
Diagonal Long-Range Order (ODLRO) for the reduce statistical operator. Here we recall the definition
for the two-point correlation function of ODLRO for particular case of the PBG with periodic boundary
conditions:

Definition 1.3 We say that for the PBG there is an ODLRO for a fixed total density of particles ρ if
we have:

σ(β, ρ) := lim
‖x−x′‖↑∞

lim
V ↑∞

σΛ(β, ρ; x, x′) > 0 , (1.9)

where σ(β, ρ; x, x′) := limV ↑∞ σΛ(β, ρ; x, x′) is the two-correlation function, defined by:

σΛ(β, ρ; x, x′) :=
∑

k∈Λ∗

〈NΛ(k)〉Λ(β, ρ)Ψ
(1)
Λ,k(x)Ψ

(1)
Λ,k(x′)∗ =

∑

k∈Λ∗

ρΛ(k)eik.(x−x′) , (1.10)

for periodic boundary conditions. Here ρΛ(k) is defined by (1.2).

The interpretation of this criterion is very intuitive. Since ODLRO measures the correlation between
two points at the infinity after thermodynamical limit. Recall that according to Definition 1.1 for non-zero
BEC we catch in thermodynamical limit the density of particles in the modes null i.e. with de Broglie
wave-length of those particles equals infinity. This allows communication in the condensate through
the whole space (in R

3). The heuristic arguments can be rigorous by checked showing that g-BEC and
ODLRO are equivalent for the PBG in Casimir boxes:

Theorem 1.1 Consider a PBG in Casimir boxes Λ. Then we have the following result:

σ(β, ρ) = 0, for ρ < ρc,

= ρ − ρc(β), for ρ > ρc, (1.11)

therefore ODLRO is non-zero if and only if there is g-BEC.

Proof

We split the correlation function in two part, the first one is the correlation due to the condensate
and the second one correspond to the particles outside the condensate:

σΛ(β, ρ; x, x′) := lim
ǫ↓0

lim
V ↑∞

∑

k∈{Λ∗

Λ:‖k‖6ǫ}
ρΛ(k)eik.(x−x′) + lim

ǫ↓0
lim
V ↑∞

∑

k∈{Λ∗

Λ:‖k‖>ǫ}
ρΛ(k)eik.(x−x′)

= lim
ǫ↓0

lim
V ↑∞

∑

k∈{Λ∗

Λ:‖k‖6ǫ}
ρΛ(k) +

1

(2π)3

∫

k∈R3

dk
eik.(x−x′)

eβ(~2k2/2m−µ) − 1
,

since ∀k ∈ {Λ∗
Λ : ‖k‖ 6 ǫ}, k.(x − x′) → 0 when ǫ → 0. Here µ := limV ↑∞ µΛ.

Then by virtue of Proposition 1.1 and by the Riemann-Lebesgue Theorem we obtain the result. �

1.2 Feynman theory of cycles (loops)

Here we would like to recall the Feynman concept of cycles introduced in 1953 [F]. It is related to the
Bose statistic and Feynman-Kac representation for the partition function.
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Recall that for the PBG in boxes Λ = L1 × L2 × L3 ⊂ R
3 with periodic boundary conditions, (i.e.

with the dual vector-spaces Λ∗ =
{

k ∈ R
3 : k = (2πn1/L1, 2πn2/L2, 2πn3/L3), nν ∈ Z

1
}

, see(1.1)) the
grand-canonical pressure can be represented in the form:

pΛ(β, µ) =
1

β‖Λ‖ log
(

Ξ0
Λ(β, µ)

)

=
1

β|Λ|
∑

k∈Λ∗

ln

[

(

1 − e−β(ǫΛ(k)−µ)
)−1

]

=
1

β|Λ|

∞
∑

j=1

1

j
ejβµ TrH(1)

Λ

(

e−jβT
(1)
Λ

)

,

(1.12)

where Ξ0
Λ(β, µ) is the grand-canonical partition function and we used that TrHΛ,1

(

e−jβT
(1)
Λ

)

=
∑

k∈Λ∗ e−jβǫΛ(k).

The Feynman-Kac representation naturally appears from (1.12) if we consider the representation of

the trace of the Gibbs semigroup
{

e−βT
(1)
Λ

}

β>0
via its kernel KΛ(β; x, x′) =

(

e−βT
(1)
Λ

)

(x, x′):

TrH(1)
Λ

(

e−βT
(1)
Λ

)

=

∫

Λ

dxKΛ(β; x, x) . (1.13)

It is known [G] that the kernel KΛ(β; x, x′) can be represented as an integral over Wiener trajectories
starting at point x and finishing at point x′. Thus KΛ(β; x, x) can be represent as a Wiener integral over
close trajectories (loops) starting and finishing at the same point. The order of the size of the trajectories
coincide with the size of the quantum fluctuations λβ , known as the thermal De Broglie length [M].

By virtue of the Gibbs semigroup properties, and by expressions (1.12), (1.13), for the grand-canonical
pressure we get:

pΛ(β, µ) =

∞
∑

j=1

1

j
ejβµ

∫

Λ

dx1

∫

Λ

dx2...

∫

Λ

dxj KΛ(β; x1, x2)KΛ(β; x2, x3)...KΛ(β; xj , x1) , (1.14)

In (1.14) each integral over (x1, ..., xj) ∈ Λj correspond to the impact of the Wiener’s loops of the
length jλβ [G], [M].

Notice that the total density of particles in this ensemble is given by:

ρΛ(β, µ) :=
〈NΛ〉Λ(β, µ)

V
= ∂µpΛ(β, µ) =

1

V

∞
∑

j=1

ejβµ TrH(1)
Λ

e−jβT
(1)
Λ . (1.15)

One can use this representation to identify the repartition of the total density (1.15) over densities of
particles involved into loops of the length jλβ :

ρΛ,j(β, µ) :=
1

V
ejβµ TrH(1)

Λ

e−jβT
(1)
Λ . (1.16)

The j-loops particles density (1.16) and representation (1.14) are the keys to the concept of the
short/long cycles. In fact after thermodynamical limit one can obtain loops of finite sizes or infinite sizes.
Using this point of view one can relate BEC to appearance of loops of infinite size as an explanation of
the long range order and the macroscopic size of the quantum fluctuations [F], [P-O], [U].

1.3 Bose statistic and cycles

To develop the mathematical approach of Feynman cycles, we introduce the permutation group via Bose
statistics is related to the permutation group.

Consider a system of N identical bosons enclose in a region Λ ∈ R
3. Let they be in the thermal

equilibrium at inverse temperature β. The Hamiltonian of the system in general is given by H
(N)
Λ :=

T
(N)
Λ + U

(N)
Λ , where T

(N)
Λ is the usual kinetic-energy operator and U

(N)
Λ is the interacting-operator term

with the condition that of the trace of the operator e−βH
(N)
Λ exist.

Let us introduce the symmetrization projector PN := 1
N !

∑

π∈SN
Uπ, where Uπ = H(N)

Λ 7→ H(N)
Λ is the

unitary representation of the permutation group SN defined by UπΨ(x1, ..., xN ) = Ψ(xπ(1), ..., xπ(N)).
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Then the grand-canonical partition function is equal to:

ΞΛ(β, µ) =

∞
∑

N=0

TrH(N,Sym)
Λ

(

e−β(H
(N)
Λ −µN )

)

=

∞
∑

N=0

1

N !
eµN

∑

π

TrH(N)
Λ

(

Uπe−βH
(N)
Λ

)

, (1.17)

To make a contact with Feynman’s idea of cycles, we recall the relation between Bose statistics and
cycles [D-M-P]:

• Each permutation π ∈ SN can be decomposed into a number of cyclic permutations of sizes
q1, q2, ...qr with r 6 N and

∑

qi = N . We consider the set Ω =
⋃

r∈N
Ωr of unordered r-tuples of

natural numbers q = (q1, q2, ...qr) ∈ Ωr for r = 0, 1, 2, ... and let |q| =
∑r

i=1 qi for q ∈ Ω. Then a
decomposition of π ∈ SN into cycles is labeled by q ∈ Ω with |q| = N .

• The decomposition into cycles leads to a partition of SN into equivalence classes of permutations
Cq, |q| = N .

• Two permutations π′ and π belong to the same class if and only if they are conjugate in SN i.e.
there exists π ∈ SN such that π” = π−1π′π.

• The number of permutations belonging to the class Cq, noted |Cq| is N !/
∏r

p=1 np!qp, where nq is
the number of cycles of size p in q.

• If [H
(N)
Λ , Uπ] = 0 ∀π ∈ SN , for π′, π” ∈ Cq one has:

TrH(N)
Λ

(

Uπ′e−βH
(N)
Λ

)

= TrH(N)
Λ

(

U−1
π Uπ”Uπe−βH

(N)
Λ

)

= TrH(N)
Λ

(

U−1
π Uπ”e

−βH
(N)
Λ Uπ

)

= TrH(N)
Λ

(

Uπ”e
−βH

(N)
Λ

)

,

consequently TrH(N)
Λ

(

Uπe−βH
(N)
Λ

)

depend only on the cycle decomposition q of π

Under those assumptions we obtain the magic formula [M], [M-B]:

ΞΛ(β, µ) = 1 +

∞
∑

r=1

1

r!

∑

q∈Nr

r
∏

i=1

1

qi
eβµqiTrH(N)

Λ

(

Uqe
−βH

(N)
Λ

)

. (1.18)

For the PBG in Casimir boxes Λ we have H(N)
Λ = ⊗N

i=1H
(1)
Λ , where H1

Λ is the single particle Hilbert
space H1

Λ = L2(Λ). Consequently we have:

TrH(N)
Λ

(

Uqe
−βT

(
ΛN)

)

=
∑

k1,..,kN∈Λ∗

(

Ψ
(1)
Λ,k1

⊗ ... ⊗ Ψ
(1)
Λ,kN

, e−βT
(N)
Λ UqΨ

(1)
Λ,k1

⊗ ... ⊗ Ψ
(1)
Λ,kN

)

=

r
∏

p=1

∑

k1,..,kqi
∈Λ∗

(

Ψ
(1)
Λ,k1

⊗ ... ⊗ Ψ
(1)
Λ,kqi−1

⊗ Ψ
(1)
Λ,kqi

, e−βT
(qi)

Λ Ψ
(1)
Λ,k2

⊗ ... ⊗ Ψ
(1)
Λ,kqi

⊗ Ψ
(1)
Λ,k1

)

=

r
∏

i=1

TrH(1)
Λ

(

e−qiβT
(1)
Λ

)

,

since Uq =
∏r

i=1 Uqr act on independent parts of the state Ψ
(1)
Λ,k1

⊗ ... ⊗ Ψ
(1)
Λ,kN

, where Uqi is the

unitary representation of the cyclic permutation πqi ∈ Sqi defined by UqiΨ
(1)
Λ,k1

⊗ ...⊗Ψ
(1)
Λ,kqi−1

⊗Ψ
(1)
Λ,kqi

=

Ψ
(1)
Λ,k2

⊗ ... ⊗ Ψ
(1)
Λ,kqi

⊗ Ψ
(1)
Λ,k1

and because the single particles states are orthogonal.

Inserting this equation into (1.18) we obtain for the PBG grand canonical partition function Ω0
Λ(β, µ)

c.f. (1.12) in Casimir boxes:

Ξ
(0)
Λ (β, µ) = 1 +

∞
∑

r=1

1

r!

∑

q∈Nr

r
∏

i=1

1

qi
eβµqiTrH(1)

Λ

(

e−qiβT
(1)
Λ

)

. (1.19)

We can establish the contact with (1.12) rewriting the precedent formula:
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Ξ
(0)
Λ (β, µ) =

∑

N>0

∑

{nj}N
j=1:

∑

jnj=N

1

nj !

N
∏

j=1

(

1

j
eβµjTrH(1)

Λ

(

e−jβT
(1)
Λ

)

)nj

.

=
∞
∏

j=1

Exp

(

1

j
eβµjTrH(1)

Λ

(

e−jβT
(1)
Λ

)

)

.

One can use this representation to identify the repartition of the total density over mean densities of
particles involved into cycles of the size j:

ρΛ,j(β, µ) := 〈 1

V

r
∑

i=1

jδj,qi〉Λ(β, µ) =
1

V
ejβµ TrH(1)

Λ

e−jβT
(1)
Λ . (1.20)

The j-cycles particle density (1.20) is the keys to the concept of the short/long cycles.

Definition 1.4 We say that the representation (1.19) for the grand-canonical PBG contains only short
cycles if the limit:

ρshort(β, µ) := lim
M→∞







lim
V ↑∞

M
∑

j=1

ρΛ,j(β, µ)







= ρ(β, µ) := lim
V ↑∞

ρΛ(β, µ) , (1.21)

i.e. it coincides with limit of the total particle density. Since in general the limits in (1.21) are not
interchangeable, we say that the representation (1.19) for the grand-canonical PBG contains macroscopic
number of long cycles for a total density of particles ρ, if we have ρ > ρshort(β, ρ), or equivalently if:

ρlong(β, ρ) := lim
M→∞







lim
V ↑∞

∞
∑

j=M+1

ρΛ,j(β, ρ)







> 0 . (1.22)

Since Feynman [F] the presence of the non-zero density of the long cycles is usually connected with
the existence of zero-mode BEC, but a rigorous proof of this conjecture for a certain class of models has
been obtained only recently. There we noticed that even for the PBG type I BEC the mathematical proof
of this connection was not straightforward and appealed to a non-trivial analysis, see [S], [D-M-P],[U].

Theorem 1.2 Consider a PBG in Casimir boxes Λ. Then we have:

ρshort(β, µ) =
g3/2(e

βµ)

λ3
β

< ρc(β) , (1.23)

where ρc(β) is the critical density defined by (1.5). Therefore, for ρ > ρc(β) the grand-canonical repre-
sentation of the partition function (1.19) for the PBG contains a macroscopic number of particles in long
cycles.

Proof

By virtue of (1.20) and (1.21) we have:

ρshort(β, µ) = lim
M→∞







lim
V ↑∞

M
∑

j=1

ejβµ
3

∏

ν=1

1

V αν

∑

nν∈Z1

e−jβπλ2
β(nν/V αν )2







=

∞
∑

j=1

ejβµ
3

∏

ν=1

∫

ξν∈R

e−jβπλ2
βξ2

ν =

∞
∑

j=1

eβµ

λ3
βj3/2

=:
g3/2(e

βµ)

λ3
β

,

c.f. definition of gs(z).
�
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1.4 What is the problem ?

In fact it was F.London [L] who for the first time used implicitly the scaling approach to solve the
controversy between the G.Uhlenbeck mathematical arguments against condensation of the perfect Bose-
gas for hight densities and Einstein’s intuitive reasoning in favor of this phenomenon. Recall that his
line of reasoning was based on the following observations: since the explicit formula for the total particle
density ρΛ(β, µ) in the box Λ is known only in grand-canonical ensemble (β, µ), to ensure fixed density ρ
in this box one has first to solve equation ρ = ρΛ(β, µ) which determine the corresponding value of the
chemical potential µΛ := µΛ(β, ρ).

Concept of the g-BEC does not show up explicitly. The natural question: is the scaling approach
relevant for the analysis of the long cycles? There is the same question for concept of ODLRO.

In the next section we propose to revisit the concept of g-BEC and to introduce a concept of scaled
BEC. The concept of scaled long cycles and the concept of scaled ODLRO are considered in section 3
and 4.

2 Generalized BEC concept: revisited

In this section we propose a new concept of generalized BEC which we call scaled BEC (noted s-BEC).
This imply the corresponding concept for cycles (scaled short/long cycles noted s-short/long cycles) via
similar scaling arguments. Moreover we introduce a classification of the s-BEC (type I, II, III) and the
hierarchy of the s-long cycles (long-microscopic/macroscopic-cycles). We illustrate our concepts by some
remarks and propositions.

2.1 Generalized condensation and scaled condensation

The original van den Berg-Lewis-Pulé concept of the g-BEC [vdB-L-P] has not been explicitly addressed
to detect a fine structure of the condensate: a priori it does not distinguish between generalized BEC of
types I, II or III. In fact one can do this analysis, as it was done for the first time in [vdB-L] for the case
of the Casimir boxes. To make this facet more evident we introduce here a new definition of generalized
BEC, a scaled BEC (s-BEC). Take for simplicity the PBG in Casimir boxes Λ with periodic boundary
conditions, i.e. with the dual vector-spaces Λ∗ defined by (1.1), and with the k-modes mean particle
densities {ρΛ(k)}k∈Λ defined by (1.2).

Definition 2.1 We say that the perfect Bose gas manifests a s-BEC in boxes Λ, for a fixed total density
ρ if there exists a positive decreasing function η : V 7→ R+, such that limV ↑∞ η(V ) = 0 and we have:

ρη(β, ρ) := lim inf
V ↑∞

∑

{k∈Λ∗

Λ:‖k‖6η(V )}
ρΛ(k) > 0 . (2.24)

Remark 2.1 Recall that the van den Berg-Lewis-Pulé definition of g-BEC is formulated for this case as:

ρ0(β, ρ) := lim
ǫ↓0

lim
V ↑∞

∑

{k∈Λ∗

Λ:‖k‖6ǫ}
ρΛ(k) > 0 , (2.25)

for the total particle densities ρ. Hence the two Definitions 1.1 and 2.1 are evidently not equivalent.
Moreover, we shall show that it allows also to connect this fine mode-structure of the condensate the type
I, II or III with the long-cycles hierarchy, and to show that there exist a relation between the structure of
the condensate and the size of cycles.

The following statement is an evident consequence of Definitions 1.1 and 2.1:

Lemma 2.1 For any function η(V ) we have:

0 6 ρη(β, ρ) 6 ρ0(β, ρ) . (2.26)
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This lemma means that s-BEC imply g-BEC and that the contraposition is true (i.e. that if there is
no g-BEC, then there is no s-BEC).

A simple example of application of the s-BEC approach is the possibility to distinguish the type I, II
or III condensations of the PBG in Casimir boxes Λ with periodic boundary conditions.

Proposition 2.1 If the function η(V ) decreases for V → ∞ faster than 1/V γ for any power γ > 0, then
for ρ > ρc(β) one obtains the limits:

ρη(β, ρ) = ρ0(β, ρ) ≡ ρ − ρc(β) , for α1 < 1/2 ,

ρη(β, ρ) =
1

B
< ρ0(β, ρ) , for α1 = 1/2 ,

ρη(β, ρ) = 0 < ρ0(β, ρ) , for α1 > 1/2 ,

related correspondingly to the g-BEC of types I, II and III. Recall that B is the unique solution of equation
(1.7).

Proof : The proof follows straightforwardly from Definition 2.1 and the explicit form of the mean value
particle density ρΛ(k) asymptotics for the three values of the exponent α1, see [vdB-L] and Introduction.

�

Proposition 2.2 The rate η(V ) = O(1/V 1/2) is an important threshold to refine a discrimination be-
tween different types of g-BEC. If for example, one takes ηδ(V ) = O(1/V (1/2−δ)) such that δ > 0, then
the first and second equations of the Proposition 2.1 rest unchangeable, but for the type III condensation
we obtain:

ρηδ
(β, ρ) = 0 , for α1 > 1/2 + δ ,

ρηδ
(β, ρ) = ρ0(β, ρ) , for 1/2 + δ > α1 > 1/2 .

On the other hand, for α1 = 1/2 and ηΓ(V ) := Γ/V 1/2 one gets a modification of the density of the
type II condensation:

ρηΓ(β, ρ) =
∑

|n1|<Γ/2π

1

λ2
βn2

1 + B
< ρ0(β, ρ) .

For α1 > 1/2 and ηΓ′(V ) := Γ′/V 1−α1 one gets a modification of the density of the type III conden-
sation:

ρηΓ′
(β, ρ) =

∫

ζ∈R+

e−Cζ

ζ1/2λβ
erf(Γ′λβζ/

√
4π) < ρ0(β, ρ) ,

where erf(.) stands for error function and where C is the unique solution of equation (1.8).

Proof :
By virtue of the proof of the Theorems 3.1, 3.2 and 3.3, with the different choices of η(V ), we can

obtain the results.
�

2.2 Classification of s-BEC versus g-BEC

Introduced by van der Berg and Lewis [vdB-L] as a geometric effect due to anisotropy of Λ, the g-BEC
is was discoverd then as the result of an interparticle interaction [Br-Z].

Here we want to justify formally the classification of g-BEC via our concept of s-BEC. It is important
for our future theorems related to s-BEC.

By Definition 2.1 the value of s-BEC for a function η(V ) is given by 2.24.
A question is what is the structure of ρη(β, ρ) versus the structure of ρ0(β, ρ) imposed by Definition

1.2 ? We introduce a possible classification:
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Definition 2.2 If for any functions η(V ) such that ρη(β, ρ) > 0, only a finite number of modes in
Λ∗

η := {k ∈ Λ∗ : ‖k‖ 6 η(V )} are macroscopically occupied then the PBG manifests the s-BEC of type I.

If there exist a function η(V ) such that ρη(β, ρ) > 0 and an infinite number of modes in Λ∗
η are

macroscopically occupied then the PBG manifests the s-BEC of type II.

If for any a function η(V ) no modes in Λ∗ are macroscopically occupied, lout there exist η(V ) such
that ρη(β, ρ) > 0 then the PBG manifests the s-BEC of type III.

It is clear that classification due to Definition 2.2 is more refined than those of Definition 1.2 show
clearly that the first imply the second. Consequently to study the classification of the g-BEC we can use
below the Definition 2.2.

2.3 Concept of the short/long cycles

One of the aim of this note is to generalize the concept of cycles to be able to control the size of short
and long cycles keeping the trace thermodynamic limit scaling. Why do we want to do this? It is for two
reasons: first to adapt the concepts of short and long cycles to the new definition of g-BEC via s-BEC,
and second to find the typical size of long cycles responsible for the g-BEC condensate: i.e. the hierarchy
of long cycles.

Let us first introduce concepts of scaled short/long cycles (s-short/long cycles):

Definition 2.3 We say that a Bose gas manifests s-long cycles if there exists a positive increasing func-
tion of the volume λ : R

+ → N
+, such that limV ↑∞ λ(V ) = ∞ and:

ρlong,λ(β, ρ) := lim
V ↑∞

∑

j>λ(V )

ρΛ,j(β, ρ) > 0, (2.27)

where ρΛ,j(β, ρ) is given by (1.20).

The following statement is an evident consequence of Definitions 1.4 and 2.3:

Lemma 2.2 In the particular case of PBG in Casimir boxes we have:

0 6 ρlong,λ(β, ρ) 6 ρlong(β, ρ), (2.28)

for any function λ(V ). Here ρlong(β, ρ) is given by (1.22).

This lemma imply that the presence of s-long cycles imply the presence of the long cycles (c.f. Defi-
nition 1.4) and that the contraposition is true.

A simple example of application of the s-long cycles approach is a possibility to distinguish the type
I, II or III condensations of the PBG in Casimir boxes Λ with periodic boundary conditions.

Proposition 2.3 If λ(V ) = V δ then for ρ > ρc(β) we obtain:

ρlong,λ(β, ρ) = 0, for δ > 1,

ρlong,λ(β, ρ) = ρ0(β, ρ), for α1 6 1/2, 0 < δ < 1,

ρlong,λ(β, ρ) = ρ0(β, ρ), for α1 > 1/2, 0 < δ < 2(1 − α1),

ρlong,λ(β, ρ) = 0, for α1 > 1/2, 2(1 − α1) < δ.

Proof : Adapting the proof of the Theorems 3.1, 3.2 and 3.3 with the different choices of δ fot
λ(V ) = V δ we can obtain the results.

�

We propose two definitions:

Definition 2.4 If j : R
+ → N

+ is a bounded positive increasing function of the volume, i.e. limV ↑∞ j(V ) <
∞, then ρΛ,j(V )(β, ρ) is the density of particles in the s-short-cycles of size j(V ).

10



Definition 2.5 If j : R
+ → N

+ is a positive increasing function of the volume such that limV ↑∞ j(V ) =
∞, then ρΛ,j(V )(β, ρ) is the density of particles in the s-long-cycles of size j(V ).

There is a natural classification of s-long-cycles:
• if limV ↑∞(j(V )/V ) = 0, we say that ρΛ,j(V )(β, ρ) is the density of particles in the microscopic-long-

cycles of size j(V ),
• if 0 < limV ↑∞(j(V )/V ) < ∞, we say that ρΛ,j(V )(β, ρ) is the density of particles in the macroscopic-

cycles of size j(V )
• if limV ↑∞(j(V )/V ) = ∞, we say that ρΛ,j(V )(β, ρ) is the density of particles in the large-cycles of

size j(V ).

To understand the Definition 2.5, we make the following remark:

Remark 2.2 We say that if j(V ) in (1.20) is of the order V α if 0 < limV ↑∞(j(V )/V α) < ∞, for
example j(V ) = xV α, x > 0. If α < 1, we are in the first case of the classification in Definition 2.5.
This case is important because there is a question: can be have a macroscopic quantity of particles in the
microscopic-long-cycles? If α = 1 we are in the second case of the classification of s-long-cycles and if
α > 1 we are in the third case. Of course, one can take above any increasing function j(V ) including e.g.
ln(V ).

2.4 Hierarchy of s-long cycles

The Definitions 2.4, 2.5 and the Remark 2.2 allow to give a natural classification of scaled-long (s-long)
cycles. We call this classification a hierarchy of cycles, depending on their size.

Definition 2.6 We say that a Bose gas manifests long-microscopic-cycles if there exists two non-negative
increasing functions of the volume λ1 : R

+ → N
+ and λ2 : R

+ → N
+ with limV ↑∞ λ1(V ) = ∞ and

λ2(V ) > λ1(V ), with the property:
lim

V ↑∞
(λ2(V )/V ) = 0,

such that the density:

ρlong(β, ρ|micro) := lim
V ↑∞

λ2(V )
∑

j=λ1(V )

ρΛ,j(β, ρ) > 0.

Definition 2.7 We say that a Bose gas manifests macroscopic-cycles if there exists two non-negative
increasing functions of the volume λ1 : R

+ → N
+ and λ2 : R

+ → N
+ with limV ↑∞(λ1(V )) = ∞ and

λ2(V ) > λ1(V ) with the properties:

0 < lim
V ↑∞

(λ1(V )/V ) < ∞,

0 < lim
V ↑∞

(λ2(V )/V ) < ∞,

such that the density:

ρlong(β, ρ|macro) := lim
V ↑∞

λ2(V )
∑

j=λ1(V )

ρΛ,j(β, ρ) > 0.

In general there are long cycles of any size:

Definition 2.8 We say that a Bose gas manifests the s-long cycles of the order g(V ) where g : R
+ → N

+

is a positive increasing function of the volume, if there exists two non-negative increasing functions of
the volume λ1 : R

+ → N
+ and λ2 : R

+ → N
+ such that limV ↑∞ λ1(V ) = ∞, limV ↑∞ λ1(V ) = ∞ and

λ2(V ) > λ1(V ), with the properties:

0 < lim
V ↑∞

(λ1(V )/g(V )) < ∞,

0 < lim
V ↑∞

(λ2(V )/g(V )) < ∞,
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and the s-long cycles particle density:

ρlong(β, ρ|O(g)) := lim
V ↑∞

λ2(V )
∑

j=λ1(V )

ρΛ,j(β, ρ) > 0.

For the suitable it is important to establish this lemma:

Lemma 2.3 Consider g : R
+ → N

+. If for any non-negative increasing functions of the volume λ1 :
R

+ → N
+ and λ2 : R

+ → N
+ such that limV ↑∞ λ1(V ) = ∞, limV ↑∞ λ1(V ) = ∞ and λ2(V ) > λ1(V ),

with the properties:

lim
V ↑∞

(λ1(V )/g(V )) = 0,

lim
V ↑∞

(λ2(V )/g(V )) = ∞,

and the s-long cycles particle density:

lim
Λ

λ2(V )
∑

j=λ1(V )

ρΛ,j(β, ρ) = ρlong(β, ρ),

then the Bose gas manifest the s-long cycles only of the order g(V ).

Proof :

By our assumptions, for any function f : R
+ → N

+ such that limV ↑∞(f(V )/g(V )) = 0, taking any
functions with the hypothesis of Definition 2.8 one gets:

ρlong(β, ρ|O(f)) = 0,

moreover for any function h : R
+ → N

+ such that limV ↑∞(f(V )/g(V )) = 0, taking any functions
with the hypothesis of Definition 2.8 one gets:

ρlong(β, ρ|O(h)) = 0,

this conclude the proof. �

In the next section we shall see that in the particular case of the PBG in Casimir boxes, the classifi-
cation of s-BEC induces a hierarchy in classification of s-long cycles. By virtue of Theorem 3.1, 3.2 and
3.3 we obtain:

Proposition 2.4 If λ1(V ) = xV δ, x > 0, δ > 0 and λ2(V ) = yV δ, y > x, then we have:

ρlong(β, ρ|macro) = (e−xA − e−yA)ρ0(β, ρ), for α1 < 1/2, δ = 1,

ρlong(β, ρ|macro) = (e−xB − e−yB)ρ0(β, ρ), for α1 = 1/2, δ = 1,

ρlong(β, ρ|micro) = (e−xC − e−yC)ρ0(β, ρ) for α1 > 1/2, δ = 2(1 − α1).

where A is the unique solution of the equation (1.6), B is the unique solution of the equation (1.7) and
C is the unique solution of the equation (1.8).

The proof of this statement follows straightforwardly from (3.35), (3.42) and (3.49).
This proposition gives an illustration of the hierarchy of cycles, that we are going to discuss in details

in the next Section 3.

3 Does generalized BEC of the types I, II, III imply a hierarchy
of long cycles?

In this section we apply our concept of s-BEC and the notion of the s-long cycles to study the Bose gas
in Casimir boxes. This allows to relate the fine structure of g-BEC and s-BEC (type I, II or III) with
hierarchy of long cycles. Recall that we are dealing with Casimir boxes Λ = V α1 × V α2 × V α3 , α1 >

α2 > α3 > 0, α1 + α2 + α3 = 1, |Λ| = V .
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3.1 Generalized BEC in the case : α1 < 1/2

In this case the geometry is close to the usual cubic box. Our main result here is that the g-BEC of type
I implies the macroscopic-cycles in the fundamental state.

Theorem 3.1 If one takes the Casimir boxes Λ with 1/2 > α1, then for a fixed density of particles
ρ > ρc(β) the chemical potential is µΛ = −A/βV + o(1/V ), with A > 0. This implies the s-BEC of type I
as well as the g-BEC in the zero mode (ground state) together only with macroscopic-cycles in this mode.
Here A is the unique solution of equation (1.6).

Proof :

Taking into account (1.1) we denote the family of Casimir boxes by ΛI with the corresponding dual space:

Λ∗
I :=

{

k ∈ R
3 : k = (

2πn1

V α1
,
2πn2

V α2
,
2πn3

V α3
); nν ∈ Z

1; 1/2 > α1

}

. (3.29)

Let Λ∗
0,I be a subset of Λ∗

I define by:

Λ∗
0,I = {k ∈ Λ∗

I : ‖k‖ 6 ηI(V )}, (3.30)

where ηI(V ) = 1/V . Then we have Λ∗
0,I = {k = 0}.

Consider the total density of particles:

ρ := lim
V ↑∞

ρΛ(β, µΛ) = ρshort(β, ρ) + ρlong(β, ρ), (3.31)

c.f. (1.21), (1.22).
We can decompose the density of particles in long-cycles into two parts defined by:

ρlong(β, ρ) := ρlong(Λ
∗
I\Λ∗

0,I) + ρlong(Λ
∗
0,I), (3.32)

where ρlong(Λ
∗
I\Λ∗

0,I) is the limiting density of particles in long-cycles outside Λ∗
0,I :

ρlong(Λ
∗
I\Λ∗

0,I) := lim
M→∞

lim
V ↑∞

(
∑

k∈Λ∗

I\Λ∗

0,I

∞
∑

j=M

ρΛ,j(k)), (3.33)

where the spectral repartition of particles density in j-cycles is:

ρΛ,j(k) :=
1

V
ejβµΛe−jβǫΛ(k), (3.34)

and µΛ is the solution of equation ρ = ρΛ(β, µ).
First we shall estimate the density of particles in long-cycles of Λ∗

I\Λ∗
0,I by (3.33) and asymptotic for

µΛ we get:

ρlong(Λ
∗
I\Λ∗

0,I) = lim
M→∞

lim
V ↑∞

(
∑

k∈Λ∗

I\Λ∗

0,I

∞
∑

j=M

1

V
ejβµΛe−jβǫΛ(k)),

= lim
M→∞

∞
∑

j=M

1

(2π)3

∫

R3

dke−jπλ2
βk2

,

= 0.

Consequently there is no long cycles in Λ∗
I\Λ∗

0,I and since our last estimate is valid for any M → ∞
we conclude that there are no s-long cycles in Λ∗

I\Λ∗
0,I (see Definition 2.3).
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Now consider the modes in Λ∗
0,I , we would like to apply Lemma 2.3 to prove that the PBG manifests

s-long cycles of the order O(V ), i.e. macroscopic-cycles (see Definition 2.7).
For any positive increasing functions λ1 : R

+ → N
+ and λ2 : R

+ → N
+ such that limV ↑∞ λ1(V )/V = 0

and limV ↑∞ λ2(V )/V = ∞, since µΛ = −A/βV + o(1/V ), with A > 0 we have:

ρlong(Λ
∗
0,I |macro) := lim

V ↑∞

λ2(V )
∑

j=λ1(V )

1

V
ejβµΛ

= lim
V ↑∞

(eβλ1(V )µΛ − eβλ2(V )µΛ)

e−βµΛ − 1

= lim
V ↑∞

1

e−βµΛ − 1
= lim

V ↑∞
ρΛ(Λ∗

0,I), (3.35)

where ρΛ(Λ∗
0,I) :=

∑

k∈Λ0,I
ρΛ(k) is the density of particles in Λ∗

0,I .

We can easily calculate ρΛ(Λ∗
0,I):

ρΛ(Λ∗
0,I) =

1

V

1

e−βµΛ − 1
=

1

V

1

eβ A
βV +o( 1

V ) − 1
=

1

A
+ o(

1

V
). (3.36)

So by virtue of (3.32), (3.35) and (3.36):

ρlong(Λ
∗
0,I |macro) = ρlong(β, ρ) =

1

A
, (3.37)

We know by Theorem 1.2 that the density of particles in short-cycles is equal to the critical density.
Consequently by virtue of (3.31), (3.37) and by Lemma 2.3 we can conclude the proof of the theorem.

�

3.2 Generalized BEC in the case : α1 = 1/2

In this particular case of geometry the boxes are anisotropic with α1 = 1/2. Our main result is the
theorem about generalized Bose-Einstein condensation of type II due to presence of macroscopic-cycles
in an infinite (in thermodynamical limit) number of modes.

Theorem 3.2 If one takes the Casimir boxes with 1/2 = α1, then for a fixed density of particles ρ > ρc(β)
the chemical potential is µΛ = −B/βV + o(1/V ), with B > 0. This implies the s-BEC of type II as well
as the g-BEC in an infinite (in thermodynamical limit) number of modes together only with macroscopic-
cycles in these modes. Here B is the unique solution of equation (1.7).

Proof :

Taking into account (1.1) we denote the family of Casimir boxes by ΛII and the dual space is:

Λ∗
II =

{

k ∈ R
3 : k = (

2πn1

V α1
,
2πn2

V α2
,
2πn3

V α3
); nν ∈ Z

1; 1/2 = α1

}

, (3.38)

Let Λ∗
0,II be a subset of Λ∗

II

Λ∗
0,II = {k ∈ Λ∗

II : ‖k‖ 6 ηII(V )} , (3.39)

where:

ηII(V ) :=
2π[cV ǫ]

V 1/2
, 0 < ǫ < 1/2, c ∈ R

+\{0}, (3.40)

here [X ] denotes an integer part of X . We introduce c in (3.40) to make combination in numerator
dimensionless (e.g. c = 1/λ3ǫ

β ).
We show that this set contains the whole value of the condensate as well as particles involved in the

long-cycles. With the definition of ηII(V ) we see that the number of modes in this set is of the order
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O(V ǫ) that goes to infinity, with increasing volume.

Again we decompose the density of particles in long cycles into two parts:

ρlong(β, ρ) = ρlong(Λ
∗
II\Λ∗

0,II) + ρlong(Λ
∗
0,II). (3.41)

By the same argument as in the proof of Theorem 3.1, one find that there are no long-cycles out of
Λ∗

0,II .

Now consider the modes in Λ∗
0,II . We would like to apply the same strategy than the proof of the

Theorem 3.1: we use Lemma 2.3 to prove that the PBG manifests s-long cycles of the order O(V ), i.e.
macroscopic-cycles (see Definition 2.7).

For any positive increasing functions λ1 : R
+ → N

+ and λ2 : R
+ → N

+ such that limV ↑∞ λ1(V )/V = 0
and limV ↑∞ λ2(V )/V = ∞, since µΛ = −B/βV + o(1/V ), with B > 0 we have:

ρlong(Λ
∗
0,II |macro) := lim

V ↑∞

1

V

∑

k∈Λ∗

0,II

λ2(V )
∑

j=λ1(V )

ρΛ,j(k)

= lim
V ↑∞

∑

k∈Λ∗

0,II

(eβλ1(V )µΛ − eβλ2(V )µΛ)

eβ(ǫΛ(k)−µΛ) − 1

= lim
V ↑∞

∑

k∈Λ∗

0,II

1

eβ(ǫΛ(k)−µΛ) − 1

= lim
V ↑∞

(
∑

k∈Λ∗

0,II

ρΛ(k)) =: ρ(Λ∗
0,II). (3.42)

We can easily calculate ρ(Λ∗
0,II):

ρ(Λ∗
0,II) = lim

V ↑∞
(

[cV ǫ]
∑

n1=−[cV ǫ]

1

V

1

eβ(4π2n2
1/V +B/V +O(1/V )) − 1

=
∑

n1∈Z1

1

B + λ2
βn2

1

. (3.43)

So by virtue of (3.41), (3.42) and (3.43):

ρlong(Λ
∗
0,II |macro) = ρlong(β, ρ) =

∑

n1∈Z1

1

B + λ2
βn2

1

, (3.44)

We know by Theorem 1.2 that the density of particles in short-cycles is equal to the critical density.
Consequently by virtue of (3.31), (3.44) and by Lemma 2.3 we can conclude the proof of the theorem.
�

3.3 Generalized BEC in the case : α1 > 1/2

We study the anisotropic boxes with α1 > 1/2. Our main result is the theorem about generalized
Bose-Einstein condensation of type III due to presence of long-microscopic-cycles in an infinite (in ther-
modynamical limit) number of modes.

Theorem 3.3 If one takes the Casimir boxes Λ = V α1 × V α2 × V α3 with 1/2 > α1, then for a fixed
density of particles ρ > ρc(β) the chemical potential is µΛ = −C/βV δ + o(1/V δ), with δ = 2(1−α1) and
C > 0. This implies the s-BEC of type III as well as the g-BEC in an infinite (in thermodynamical limit)
number of modes together only with long-microscopic-cycles of the order V δ in these modes. Here C is
the unique solution of equation (1.8).
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Proof :

Taking into account (1.1) we denote the family of Casimir boxes ΛIII and the dual spaces are defined by:

Λ∗
III =

{

k ∈ R
3 : k = (

2πn1

V α1
,
2πn2

V α2
,
2πn3

V α3
); ni ∈ Z

1; α1 > 1/2

}

. (3.45)

Let Λ∗
0,III be a subset of Λ∗

III :

Λ∗
0,III = {k ∈ Λ∗

III : ‖k‖ 6 ηIII(V )} , (3.46)

where:

ηIII(V ) :=
2π[c′V 2α1−1+ǫ]

V α1
= O(

V ǫ

V δ/2
), 0 < ǫ < δ/2, c′ ∈ R

+,∗, (3.47)

here δ = 2(1 − α1) < 1 and [X ] denotes an integer part of X . We introduce c′ in (3.47) to make

combination in numerator dimensionless (e.g. c′ = 1/λ
3(2α1−1+ǫ)
β ).

We show that Λ∗
0,III contains whole value of the condensate as well as the particles involved into long

cycles. Before to start the formal proof let us make a remark about qualitative difference between the
cases α1 > 1/2 and α1 6 1/2. With the definition of ηIII(V ) (3.47), we see that the number of states
in Λ∗

0,III is of the order O(V 2α1−1+ǫ) that goes to infinity, with increasing volume but there are much
more states in the condensate than in Λ∗

0,II (defined by 3.39). Heuristically one can say that we have

long-cycles of size of the order O(V δ) in a number of modes of the order O(V 2α1−1). Indeed the number
of particles in those s-long cycles is of the order O(V δ)O(V 2α1−1) = O(V ), which is macroscopic. For
this reason there is a macroscopic condensate ( for which order of particles is O(V )) because there is
accumulation of microscopic condensates (for which order of particles is smaller that O(V ), precisely here
of the order O(V 2α1−1)) as well as accumulation of long-microscopic-cycles in Λ∗

0,III (on each modes of
the condensate).

Again we decompose the density of particles in long cycles into two parts:

ρlong(β, ρ) = ρlong(Λ
∗
III\Λ∗

0,III) + ρlong(Λ
∗
0,III). (3.48)

By the same argument as in the proof of Theorem 3.1, one find that there are no particles involved
in long cycles out of Λ∗

0,III .

Now consider the modes in Λ∗
0,III . In this case, we would like to apply Lemma 2.3 to prove that the

PBG manifests s-long cycles of the order O(V δ), δ = 2(1−α1) < 1, i.e. microscopic-cycles (see Definition
2.6 and 2.8).

For any positive increasing functions λ1 : R
+ → N

+ and λ2 : R
+ → N

+ such that limV ↑∞(λ1(V )/V δ) =
0 and limV ↑∞(λ2(V )/V δ) = ∞, since µΛ = −C/βV δ + o(1/V δ) with δ = 2(1 − α1) and C > 0 we have:

ρlong(Λ
∗
0,III |micro) := lim

V ↑∞

1

V

∑

k∈Λ∗

0,III

λ2(V )
∑

j=λ1(V )

ρΛ,j(k)

= lim
V ↑∞

∑

k∈Λ∗

0,III

(eβλ1(V )µΛ − eβλ2(V )µΛ)

eβ(ǫΛ(k)−µΛ) − 1

= lim
V ↑∞

(
∑

k∈Λ∗

0,III

ρΛ(k)) =: ρ(Λ∗
0,III). (3.49)

We can easily calculate ρ(Λ∗
0,III):

ρ(Λ∗
0,III) = lim

V ↑∞





1

V δ

1

V 2α1−1

∞
∑

j=1

e−(j/V δ)C

[c′V 2α1−1+ǫ]
∑

n1=−[c′V 2α1−1+ǫ]

e−πλ2
β(j/V δ)(n1/V 2α1−1)2



 . (3.50)

16



The precedent expression is the limit of double Darboux-Riemann sums. So in thermodynamical limit
we obtain a double integral:

ρ(Λ∗
0,III) =

∫

R+

dζe−ζC

∫

R

dξe−ζπλ2
βξ2

=

∫

R+

dζ
e−ζC

√
ζλβ

=
π

C1/2λβ
. (3.51)

Hence:
ρlong(Λ

∗
0,III |micro) = ρlong(β, ρ) =

π

C1/2λβ
, (3.52)

by virtue of (3.48), (3.49) and (3.51).
We know by Theorem 1.2 that the density of particles in short-cycles is equal to the critical density.

Consequently by virtue of (3.31), (3.52) and by Lemma 2.3 we can conclude the proof of the theorem.
�

4 Does generalized BEC I, II, III imply a hierarchy of ODLRO?

In the Introduction we presented three concepts related to the BEC: g-BEC, long cycles and ODLRO. We
present in Sections 2 and 3 two new concepts: scaled BEC (s-BEC) and scaled short/long cycles (s-long
cycles) associated with g-BEC and short/long cycles. Thus it seems consistent to introduce a concept of
scaled ODLRO (s-ODLRO) via scaling argument to study the hierarchy of ODLRO.

4.1 Definition of ODLRO via scaling argument

Recall that the generalized criterion of ODLRO is that it exists ODLRO if and only if there is g-BEC,
see Theorem 1.1. The standard definition of ODLRO is formulated in Definition 1.3:

σ(β, ρ) := lim
‖x−x′‖↑∞

σ(β, ρ; x, x′),

where σ(β, ρ; x, x′) is the two-point correlation function between two points x and x′ after thermody-
namical limit. Notice that this definition can be not satisfactory when we use the definition of s-BEC,
because we do not precise what are the scaling size of the long correlation. It seems to be interesting
to take thermodynamical limit at the same time as we take the two point x and x′ at infinite disctance.
This is analogous to the scaling approach to long cycles.

A natural question is whether we are able to detect different types of s-BEC (as well as g-BEC) with
the help of a generalized criterion of ODLRO based on the scaling argument? We call it a scaled ODLRO
(s-ODLRO).

Definition 4.1 The PBG manifests a s-ODLRO if there exist a vector-valued function of volume X :
V 7→ X(V ) ∈ Λ such that limV ↑∞ |Xν(V )| = ∞, ν = 1, 2, 3 and:

σX(β, ρ) := lim
V ↑∞

(σΛ,X)(V ) > 0, (4.53)

where (σΛ,X)(V ) is the scaled two-point correlation function (s-two-point correlation function) for x(V ), x′(V ) ∈
Λ, see (1.10):

(σΛ,X)(V ) := σΛ(β, ρ; x(V ) − x′(V )) =
∑

k∈Λ∗

ρΛ(k)eik·X(V ), (4.54)

here X(V ) = (x − x′)(V ) ∈ Λ.

Remark 4.1 By (1.1) and (1.2) one can write (1.10) like:

σ(β, ρ; x, x′) =

∞
∑

j=1

ejβµΛ

3
∏

ν=1

θ3(
π

V 2αν
(xν − x

′

ν), e−
λ2

β

πV 2αν ) , (4.55)

where θ3(u, q) :=
∑

n∈Z1 qn2

e2inu is the Elliptic Theta function.
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This imply the following proposition:

Proposition 4.1 The two-point correlation function as well as the s-two-point correlation function by
(4.54) (see Definition 4.1) is a non-negative symmetric and Lν-periodic function of xν − x′

ν , ν = 1, 2, 3
on R, decreasing/increasing on [nLν, nLν + Lν/2] ⊂ R

+, n ∈ N, respectively on [nLν + Lν/2, nLν] ⊂
R

+, n ∈ N (monotone on the semi-periods).

Proof :
Those different properties become by the properties of the Elliptic Theta function [A-S]. �

The following statement is an evident consequence of Definitions 1.3 and 4.1:

Lemma 4.1 For any vector-valued X(V ) we have:

0 6 σX(β, ρ) 6 σ(β, ρ) . (4.56)

This Lemma means that the s-ODLRO implies standard ODLRO and that the contraposition is true.

4.2 Hierarchy and anisotropy of ODLRO, delocalization of the condensate

Here we use Definition 4.1 to analysis the s-BEC and the s-long cycles in the Casimir boxes. Notice that
the usual criterion of ODLRO is such that we have no indication of the scale of long correlations because
we study them correlation after thermodynamical limit.

We introduce a classification of the s-OLDRO which is formally defined by:

Definition 4.2 The PBG manifests the macroscopic-ODLRO in the direction xν , if there exist a vector
X(V ) = (X1(V ), X2(V ), X3(V )) ∈ Λ such that: limV ↑∞ |Xν(V )|/V αν > 0 and σX(β, ρ) > 0.

Definition 4.3 If the PBG don’t manifests the macroscopic-ODLRO in the direction xν although the
PBG manifests the s-ODLRO, then it manifests the microscopic-ODLRO in the direction xν .

With the periodic boundary conditions the system is homogeneous and so there is no localization of
the condensate in the space contrary to the Dirichlet boundary conditions case. However there is the
delocalization concept that appears naturally. To this end we study the correlations between a fixed
point and an other moving to infinity at the same time as the volume (when we take thermodynamical
limit). By virtue of the precedent Definitions 4.2 and 4.3 the knowledge of the vector X(V ) ∈ Λ such that
σX(β, ρ) > 0 (4.53) give a geometric view of the condensate which can be associated with an ellipsoid
cloud in three dimension.

The next theorem gives the decreasing laws of the correlation function on the pseudo-frontiers of the
condensate cloud :

Theorem 4.1 Consider the grand-canonical PBG in Casimir boxes Λ = V α1 × V α2 × V α3 and the fixed
density of particles ρ. Let X : V ∈ R

+ 7→ X(V ) = (X1(V ), X2(V ), X3(V )) ∈ Λ, limV ↑∞ Xν(V ) =
∞, 0 < Xν(V ) 6 V αν /2, ν = 1, 2, 3. Then we have the following results concerning the s-ODLRO, see
(4.53):

σX(β, ρ) = 0, for ρ < ρc(β), (4.57)

Whereas for ρ > ρc(β) we get:
for α1 < 1/2:

σX(β, ρ) = ρ0(β) , (4.58)

for α1 = 1/2:

σX(β, ρ) = ρ0(β), for lim
V ↑∞

(X1(V )/xV α1) = 0 , (4.59)

=
∑

n1∈Z1

cosπn1x

λ2
βn2

1 + B
< ρ0(β), for X1(V ) = xV α1/2, 0 < x < 1, , (4.60)
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for α1 > 1/2:

σX(β, ρ) = ρ0(β), for lim
V ↑∞

(X1(V )/xV δ) = 0, δ = 2(1 − α1) , (4.61)

=
λβ

√
π

C
e−x

√
c/

√
πλβ < ρ0(β), for X1(V ) = xV δ/2, x > 0 , (4.62)

= 0, for lim
V ↑∞

(X1(V )/V δ/2) = 0 . (4.63)

Proof :

To ensure that the correlation function be monotonously decreasing for periodic boundary conditions,
we suppose that the arguments 0 < Xν 6 1

2V αν , ν = 1, 2, 3, see Proposition 4.1.

The first step of the proof is to study the case ρ < ρc(β):
Since σ(β, ρ) = 0 (Theorem 1.1), by Lemma 4.1 we get σX(β, ρ) = 0 for any vector X(V ) ∈ Λ.

The second step is to study the case ρ > ρc(β):

For α1 < 1/2 by Definition 4.1 we have:

σX(β, ρ) = lim
V ↑∞





∑

k∈Λ∗

0,I

ρΛ(k)eik.X(V )



 + lim
V ↑∞





∑

k∈Λ∗

I\Λ∗

0,I

ρΛ(k)eik.X(V )





= lim
V ↑∞





1

V

∞
∑

j=1

e−Aj/V



 + lim
V ↑∞





∑

k∈Λ∗

I\Λ∗

0,I

ρΛ(k)eik.X(V )



 (4.64)

where Λ∗
I is the dual vector space given by equation (3.29) and Λ∗

0,I = {k = 0} is the subset corresponding
to the condensate defined by (3.30). The first term of (4.64) is equal to ρ0(β, ρ) by virtue of Theorem
3.1, so given that σ(β, ρ) = ρ0(β, ρ) (Theorem 1.1) and by Lemma 4.1 the second term of (4.64) is null
and we get the result.

For α1 = 1/2 by Definition 4.1 we obtain:

σX(β, ρ) = lim
V ↑∞





∑

k∈Λ∗

0,II

ρΛ(k)eik.X(V )



 + lim
V ↑∞





∑

k∈Λ∗

II\Λ∗

0,II

ρΛ(k)eik.X(V )





= lim
V ↑∞





1

V

∞
∑

j=1

e−Bj/V
∑

n1∈Z1

e−πλ2
βn2

1(j/V )eiX1(V )(n1/V )



 + lim
V ↑∞





∑

k∈Λ∗

II\Λ∗

0,II

ρΛ(k)eik.X(V )



(4.65)

where Λ∗
II is the dual vector space given by equation (3.38) and Λ∗

0,II is the subset corresponding to the
condensate defined by (3.39).

If limV ↑∞(X1(V )/V α1) = 0, the first term in the right-hand side of (4.65) is equal to ρ0(β, ρ) by
virtue of Theorem 3.2. So given that σ(β, ρ) = ρ0(β, ρ) (Theorem 1.1) and by Lemma 4.1 the second
term in (4.65) is null and we get the result.

Let limV ↑∞(X1(V )/V α1) = x, 0 < x 6 1/2. Since the sum inside the limit in the first term of the
right-hand side of (4.65) is a Darboux-Riemann sum, one get:

∫

R+

dχe−Bχ
∑

n1∈Z1

e−πλ2
βn2

1χeixn1 =
∑

n1∈Z1

cosπn1x

λ2
βn2

1 + B

One can verify that the precedent expression is a decreasing function of x for 0 < x 6 1/2 and so that
the first part of (4.65) is a decreasing function of Xν , ν = 1, 2, 3 on [0, Lν/2]. Since the s-two-point
correlation function is a decreasing function of Xν , ν = 1, 2, 3 the second part of (4.65) is too. The
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fist term of (4.65) is decreasing and the s-two point correlation function is a decreasing function, so
the second term of (4.65) is decreasing too. Moreover, we have shown that for limV ↑∞(X1(V )/V α1) = 0
the second part of (4.65) is null consequently by the precedent arguments the second part of (4.65) is null.

For α1 > 1/2 by Definition 4.1 and by virtue of (3.50) we have:

σX(β, ρ) = lim
V ↑∞





∑

k∈Λ∗

0,III

ρΛ(k)eik.X(V )



 + lim
V ↑∞





∑

k∈Λ∗

III\Λ∗

0,III

ρΛ(k)eik.X(V )





= lim
V ↑∞





1

V δ

1

V 2α1−1

∞
∑

j=1

e−Cj/V δ

[c′V 2α1−1+ǫ]
∑

n1=−[c′V 2α1−1+ǫ]

e−πλ2
β(j/V δ)(n1/V 2α1−1)2eiX1(V )n1/V α1





+ lim
V ↑∞





∑

k∈Λ∗

III\Λ∗

0,III

ρΛ(k)eik.X(V )



 (4.66)

where Λ∗
III is the dual vector space given by equation (3.45) and Λ∗

0,III is the subset corresponding to
the condensate defined by (3.46).

If limV ↑∞(X1(V )/V δ/2) = 0, the right-hand side of (4.66) is equal to ρ0(β, ρ) by virtue of Theorem
3.3. Since σ(β, ρ) = ρ0(β, ρ) (Theorem 1.1), by Lemma 4.1 the second term of (4.66) is null and we get
the result.

Let limV ↑∞(X1(V )/V δ/2) = x, x > 0, δ = 2(1− α1). Then the sum inside the limit in the first term
of (4.66) is a double Darboux-Riemann sum, which implies:

∫

R+

dξe−Bξ

∫

χ∈R

dχe−πλ2
βξχ2

eixχ =
λβ

√
π

C
e−x

√
c/

√
πλβ .

By the same argument as in the case α1 = 1/2 the second part of (4.66) is null (the precedent expression
is a decreasing function of x for x > 0) and thus we obtain the result.

Let limV ↑∞(X1(V )/V δ/2) = ∞. since the correlation function is decreasing function for 0 < Xν 6

V αν /2 (see Proposition 4.1), it is uniformly bounded by the precedent estimate with X(V ) = xV δ, x > 0:

∫

R+

dξe−Bξ

∫

χ∈R

dχe−πλ2
βξχ2

eixχ + lim
V ↑∞





∑

k∈Λ∗

III\Λ∗

0,III

ρΛ(k)eik.X(V )



 .

When x tends to infinity, the first part goes to zero (By Riemann-Lesbegue theorem) then and the prece-
dent arguments show that the second part is also null. This conclude the proof. �

We give here the classification of the s-ODLRO free three cases of Casimir boxes:

Theorem 4.2 If one takes the Casimir boxes with α 6 1/2 then for a fixed density ρ > ρc(β) the PBG
manifests macroscopic-ODLRO in the three directions. If α > 1/2 then for a fixed density ρ > ρc(β) the
PBG manifests microscopic-ODLRO in direction xν and macroscopic-ODLRO in the other directions.

Proof :

By Definitions 4.2, 4.3, and Theorem 4.1, we obtain the proof of the theorem. �

It is remarkable that for type I and II of g-BEC in Casimir boxes corresponding to cases α1 6 1/2 the
condensate is spatially macroscopic whereas for the case α1 > 1/2 the condensate is spatially macroscopic
in two directions but microscopic in the most anisotropic direction x1. It is naturally to guess that there
is a link between the size of s-long cycles and the size of the spatial delocalization of the condensate. We
can see this explicitly in [U] where the competition between the delocalization X and the size of cycle j
indicate that the maximal size of the delocalizations is of the order of the square root of the size of the
s-long cycles (e.g. V δ/2, δ = 2(1 − α1) in the case of the PBG in Casimir boxes with α1 > 1/2).
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5 Concluding remarks

In this paper we introduce a new concept of BEC which is called the scaled BEC (s-BEC) to adapt
the London scaling approach to the problem of g-BEC, which introduce the van den Berg-Lewis-Pulé
classification of BEC in three types (I,II,III) illustrated in the particular case of the PBG in Casimir
boxes. This is a first formal step necessarily to study with more finely the different case of g-BEC for the
PBG in Casimir boxes, we can see this by virtue of Propositions 2.1 and 2.2.

The fundamental question that we put in this paper is: what is the relation of different types of g-BEC
(I,II,III) with the long cycles and with the ODLRO ?

We give the following answers concerning the PBG in Casimir boxes:
- we introduced new concepts of short/long cycles called scaled short/long cycles (s-short/long cycles,

see Definition 2.3) to distinguish the different types of g-BEC, see Theorems 3.1, 3.2 3.3 and Remark 2.2
and Proposition 2.4. This paper is based on the estimation of the size of s-long cycles in the condensate,
see Definitions 2.4 at 2.8. If the size of s-long cycles is macroscopic, then the g-BEC is of type I or II and
if the s-long cycles are microscopic, then the g-BEC is of type III.

- we introduced new concept of ODLRO called scaled ODLRO (s-ODLRO, see Definition 4.1), to
distinguish the different types of g-BEC, see Theorems 4.1, 4.2. Our arguments are based on the estimate
of the delocalization of the condensate, see Definitions 4.2, 4.3. If the delocalization is macroscopic in the
three directions, then the g-BEC is of type I or II, and if in one of the three dimension the delocalization
is microscopic, then the g-BEC is of type III.

Some technical remarks. For simplicity we consider here the PBG with periodic boundary conditions
for simplicity but one can adapt present paper to Dirichlet or Newman boundary conditions. It does not
change the concept and the results. However if one take attractive boundary conditions, see [V-V-Z],
we can suppose that the result should be different, since in this case the condensate is localized on two
modes and it is not homogeneous. One can suppose that the s-long cycles are macroscopic but the most
interesting is the delocalization of the condensate.

We see that the s-long cycles are more fine and more adapted to BEC classification than the s-ODLRO
and s-BEC since by virtue of Proposition 2.2, Proposition 2.4 and Theorem 4.1, only s-long cycles can
identify the condensate of type I on the zero mode because it can decompose the sum over cycles with
a function well selected. However only the s-BEC can discriminate evidently type I and II since type II
provide by an infinite number of modes. One can see that the proof of the Theorem I, II and III result of
an analysis of geometric series easily done via s-long cycles, for this reason we can say that s-long cycles
is a well adapt technic to study classification of BEC. Another reason is that the concept of cycles is
independant of the representation of the gas (Feynman-Kac versus spectral representation). Besides we
studied s-ODLRO with spectral approach but it is important to remark that we can do this analysis in
the Feynman-Kac representation of partition function. In this framework it is the relation between s-long
cycles and the delocalization of the condensate which appeared, see formula (A10) in [U], we have a com-

petition between long cycles and spatial delocalization (KΛ(jβ; x, x′) = 1
λ3

βj3/2

∑

z∈Z3 e−(x−x′+Lz)2/2λ2
βj ,

where KΛ(β) is the kernel of the Gibbs semigroup e−jβT N=1
Λ , for the PBG with periodic boundary con-

ditions in the cubic case Λ = L3).

Why this approach is interesting ? One can see that the concept of g-BEC is well formulated for
the PBG but not for the interacting Bose gas. Then how to study the classification of BEC for the
interacting Bose gas if we have no more indications about the spectral properties of the gas? (Take e.g.
an interaction U =

∑

k∈Λ∗ gN2
k/2V, g > 0, see [Br-Z]). This problem can be solved using the approach

developed in this paper. Thus the next step will be the application of these new methods for some models
of interacting Bose gas.

We took here Casimir boxes to illustrate our concepts. But we can use van den Berg boxes which is a
generalization of Casimir boxes (ΛL = L1(L)×L2(L)×L3(L) with VL := |ΛL| = L1(L)L2(L)L3(L) where
Li(L) are functions of a parameter L such that limL→∞ Li(L) = ∞). These boxes are very interesting
because with particular choice of the functions Li(L), e.g. (see[vdB]) L1(L) = L2(L) = eL, L3(L) = L
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with Diriclet boundary conditions, for ρc(β) < ρ < ρm(β) the g-BEC is of type III and for ρ > ρm(β) it
seems to have the coexistence of g-BEC of type I and type III, where ρc(β) is the critical density defined
by (1.5) and ρm(β) is a critical density defined in this particular case by ρm(β) = ρc(β) + 1/βπ. In fact
ρc(β) divided regimes condensate - non condensate and ρm(β) divided the different types of generalized
BEC. It is natural now to study this curious phenomena using our approach, which will be a subject of
another paper.

An interesting perspective is the study of the finite-size scaling effect in the Bose gas via this scaling
approach [B-D-T]. Indeed, we can estimate the impact of the s-long cycles to the finite-size corrections
to the grand canonical pressure. An application is the calculation of the impact of the s-long cycles
(s-BEC) for the Casimir effect in the perfect Bose gas between two slabs [M-Z]. An other application
is the study of the scaling formation of the condensate around the critical point where the quantity of
particles in s-long cycles are not visible in thermodynamical limit but the number is infinite (e.g. of the
order O(V 2/3) which is microscopic but large).

The concept of s-ODLRO can be interesting to study of the correlation function of the condensate for
the Bose gas in weak harmonic trap (which corresponding to the experimental situation for cold atoms
confined in magnetic trap). In fact the scaling laws (size of the spatial delocalization X(V ) and energetic
delocalization η(V )) could give us a scaling characterization of the geometry of the condensate cloud in
this system. In another paper we will adapt the scaling approach to this system.
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