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Abstract

We analyse the concept of generalized Bose-Einstein condensation (g-BEC),
known since 1982 for the perfect Bose gas (PBG) in the Casimir (or anisotropic)
boxes. Our aim is to establish a relation between this phenomenon and two concepts:
the concept of long cycles and the Off-Diagonal-Long-Range-Order (ODLRO), which
are usually considered as some adequate way to describe the standard BEC on the
ground state for the cubic boxes. First we show that these three criterions are
equivalent in this latter case. Then, basing on a scaling approach, we revise formu-
lation of these concepts to prove that the classification of the g-BEC into three types
I,II,III, implies a hierarchy of long cycles (depending on their size scale) as well as
a hierarchy of ODLRO which depends on the coherence length of the condensate.
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2Université de Provence - Aix-Marseille I, Université de la Méditerranée - Aix-Marseille II, Université
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1 Introduction

About the Bose-Einstein condensation

The Bose-Einstein condensation (BEC) predicted in 1925 was discovered first in super-
fluid 4He in 1975 in deep-inelastic neutron scattering experiences, see [Z-B] for historical
remarks. Since 1995 it attracts a lot of attention of theoretical and mathematical physi-
cists motivated by experiments with ultra-cold gases in traps [L-S-S-Y].

Recently experimentalists discovered some new peculiarities of the Bose-Einstein con-
densation in very anisotropic traps [M-H-U-B]. This may to imply in certain cases a
(what they called) fragmentation of the condensate. In fact this phenomenon was pre-
dicted long time ago by H.Casimir [C]. Then it was carefully studied by mathematical
physicists and now it is known under the name of the generalized Bose-Einstein conden-
sation (g-BEC) à la van den Berg-Lewis-Pulé [Z-B]. After the first publication by M.van
den Berg and J.Lewis in 1982 [vdB-L], a set of articles treated different cases of the
Casimir’s anisotropic box, boundary conditions and external potentials, [vdB], [vdB-L],
[vdB-L-P], [vdB-L-L] has appeared. They classified the Bose-Einstein condensation into
three types. If a finite/infinite number of one-particle kinetic-energy quantum states are
macroscopically occupied, then the Bose gas manifests g-BEC of type I/II. If there are no
states macroscopically occupied, although in the thermodynamical limit a macroscopic
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number of particles is accumulated in the ground (zero-mode) state, then the Bose gas
manifests g-BEC of the type III.

It is worthy to note that not only the box anisotropy or boundary conditions, but also
the interaction between particles is able to modify the type of the condensate, see [M-V]
and [Br-Z].

In 1953 R.Feynman [F] introduced a concept of cycles by rewriting the partition
function of the boson gas using the Bose-statistic. In the Feynman-Kac representation,
cycles are closed random Wiener trajectories. This was a mathematical framework for
the path-integral formulation of the quantum statistical mechanics. Heuristically at low
temperature (or at high density), bosons start to form a cycles of different sizes and below
certain critical point, the infinite cycles appear in the Feynman-Kac representation. Since
this Feynman observation, it is a common wisdom to count this equivalent to the (type I)
Bose-Einstein condensation [P-O]. For the perfect Bose gas it was proven in [S] and for
some weakly interacting Bose gases only recently in [D-M-P] and [U].

In 1956, O.Penrose and L.Onsager [P-O] introduced, via a reduced density matrix, the
concept of the Off-Diagonal-Long-Range-Order (ODLRO) to give an alternative descrip-
tion of the Bose-Einstein condensation in ideal or interacting Bose-gases. They worked out
a convincing arguments that existence of the ODLRO is equivalent to the Bose-Einstein
condensation. In fact the ODLRO measures in boson systems a correlation between two
infinitely distant points. Recently in papers [U] and [U2] a contact between the ODLRO
and the existence of the long cycles was studied.

Conceptual and physical problems

Although the ODLRO is usually considered as a criterion of (type I) BEC, it is not
evident that the ODLRO is equivalent to the generalized BEC. Moreover, it is not evident
that the presence of long cycles is equivalent to generalized BEC. Therefore, our paper is
motivated by two questions:

Are the different criteria of Bose-Einstein condensation (generalized BEC, long cycles
and ODLRO) equivalent for the perfect Bose-gas in anisotropic (Casimir) boxes (Section
2) ? Hence, the purpose of the Section 2 is an extension of known results on the long
cycles, see A.Suto [S], T.Dorlas, P.Martin and J.Pulé [D-M-P], D.Ueltschi [U], to the
Casimir boxes, where the concept of the generalized Bose-Einstein condensation can be
explicitly verified.

The second question is how we can classify different types of generalized Bose-Einstein
condensation with the help of the concept of cycles and with help of the ODLRO (Sections
3, 4 and 5)?

The aim of this paper is to relate the van den-Berg-Lewis-Pulé classification of g-BEC
(type I, II and III) in anisotropic boxes with a hierarchy of long cycles and with the
corresponding hierarchy of the ODLRO. More precisely, we would like to know, what is
the scale of different sizes of the long cycles (macroscopic or not) and correlations (the
coherence length) of the condensate ?

Our arguments are based on the scaling approach. To this end, we propose a scaling
formulation for the condensate density and for the notion of long cycles (Section 3), as
well as for the reduced density matrix and the ODLRO (Section 5).
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Since the seventies [dG] scaling concepts are also used in polymer physics. In the
present paper we adapt this scaling approach to the cycles (and two-point correlation
function) in the both cases because there is a deep analogy between cycle representation
of boson systems and polymers [C-S]. Below we give a mathematical presentation of
this scaling concept concerning the Bose-Einstein condensation of the Ideal Bose-Gas in
Casimir boxes.

This concept is relevant in the physics of quantum coherent states, since it relates
the box geometry constrains to the coherence shape of condensate clouds and to the ”ge-
ometry” of the boson cycles (polymers’ shape). Heuristically, there is a scaling relation
between the coherence length r and the size of long cycles involved n bosons, which is given
by r = λβn

1/2, provided correlation function has the form (5.52). Here λβ = ~
√

2πβ/m
is the thermal de Broglie length. This relation is analogous to the scaling law for the
ideal polymer chain [dG], where the size of the chain R is proportional to the number of
monomers N : R = l0N

1/2, where l0 is the effective length of a monomer.

Results

This paper contains two kind of results interesting for physical properties of the Bose-
gas in Casimir boxes: Λ = L1×L2×L3, with Lν = V αν , ν = 1, 2, 3,, where α1+α2+α3 = 1.
These results establish a contact between generalized van den Berg-Lewis-Pulé condensate
and the experimental data concerning the BEC fragmentation [M-H-U-B].

The first result states that the number of particles N0 in the condensate for finite-size
system (N particles) is (see section 3.2):

N0 = n1 + n2 + ... + nM ,

where ni are the numbers of particles in the condensate states. Here ni = O(N) and
M = O(1), if α1 6 1/2 (see Theorem 4.1 and 4.2) or ni = O(N δ) and M = O(N1−δ)
(such that N0 = O(N)), δ = 2(1−α1) < 1, if α1 > 1/2 (see Theorem 4.3). This result has
a direct relation to the fragmentation theory of Bose-Einstein condensation [M-H-U-B].
The second part of this result (see Section 4) is that the order of the size of long cycles is
macroscopic (i.e. of the order O(N)), if we have generalized BEC of type I or II (when
M = O(N)) and that the order of the size of the long cycles is microscopic (of the order
O(N δ)) for the generalized BEC of type III, see Theorem 4.1, 4.2 and 4.3.

The second result is that by virtue of Theorem 5.1 the two points correlation functions
(at different scales) have the form:

lim
V ↑∞

σΛ(x − x′) = ρ0(β), for ‖x − x′‖ = O(V α1), if α1 < 1/2,

=
∑

n1∈Z1

cos(2πny)

πλ2
βn

2 + B
, for ‖x − x′‖ = yV α1 , if α1 = 1/2,

= ρ0(β)e−2y
√

πC/λβ , for ‖x − x′‖ = yV δ/2, if α1 > 1/2,

where ρ0(β) is the particle density in the condensate, B and C are two positive constants
respectively given by (2.8) and (2.9). These formes imply that the order of the condensate
coherence length coincides with the size of the box in the case of g-BEC of type I or II
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(i.e. long cycles of macroscopic size), but it is smaller if we have generalized BEC of
type III (i.e. long cycles of microscopic size). The last case shows decreasing of the
coherence length for the elongated condensate. Notice that existence of this phenomenon
is indicated in physical literature [P-S-W].

To make a contact with experiments involved the cold atoms confined in magnetic
traps one should extend these results to the Bose-gas in a weak harmonic potential. So,
an important task is the theoretical and experimental study of very anisotropic cases (like
quasi-2D or quasi-1D systems) to understand the coherence properties of condensate,
which mimics the Casimir case.

2 BEC in Casimir boxes

In this section we give a short review of the different concepts concerning the Bose-Einstein
condensation: such as occupation number, generalized BEC (g-BEC), cycles, long cycles,
reduce density matrix, Off-Diagonal-Long-Range-Order (ODLRO) and the link between
the different criterions of BEC (g-BEC, long cycles and ODLRO).

2.1 About the concept of g-BEC condensation and the ODLRO

Basic notions
Let us consider the grand-canonical (β, µ) perfect Bose-gas (PBG) in Casimir boxes

Λ = L1 × L2 × L3 ∈ R
d=3, of volume |Λ| = V with sides length Lν = V αν , ν = 1, 2, 3,

where α1 > α2 > α3 > 0, α1 + α2 + α3 = 1. For the single-particle hamiltonian H
(N=1)
Λ =

T
(1)
Λ := −(~2/2m)∆ with periodic boundary conditions, we get the dual vector-spaces Λ∗

defined by:

Λ∗ =

{

k ∈ R
3 : k = (

2πn1

V α1
,
2πn2

V α2
,
2πn3

V α3
); nν ∈ Z

1

}

. (2.1)

In the grand-canonical ensemble, the mean values of the k-mode particle densities
{ρΛ(k)}k∈Λ∗ are:

ρΛ(k) :=
1

V
〈NΛ(k)〉Λ(β, µ) =

1

V

1

eβ(ǫΛ(k)−µ) − 1
, (2.2)

where ǫΛ(k) = ~
2k2/2m, k ∈ Λ∗ are the eigenvalue of the Laplacian with periodic bound-

ary conditions, 〈NΛ(k)〉Λ(β, µ) is the Gibbs expectation of the particles number operator
NΛ(k) in the mode k. The total density of particles is ρΛ(β, µ) :=

∑

k∈Λ∗ ρΛ(k)

Let us recall that the eigenfunctions {Ψ(N=1)
Λ,k (x)}k∈Λ∗ of the single particle hamiltonian

T
(1)
Λ are:

Ψ
(1)
Λ,k(x) =

1√
V

eik.x . (2.3)

London scaling approach and g-BEC
In fact it was F.London [L] who for the first time used implicitly the scaling approach

to solve the controversy between the G.Uhlenbeck mathematical arguments against con-
densation of the perfect Bose-gas for hight densities and Einstein’s intuitive reasoning in
favour of this phenomenon. His line of reasoning was based on the following observations:
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since the explicit formula for the total particle density ρΛ(β, µ) in the box Λ is known
only in grand-canonical ensemble (β, µ), to ensure fixed density ρ in this box one has first
to solve equation ρ = ρΛ(β, µ) which determine the corresponding value of the chemical
potential µΛ := µΛ(β, ρ).

Then the van den Berg-Lewis-Pulé formulation of the g-BEC concept in Casimir boxes
gets the form:

Definition 2.1 We say that for the grand-canonical PBG manifests the g-BEC for a fixed
total density of particle ρ, if one has:

ρ0(β, ρ) := lim
ǫ↓0

lim
V ↑∞

∑

{k∈Λ∗:‖k‖6ǫ}
ρΛ(k) > 0 , (2.4)

where ρΛ(k) are defined by (2.2) for µ = µΛ(β, ρ).

This motivates the following classification:

Definition 2.2 • One gets g-BEC of type I if a finite number of the single-particle states
are macroscopically occupied.

• There is g-BEC of type II is an infinite (countable) number of the single-particle
states are macroscopically occupied.

• The g-BEC is called type III, if none of the single-particle state is macroscopically
occupied, but ρ0(β, ρ) > 0.

As usually one introduces for the PBG the critical density, ρc(β) defined by:

ρc(β) := sup
µ<0

lim
V ↑∞

ρΛ(β, µ) = g3/2(1)/λ3
β, (2.5)

where gs(z) :=
∑∞

j=1 zj/js is related to the Riemann zeta-function ζ(s) := gs(1). Here

λβ = ~
√

2πβ/m is the thermal de Broglie length. Notice that the critical density does
not depend of α1, α2, α3, i.e. on geometry of the boxes. However it is shown in [vdB]
that the second critical density noted ρm(β) to have eventually macroscopic occupation
of states could be different than ρc(β) and depend on geometry (see perspectives in the
section Concluding remarks), but for Casimir boxes these two critical densities are equal.

The following proposition is due to [vdB-L-P]:

Proposition 2.1 For particles densities ρ < ρc(β) there is no g-BEC of the PBG in
Casimir boxes and the chemical potential µ = µ(β, ρ) is a unique solution of equation:

ρ = g3/2(e
βµ)/λ3

β (2.6)

Let 1/2 > α1, then for a fixed particles density ρ > ρc(β) the chemical potential
µΛ = −A/βV + o(1/V ), with A > 0 and there is g-BEC of the type I in the single
zero-mode k = 0. Here A is a solution of equation :

ρ − ρc(β) =
1

A
. (2.7)
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If 1/2 = α1, then the chemical potential µΛ = −B/βV + o(1/V ), with B > 0 and one
gets the g-BEC of type II in the infinite number of modes:

lim
V ↑∞

ρΛ(k) =
1

B + πλ2
βn

2
1

, for k = (2πn1/V
α1 , 0, 0), n1 ∈ Z

1 ,

= 0, for k 6= (2πn1/V
α1 , 0, 0), n1 ∈ Z

1 .

Here B is a solution of equation:

ρ − ρc(β) =
∑

n1∈Z1

1

B + πλ2
βn

2
1

. (2.8)

If 1/2 < α1, then the chemical potential µΛ = −C/βV δ + o(1/V δ), with δ = 2(1 −
α1) and C > 0. The corresponding g-BEC is of the type III: for all k ∈ Λ∗ we have
limV ↑∞ ρΛ(k) = 0, although ρ0(β, ρ) > 0 and C is a solution of equation:

ρ − ρc(β) =

√
π

λβC1/2
. (2.9)

Reduced density matrix and ODLRO

Definition 2.3 We say that the PBG manifests for a fixed total density of particles ρ an
ODLRO, if one gets a nontrivial limit:

σ(β, ρ) := lim
‖x−x′‖↑∞

lim
V ↑∞

σΛ(β, ρ; x, x′) > 0 , (2.10)

where σ(β, ρ; x, x′) := limV ↑∞ σΛ(β, ρ; x, x′) is the two-point correlation function, defined
by:

σΛ(β, ρ; x, x′) :=
∑

k∈Λ∗

〈NΛ(k)〉Λ(β, ρ)Ψ
(1)
Λ,k(x)Ψ

(1)
Λ,k(x

′)∗ =
∑

k∈Λ∗

ρΛ(k)eik.(x−x′) , (2.11)

for periodic boundary conditions. Here ρΛ(k) is defined by (2.2).

Recall that according to Definition 2.1 for a non-zero BEC of types I and II we obtain
in the thermodynamical limit a nontrivial particle density in the mode null, i.e. particle
density with de Broglie wave-length equals infinity. This allows a communication in the
condensate through the whole space (in R

3). This fact is less evident for the g-BEC of
the type III, but some heuristic arguments show that the g-BEC and the ODLRO are
equivalent for the PBG in Casimir boxes:

Theorem 2.1 Consider the PBG in Casimir boxes Λ. Then:

σ(β, ρ) = 0, for ρ < ρc,

= ρ − ρc(β), for ρ > ρc, (2.12)

i.e. the ODLRO is non-zero if and only if there is g-BEC.
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Proof

We split the correlation function in two parts, the first one is the correlation due
to the (future) condensate and the second one corresponds to the particles outside the
condensate:

σ(β, ρ; x, x′) := lim
ǫ↓0

lim
V ↑∞

∑

k∈{Λ∗:‖k‖6ǫ}
ρΛ(k)eik.(x−x′) + lim

ǫ↓0
lim
V ↑∞

∑

k∈{Λ∗:‖k‖>ǫ}
ρΛ(k)eik.(x−x′)

= lim
ǫ↓0

lim
V ↑∞

∑

k∈{Λ∗:‖k‖6ǫ}
ρΛ(k) +

1

(2π)3

∫

k∈R3

dk
eik.(x−x′)

eβ(~2k2/2m−µ(β,ρ)) − 1
,

since ∀k ∈ Λ∗ : ‖k‖ 6 ǫ, k.(x − x′) → 0 when ǫ → 0. Here µ(β, ρ) := limV ↑∞ µΛ(β, ρ).
Then by virtue of Proposition 2.1 and by the Riemann-Lebesgue Theorem we obtain

the result. �

Since Penrose and Onsager [P-O], the ODLRO is known as the most relevant criterion
of condensation because it is valid with or without interactions between particles. Here
we established that ODLRO is not equivalent to the usual criterion of BEC (macroscopic
occupation of the ground state) but to the generalized BEC. Thus for the PBG a true cri-
terion of condensation is the generalized BEC. It is natural to suppose (although difficult
to check) the same for interacting Bose-gases.

2.2 Feynman theory of cycles and existence of long cycles

Feynman concept of cycles
Here we recall the Feynman concept of cycles introduced in 1953 [F]. It is related to

the Bose statistic and the Feynman-Kac representation for partition functions.
Recall that for the PBG in boxes Λ = L1×L2×L3 ⊂ R

3 with periodic boundary condi-
tions, (i.e. dual vector-spaces Λ∗ := {k ∈ R

3 : k = (2πn1/L1, 2πn2/L2, 2πn3/L3), nν ∈ Z
1},

see (2.1)) the grand-canonical pressure has the form:

pΛ(β, µ) =
1

β|Λ| log
(

Ξ0
Λ(β, µ)

)

=
1

β|Λ|
∑

k∈Λ∗

ln
[

(

1 − e−β(ǫΛ(k)−µ)
)−1
]

=
1

β|Λ|

∞
∑

j=1

1

j
ejβµ TrH(1)

Λ

(

e−jβT
(1)
Λ

)

, (2.13)

where Ξ0
Λ(β, µ) is the PBG grand-canonical partition function and we used TrHΛ,1

(

e−jβT
(1)
Λ

)

=
∑

k∈Λ∗ e−jβǫΛ(k).
The Feynman-Kac representation naturally appears from (2.13) if we consider the rep-

resentation of the trace of the Gibbs semigroup:
{

e−βT
(1)
Λ

}

β>0
, via its kernel KΛ(β; x, x′) =

(

e−βT
(1)
Λ

)

(x, x′):

TrH(1)
Λ

(

e−βT
(1)
Λ

)

=

∫

Λ

dxKΛ(β; x, x) . (2.14)
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It is known [G] that the kernel KΛ(β; x, x′) can be represented as a path integral over
Wiener trajectories starting at point x and finishing at point x′. Thus KΛ(β; x, x) can
be represent as a Wiener integral over closed trajectories (loops) starting and finishing
at the same point. The order of the size of the trajectories coincides with the size of the
quantum fluctuations λβ, known as the thermal de Broglie length [M].

By virtue of the Gibbs semigroup properties and by expressions (2.13), (2.14), we get:

pΛ(β, µ) =
1

β|Λ|

∞
∑

j=1

1

j
ejβµ

∫

Λ

dx1

∫

Λ

dx2...

∫

Λ

dxj KΛ(β; x1, x2)KΛ(β; x2, x3)...KΛ(β; xj, x1) ,

(2.15)
In (2.15) each integral over (x1, ..., xj) ∈ Λj correspond to the impact of the Wiener’s
loops of the length jλβ [G], [M].

Notice that the total density of particles in the grand-canonical ensemble is given by:

ρΛ(β, µ) :=
〈NΛ〉Λ(β, µ)

V
= ∂µpΛ(β, µ) =

1

V

∞
∑

j=1

ejβµ TrH(1)
Λ

e−jβT
(1)
Λ . (2.16)

One can use this representation to identify the repartition of the total density (2.16) over
densities of particles involved into loops of the length jλβ:

ρΛ,j(β, µ) :=
1

V
ejβµ TrH(1)

Λ
e−jβT

(1)
Λ . (2.17)

The j-loops particles density (2.17) and the representation (2.15) are the key notions
for the concept of the short/long cycles. Indeed, after the thermodynamical limit one can
obtain loops of finite sizes or infinite sizes, i.e. one can relate the BEC to appearance of
loops of the infinite size as an explanation of the long-range order and the macroscopic
size of the quantum fluctuations [F], [P-O], [U]. The mathematical basis of the Feynman
cycles approach is related to the boson permutation group, see [D-M-P],[U], [S] and [M].

BEC and the concept of short/long cycles

Definition 2.4 We say that the representation (2.16) for the grand-canonical PBG con-
tains only short cycles if:

ρshort(β, µ) := lim
M→∞

{

lim
V ↑∞

M
∑

j=1

ρΛ,j(β, µ)

}

= ρ(β, µ) := lim
V ↑∞

ρΛ(β, µ) , (2.18)

i.e. it coincides with the total particle density. Since in general the limits in (2.18) are not
interchangeable, we say that for a given total particle density ρ the representation (2.16)
contains macroscopic number of long cycles, if ρ > ρshort(β, µ(β, ρ)), or equivalently if:

ρlong(β, ρ) := lim
M→∞

{

lim
V ↑∞

∞
∑

j=M+1

ρΛ,j(β, µΛ(β, ρ))

}

> 0 . (2.19)
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Since Feynman [F] the presence of the non-zero density of the long cycles is usually
connected with the existence of zero-mode BEC, but a rigorous proof of this conjecture for
a certain class of models has been obtained only recently. There we noticed that even for
the PBG type I BEC the mathematical proof of this connection was not straightforward
and appealed to a non-trivial analysis, see [S], [D-M-P],[U].

Theorem 2.2 Let us consider a PBG in Casimir boxes Λ. Then we have:

ρlong(β, ρ) = 0, if ρ < ρc(β) ,

= ρ − ρc(β), if ρ > ρc(β) , (2.20)

where ρc(β) is the critical density defined by (2.5).

Proof : By virtue of (2.17) and (2.18) we have:

ρshort(β, µ) = lim
M→∞

{

lim
V ↑∞

M
∑

j=1

ejβµ
3
∏

ν=1

1

V αν

∑

nν∈Z1

e−jβπλ2
β(nν/V αν )2

}

=

∞
∑

j=1

ejβµ

3
∏

ν=1

∫

R

dξνe
−jβπλ2

βξ2
ν =

∞
∑

j=1

eβµ

λ3
βj3/2

=:
g3/2(e

βµ)

λ3
β

,

c.f. definition of gs(z). By virtue of Proposition 2.1, if ρ < ρc(β) we have ρshort(β, ρ) = ρ
and if ρ > ρc(β) we have ρshort(β, ρ) = ρc(β). So, by Definition 2.4 we conclude the proof.
�

Intuitively the size of long cycles for usual BEC (ground state macroscopic occupation)
are of the order of the total particle number (j = O(N)). What happens if the condensate
is fragmented, i.e. of the type II or III ? Below we apply a scaling approach to study these
cases and we prove in Theorem 4.3 that the order of the size of long cycles is smaller than
the number of particles (O(N δ), δ < 1).

3 Generalized BEC concept: revisited

In this section we propose a modification of the concept of generalized BEC, which we call
scaled BEC (s-BEC). This implies the corresponding modification of the concept for cycles
(scaled short/long cycles denoted s-short/s-long cycles) via similar scaling arguments.
Moreover, we introduce a classification of the s-BEC (type I, II, III) and the hierarchy of
the s-long cycles, which distinguishes long-microscopic/macroscopic cycles.

3.1 Generalized condensation and scaled condensation

The original van den Berg-Lewis-Pulé concept of the g-BEC [vdB-L-P] was not explicitly
addressed to detect a fine structure of the condensate: a priori it does not allow to make
the distinction between generalized BEC of types I, II or III. In fact one can do this
analysis, as it was done for the first time in [vdB-L] for the case of the Casimir boxes.

To make this facet more evident we introduce in this paper a new definition of the
generalized BEC, which we call a scaled BEC (s-BEC). Take for simplicity the PBG in
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Casimir boxes Λ with periodic boundary conditions, i.e. with the dual vector-spaces Λ∗

defined by (2.1), and with the k-modes mean particle densities {ρΛ(k)}k∈Λ defined by
(2.2).

Definition 3.1 We say that for a fixed total density ρ the (perfect) Bose gas manifests
a s-BEC in boxes Λ, if there exists a positive decreasing function η : V 7→ R+, such that
limV ↑∞ η(V ) = 0 and we have:

ρη(β, ρ) := lim inf
V ↑∞

∑

{k∈Λ∗:‖k‖6η(V )}
ρΛ(k) > 0 . (3.21)

Remark 3.1 Recall that the van den Berg-Lewis-Pulé definition of g-BEC is formulated
as:

ρ0(β, ρ) := lim
ǫ↓0

lim
V ↑∞

∑

{k∈Λ∗:‖k‖6ǫ}
ρΛ(k) > 0 . (3.22)

Hence, the two Definitions 2.1 and 3.1 are evidently not equivalent. Moreover, we show
that our Definition 3.1 allows also to connect a fine mode-structure of the condensate of
types I, II or III with the long-cycles hierarchy, and to show that there is a relation between
the structure of the condensate and the size of cycles.

The following statement is an evident consequence of Definitions 2.1 and 3.1:

Lemma 3.1 For any function η(V ) we have:

0 6 ρη(β, ρ) 6 ρ0(β, ρ) . (3.23)

This lemma means that s-BEC implies g-BEC and (i.e. that if there is no g-BEC, then
there is no s-BEC).

A simple example of application of the s-BEC approach is the possibility to distinguish
the type I, II or III condensations of the PBG in Casimir boxes Λ with periodic boundary
conditions.

Proposition 3.1 The rate η(V ) = O(1/V 1/2) is an important threshold to refine a
discrimination between different types of g-BEC. If for example, one takes ηδ(V ) =
2π/V (1/2−δ) such that δ > 0, then we obtain:

ρηδ
(β, ρ) = ρ0(β, ρ) , for α1 6 1/2 ,

ρηδ
(β, ρ) = 0 , for α1 > 1/2 + δ ,

ρηδ
(β, ρ) = ρ0(β, ρ) , for 1/2 + δ > α1 > 1/2 .

On the other hand, for α1 = 1/2 and ηΓ(V ) := 2πΓ/V 1/2 one gets a modification of
the density of the type II condensation:

ρηΓ
(β, ρ) =

∑

|n1|6Γ

1

πλ2
βn

2
1 + B

< ρ0(β, ρ) .

For α1 > 1/2 and ηΓ′(V ) := 2πΓ′/V 1−α1 one gets a modification of the density of the
type III condensation:

ρηΓ′
(β, ρ) =

∫

R+

dζ
e−Cζ

ζ1/2λβ
erf(Γ′λβ

√

ζπ) < ρ0(β, ρ) ,

where erf(.) stands for error function and where C is the unique solution of equation (2.9).
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Proof : By virtue of the proof of the Theorems 4.1, 4.2 and 4.3, with the different choices
of η(V ), we can obtain the results. �

Note that the scaling criterion of condensation (Definition 3.1) is more adapted for
physical description of BEC because a judicious choice of the function η(V ) may give a
support of momentum distribution of the condensate. It also might be useful for numerical
analysis of experimentally observed fragmented condensates [M-H-U-B].

Let N0 be a number of particle in the condensate. Then we say that there is fragmen-
tation of first type if N0 = n1 + n2 + ... + nM with ni = O(N) and M = O(1), (where ni

are the numbers of particles in the condensate states), or of the second type if ni = O(N δ)
and M = O(N1−δ), δ < 1 (such that N0 = O(N)).

3.2 Scaling approach of the short/long cycles

First we introduce the concepts of scaled short/long cycles (s-short/long cycles):

Definition 3.2 We say that Bose-gas manifests s-long cycles, if there exists a positive
increasing function of the volume λ : R

+ → N
+, such that limV ↑∞ λ(V ) = ∞ and:

ρlong,λ(β, ρ) := lim inf
V ↑∞

∑

j>λ(V )

ρΛ,j(β, µΛ(β, ρ)) > 0, (3.24)

where ρΛ,j(β, µ) is given by (2.17).

The following statement is an evident consequence of Definitions 2.4 and 3.2:

Lemma 3.2 In the particular case of PBG in Casimir boxes we have:

0 6 ρlong,λ(β, ρ) 6 ρlong(β, ρ), (3.25)

for any function λ(V ). Here ρlong(β, ρ) is given by (2.19).

This lemma implies that the presence of s-long cycles imply the presence of the long
cycles (c.f. Definition 2.4).

A simple example of application of the s-long cycles approach is a possibility to dis-
tinguish the type I, II or III condensations of the PBG in Casimir boxes Λ with periodic
boundary conditions.

Proposition 3.2 If λ(V ) = V δ then for ρ > ρc(β) we obtain:

ρlong,λ(β, ρ) = 0, for δ > 1,

ρlong,λ(β, ρ) = ρ0(β, ρ), for α1 6 1/2, 0 < δ < 1,

ρlong,λ(β, ρ) = 0, for α1 > 1/2, 2(1 − α1) < δ.

ρlong,λ(β, ρ) = ρ0(β, ρ), for α1 > 1/2, 0 < δ < 2(1 − α1),

Proof : Adapting the proof of the Theorems 4.1, 4.2 and 4.3 with the different choices of
δ fot λ(V ) = V δ we can obtain the results. �
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Definition 3.3 If j : R
+ → N

+ is a bounded positive increasing function of the volume,
i.e. limV ↑∞ j(V ) < ∞, then ρΛ,j(V )(β, µΛ(β, ρ)) is the density of particles in the s-short-
cycles of size j(V ).

Definition 3.4 If j : R
+ → N

+ is a positive increasing function of the volume such as
limV ↑∞ j(V ) = ∞, then ρΛ,j(V )(β, µΛ(β, ρ)) is the density of particles in the s-long-cycles
of size j(V ).
There is a natural classification of s-long-cycles:

• if limV ↑∞(j(V )/V ) = 0, we say that ρΛ,j(V )(β, µΛ(β, ρ)) is the density of particles in
the microscopic-long-cycles of size j(V ),

• if 0 < limV ↑∞(j(V )/V ) < ∞, we say that ρΛ,j(V )(β, µΛ(β, ρ)) is the density of
particles in the macroscopic-cycles of size j(V )

• if limV ↑∞(j(V )/V ) = ∞, we say that ρΛ,j(V )(β, µΛ(β, ρ)) is the density of particles
in the large-cycles of size j(V ).

To clarify Definition 3.4, we make the following remark:

Remark 3.2 We say that if j(V ) in (2.17) is of the order V α if 0 < limV ↑∞(j(V )/V α) <
∞, for example j(V ) = xV α, x > 0. If α < 1, we are in the first case of the classification
in Definition 3.4. This case is important because it creates a question: can we have a
macroscopic quantity of particles in the microscopic-long-cycles? If α = 1 we are in the
second case of the classification of s-long-cycles and if α > 1 we are in the third case. Of
course, one can take above any increasing function j(V ) including e.g. ln(V ).

3.3 Hierarchy of s-long cycles

Definitions 3.3, 3.4 and the Remark 3.2 allow to give a natural classification of scaled-long
(s-long) cycles. We call this classification a hierarchy of cycles, ordered according their
size.

In general there are long cycles of any size:

Definition 3.5 We say that the Bose gas manifests the s-long cycles of the order λ(V )
where λ : R

+ → R
+ is a positive increasing function of the volume, if there exist two

positive real numbers x and y such as the s-long cycles particle density:

lim
V ↑∞

yλ(V )
∑

j=xλ(V )

ρΛ,j(β, µΛ(β, ρ)) > 0.

Then the total density of particles in cycles of size of the order λ(V ) is:

ρlong(β, ρ|λ) := lim
x↓0;y↑∞

lim
V ↑∞

yλ(V )
∑

j=xλ(V )

ρΛ,j(β, µΛ(β, ρ)).

We introduce a classification of s-long cycles:
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Definition 3.6 - We say that the Bose-gas manifests macroscopic-cycles, if the Bose gas
manifests the s-long cycles of the order V .

- We say that the Bose-gas manifests long-microscopic-cycles, if the Bose gas manifests
the s-long cycles of orders smaller than V .

In the next section we see that in the particular case of the PBG in Casimir boxes,
the classification of s-BEC induces a hierarchy in classification of s-long cycles. By virtue
of Theorem 4.1, 4.2 and 4.3 we obtain:

Proposition 3.3 If x and y are two positive real numbers, then we have:

lim
Λ

yV δ
∑

j=xV δ

ρΛ,j(β, µΛ(β, ρ)) = (e−xA − e−yA)ρ0(β, ρ), for α1 < 1/2, δ = 1,

= (e−xB − e−yB)ρ0(β, ρ), for α1 = 1/2, δ = 1,

= (e−xC − e−yC)ρ0(β, ρ) for α1 > 1/2, δ = 2(1 − α1).

where A is the unique solution of the equation (2.7), B is the unique solution of the
equation (2.8) and C is the unique solution of the equation (2.9).

This proposition gives an illustration of the hierarchy of cycles, in the first case (α1 <
1/2) and second case (α1 = 1/2) the Bose gas manifests presence of macroscopic-cycles,
in the third case (α1 > 1/2), where the Bose gas manifests presence of long-microscopic-
cycles of the order V 2(1−α1). A link with the results given by Proposition 2.1 we are going
to discuss in details in the next Section 3.

4 Does generalized BEC of the type I, II, III imply

a hierarchy of long cycles?

The aim of this section is to relate a fine structure of g-BEC and s-BEC (type I, II or III)
with hierarchy of long cycles. Recall that we deal with Casimir boxes Λ = V α1 × V α2 ×
V α3 , α1 > α2 > α3 > 0, |Λ| = V, (α1 + α2 + α3 = 1).

4.1 Generalized BEC in the case : α1 < 1/2

In this case the geometry is similar to one for the usual cubic box. Our main result here
is that the g-BEC of type I implies the macroscopic-cycles in the fundamental state.

Theorem 4.1 If one takes the Casimir boxes Λ with 1/2 > α1, then for a fixed density
of particles ρ > ρc(β) the chemical potential is µΛ := µΛ(β, ρ) = −A/βV + o(1/V ), with
A > 0. This implies the s-BEC as well as the g-BEC of type I in the zero mode (ground
state) together only with macroscopic-cycles in this mode. Here A is the unique solution
of equation (2.7).
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Proof : Taking into account (2.1) we denote the family of Casimir boxes by ΛI with the
corresponding dual space:

Λ∗
I :=

{

k ∈ R
3 : k = (

2πn1

V α1
,
2πn2

V α2
,
2πn3

V α3
); nν ∈ Z

1; 1/2 > α1

}

. (4.26)

Let Λ∗
0,I be a subset of Λ∗

I defined by:

Λ∗
0,I = {k ∈ Λ∗

I : ‖k‖ 6 ηI(V )}, (4.27)

where ηI(V ) = 1/V . Then we have Λ∗
0,I = {k = 0}.

Let us consider the total density of particles:

ρ := lim
V ↑∞

ρΛ(β, µΛ) = ρshort(β, ρ) + ρlong(β, ρ), (4.28)

c.f. (2.18), (2.19).
We can decompose the density of particles in long-cycles into two parts defined by:

ρlong(β, ρ) := ρlong(Λ
∗
I\Λ∗

0,I) + ρlong(Λ
∗
0,I), (4.29)

where ρlong(Λ
∗
I\Λ∗

0,I) is the limiting density of particles in long-cycles outside Λ∗
0,I :

ρlong(Λ
∗
I\Λ∗

0,I) := lim
M→∞

lim
V ↑∞

(
∑

k∈Λ∗

I\Λ∗

0,I

∞
∑

j=M

ρΛ,j(k)), (4.30)

where the spectral repartition of particles density in j-cycles is:

ρΛ,j(k) :=
1

V
ejβµΛe−jβǫΛ(k), (4.31)

and µΛ := µΛ(β, µ) is the solution of equation ρ = ρΛ(β, µ).
First we shall estimate the density of particles in long-cycles of Λ∗

I\Λ∗
0,I by (4.30) and

asymptotic for µΛ we get:

ρlong(Λ
∗
I\Λ∗

0,I) = lim
M→∞

lim
V ↑∞

(
∑

k∈Λ∗

I\Λ∗

0,I

∞
∑

j=M

1

V
ejβµΛe−jβǫΛ(k)),

= lim
M→∞

∞
∑

j=M

1

(2π)3

∫

R3

dke−jπλ2
βk2

,

= 0.

Consequently there is no long cycles in Λ∗
I\Λ∗

0,I and since our last estimate is valid for
any M → ∞ we conclude that there are no s-long cycles in Λ∗

I\Λ∗
0,I (see Definition 3.2).

Now let us consider the modes in Λ∗
0,I , we would like to prove that the PBG manifests

s-long cycles of the order O(V ), i.e. macroscopic-cycles (see Definition 3.6).
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Since µΛ = −A/βV + o(1/V ), with A > 0 we have:

ρlong(Λ
∗
0,I |macro) := lim

x↓0;y↑∞
lim
V ↑∞

yV
∑

j=xV

1

V
ejβµΛ

= lim
x↓0;y↑∞

lim
V ↑∞

(e−xA+O(1/V ) − e−yA+O(1/V ))

e−βµΛ − 1

= lim
V ↑∞

1

e−βµΛ − 1
= lim

V ↑∞
ρΛ(Λ∗

0,I), (4.32)

where ρΛ(Λ∗
0,I) :=

∑

k∈Λ0,I
ρΛ(k) is the density of particles in Λ∗

0,I .

We can easily calculate ρΛ(Λ∗
0,I):

ρΛ(Λ∗
0,I) =

1

V

1

e−βµΛ − 1
=

1

V

1

eβ A
βV

+o( 1
V

) − 1
=

1

A
+ o(

1

V
). (4.33)

So by virtue of (4.29), (4.32) and (4.33):

ρlong(Λ
∗
0,I |macro) = ρlong(β, ρ) =

1

A
, (4.34)

We know by Theorem 2.2 that the density of particles in short-cycles is equal to the
critical density. Consequently by virtue of (4.28), (4.34) we can conclude the proof of the
theorem. �

4.2 Generalized BEC in the case : α1 = 1/2

Main result of this sub-section is a theorem about the g-BEC of type II, which is related to
the presence of macroscopic-cycles in an infinite (in the thermodynamical limit) number
of modes.

Theorem 4.2 For the Casimir boxes with 1/2 = α1 and a fixed particle density ρ > ρc(β)
the chemical potential is µΛ = −B/βV + o(1/V ), with B > 0. This implies the s-BEC as
well as the g-BEC of type II in an infinite (in thermodynamical limit) number of modes
and simultaneously macroscopic-cycles only in these modes. Here B is a unique solution
of equation (2.8).

Proof : Taking into account (2.1) we denote the family of Casimir boxes by ΛII and the
dual space is:

Λ∗
II =

{

k ∈ R
3 : k = (

2πn1

V α1
,
2πn2

V α2
,
2πn3

V α3
); nν ∈ Z

1; 1/2 = α1

}

, (4.35)

Let Λ∗
0,II,Γ be a subset of Λ∗

II

Λ∗
0,II,Γ =

{

k ∈ Λ∗
II : ‖k‖ 6 ηΓ

II(V )
}

, (4.36)

where:

ηΓ
II(V ) :=

2πΓ

V 1/2
, Γ ∈ N

∗, (4.37)
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Notice that this set contains the whole value of the condensate as well as particles
involved in the long-cycles for Γ → ∞ after thermodynamical limit.

Again we decompose the density of particles in long cycles into two parts:

ρlong(β, ρ) = lim
Γ↑∞

ρlong(Λ
∗
II\Λ∗

0,II,Γ) + lim
Γ↑∞

ρlong(Λ
∗
0,II,Γ). (4.38)

We take the limit Γ → ∞ to have the totality of the condensate in the first part.
The second part of 4.38 is:

lim
Γ↑∞

ρlong(Λ
∗
II\Λ∗

0,II,Γ) = lim
Γ↑∞

lim
M↑∞

lim
Λ





∞
∑

j=M

1

V
e−jβC/V

∑

‖k‖>2πΓ/
√

V

e−jβǫΛ(k)





= lim
Γ↑∞

lim
M↑∞

lim
Λ





∞
∑

j=M

1

V
e−jβC/V

∑

1/V 1/2−ǫ>‖k‖>2πΓ/
√

V

e−jβǫΛ(k)





+ lim
Γ↑∞

lim
M↑∞

lim
Λ





∞
∑

j=M

1

V
e−jβC/V

∑

‖k‖>1/V 1/2−ǫ

e−jβǫΛ(k)



 , (4.39)

with 1/2 − ǫ > α2. Then we calculate the second term of 4.39:

lim
Γ↑∞

lim
M↑∞

lim
Λ





∞
∑

j=M

1

V
e−jβC/V

∑

‖k‖>1/V 1/2−ǫ

e−jβǫΛ(k)



 = lim
M↑∞

∞
∑

j=M

1

j3/2λ3
β

= 0.

The first term of 4.39 have an upper bound:

lim
Γ↑∞

lim
Λ





∞
∑

j=1

1

V
e−jβC/V

∑

1/V 1/2−ǫ>‖k‖>2πΓ/
√

V

e−jβǫΛ(k)



 = lim
Γ↑∞

∑

|n1|>Γ

1

πλ2
βn2

1 + B
= 0,

consequently the first term of (4.39) is null so limΓ↑∞ ρlong(Λ
∗
II\Λ∗

0,II,Γ) = 0.
Now let us consider the modes in Λ∗

0,II,Γ. We would like to apply the same strategy as
the proof of the Theorem 4.1 to prove that the PBG manifests s-long cycles of the order
O(V ), i.e. macroscopic-cycles (see Definition 3.6).

Since µΛ = −B/βV + o(1/V ), with B > 0 we have:

lim
Γ↑∞

ρlong(Λ
∗
0,II,Γ|macro) := lim

Γ↑∞
lim

x↓0;y↑∞
lim
V ↑∞

1

V

∑

k∈Λ∗

0,II

yV
∑

j=xV

ρΛ,j(k)

= lim
Γ↑∞

lim
x↓0;y↑∞

lim
V ↑∞

∑

k∈Λ∗

0,II,Γ

(e−xB+O(1/V ) − e−yB+O(1/V ))

eβ(ǫΛ(k)−µΛ) − 1

= lim
Γ↑∞

lim
V ↑∞

∑

k∈Λ∗

0,II,Γ

1

eβ(ǫΛ(k)−µΛ) − 1

= lim
Γ↑∞

lim
V ↑∞

(
∑

k∈Λ∗

0,II,Γ

ρΛ(k)). (4.40)
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We can easily calculate:

lim
Γ↑∞

lim
V ↑∞

(
∑

k∈Λ∗

0,II,Γ

ρΛ(k)) = lim
Γ↑∞

lim
V ↑∞

Γ
∑

n1=−Γ

1

V

1

eβ(πλ2
βn2

1/V +B/V +O(1/V )) − 1

=
∑

n1∈Z1

1

B + πλ2
βn

2
1

. (4.41)

So by virtue of (4.38), (4.40) and (4.41):

lim
Γ↑∞

ρlong(Λ
∗
0,II,Γ|macro) = ρlong(β, ρ) =

∑

n1∈Z1

1

B + πλ2
βn

2
1

, (4.42)

We know by Theorem 2.2 that the density of particles in short-cycles is equal to the
critical density. Consequently by virtue of (4.28), (4.42)we can conclude the proof of the
theorem. �

4.3 Generalized BEC in the case : α1 > 1/2

Our main result is the theorem about g-BEC of type III due to the presence of long-
microscopic cycles in infinite (in the thermodynamical limit) number of modes.

Theorem 4.3 If one takes the Casimir boxes Λ = V α1 × V α2 × V α3 with 1/2 > α1, then
for a fixed density of particles ρ > ρc(β) the chemical potential is µΛ(β, ρ) = −C/βV δ +
o(1/V δ), with δ = 2(1 − α1) and C > 0. This implies the s-BEC as well as the g-BEC
of the type III in infinite (in the thermodynamical limit) number of modes, together with
long-microscopic cycles of the order V δ, but only in these modes. Here C is a unique
solution of equation (2.9).

Proof : Taking into account (2.1) we denote the family of Casimir boxes ΛIII and the dual
spaces are defined by:

Λ∗
III =

{

k ∈ R
3 : k = (

2πn1

V α1
,
2πn2

V α2
,
2πn3

V α3
); ni ∈ Z

1; α1 > 1/2

}

. (4.43)

Let Λ∗
0,III,Γ be a subset of Λ∗

III :

Λ∗
0,III,Γ =

{

k ∈ Λ∗
III : ‖k‖ 6 ηΓ

III(V )
}

, (4.44)

where:

ηΓ
III(V ) :=

2πΓ

V δ/2
, Γ ∈ N

∗, (4.45)

here δ = 2(1 − α1) < 1.
We show that Λ∗

0,III,Γ contains the whole value of the condensate as well as the particles
involved into long cycles in the limit Γ → ∞.

Before to present formal arguments, let us make a remark about qualitative difference
between the cases α1 > 1/2 and α1 6 1/2. With the definition of ηΓ

III(V ) (4.45), we see
that the number of states in Λ∗

0,III,Γ is of the order O(V 2α1−1) that goes to infinity, with
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increasing volume, there are much more states in the condensate than in Λ∗
0,II,Γ (defined

by 4.36). Heuristically one can say that Λ∗
0,III,Γ contains long cycles of sizes of the order

O(V δ) in a number of modes of the order O(V 2α1−1). Thus the number of particles in
these s-long cycles is of the order O(V δ)O(V 2α1−1) = O(V ), which is macroscopic. For
this reason there is a macroscopic condensate (the order of the number of particles is
O(V )) because there is an accumulation of microscopic condensates (the order of the
number of particles is O(V 2α1−1) which is smaller than O(V )) as well as an accumulation
of long-microscopic cycles in Λ∗

0,III,Γ at each mode of the condensate.
Again we decompose the density of particles in long cycles into two parts:

ρlong(β, ρ) = lim
Γ↑∞

ρlong(Λ
∗
III\Λ∗

0,III,Γ) + lim
Γ↑∞

ρlong(Λ
∗
0,III,Γ). (4.46)

By the same argument as in the proof of Theorem 4.2, one finds that the first term of
4.46 is null.

Now let us consider the modes in Λ∗
0,III,Γ. In this case, we would like to prove that the

PBG manifests s-long cycles of the order O(V δ), δ = 2(1−α1) < 1, i.e. microscopic-cycles
(see Definition 3.5 and 3.6).

Since µΛ = −C/βV δ + o(1/V δ) with δ = 2(1 − α1) and C > 0 we obtain:

lim
Γ↑∞

ρlong(Λ
∗
0,III,Γ|micro) := lim

Γ↑∞
lim

x↓0;y↑∞
lim
V ↑∞

1

V

∑

k∈Λ∗

0,III,Γ

yV δ
∑

j=xV δ

1

V
ejβµΛe−jβǫΛ(k)

= lim
Γ↑∞

lim
x↓0;y↑∞

lim
V ↑∞

∑

k∈Λ∗

0,III,Γ

(e−xC+O(1/V ) − e−yC+O(1/V ))

eβ(ǫΛ(k)−µΛ) − 1

= lim
Γ↑∞

lim
V ↑∞

(
∑

k∈Λ∗

0,III,Γ

ρΛ(k)). (4.47)

We can easily calculate:

lim
Γ↑∞

lim
V ↑∞

(
∑

k∈Λ∗

0,III,Γ

ρΛ(k)) = lim
Γ↑∞

lim
V ↑∞





1

V δ

1

V 2α1−1

∞
∑

j=1

e−(j/V δ)C
∑

n1:|n1/V 2α1−1|6Γ

e−πλ2
β(j/V δ)(n1/V 2α1−1)2



 .

Since this expression is nothing but the limit of double Darboux-Riemann sums, in ther-
modynamical limit we obtain a double integral:

lim
Γ↑∞

lim
V ↑∞

(
∑

k∈Λ∗

0,III,Γ

ρΛ(k)) = lim
Γ↑∞

∫

R+

dζe−ζC

∫ Γ

−Γ

dξe−ζπλ2
βξ2

=

∫

R+

dζ
e−ζC

√
ζλβ

=

√
π

C1/2λβ
.(4.48)

Hence:

lim
Γ↑∞

ρlong(Λ
∗
0,III,Γ|micro) = ρlong(β, ρ) =

√
π

C1/2λβ
, (4.49)

by virtue of (4.46), (4.47) and (4.48).
We know by Theorem 2.2 that the density of particles in short-cycles is equal to the

critical density. Consequently by virtue of (4.28), (4.49) we can conclude the proof of the
theorem. �
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5 Does generalized BEC I, II, III imply a hierarchy

of ODLRO?

In the Introduction we presented three concepts related to the BEC: g-BEC, long cycles
and ODLRO. We present in Sections 2 and 3 two new concepts: scaled BEC (s-BEC)
and scaled short/long cycles (s-short/long cycles) associated with g-BEC and short/long
cycles. Thus it seems consistent to introduce a concept of scaled ODLRO (s-ODLRO) via
our scaling approach to study the hierarchy of ODLRO.

This part gives a physical meaning of the scaling approach because it allows the study
of the coherence of the condensate at large scale. We show that for very anisotropic cases
(α1 > 1/2) the coherence length (maximal length of correlation) is not equal to the size
of the box (see Theorem 5.1).

5.1 Scaling approach to ODLRO

Recall that the generalized criterion of ODLRO is that there is ODLRO if and only if
there is g-BEC, see Theorem 2.1. The standard definition of ODLRO is formulated in
Definition 2.3:

σ(β, ρ) := lim
‖x−x′‖↑∞

σ(β, ρ; x, x′),

where σ(β, ρ; x, x′) is the two-point correlation function between two points x and x′ after
thermodynamical limit. Notice that this definition can not be satisfactory when we use the
definition of s-BEC, since we do not precise yet what are the scales of large correlations.
It seems to be interesting to take thermodynamical limit at the same time as we take the
two points x and x′ at increasing distance.

A natural question is whether we are able to detect different types of s-BEC (as well as
g-BEC) with the help of a generalized criterion of ODLRO based on our scaling approach?
We call it a scaled ODLRO (s-ODLRO).

Definition 5.1 The PBG manifests a s-ODLRO if there exists a vector-valued function
of volume X : V 7→ X(V ) ∈ Λ such that limV ↑∞ |Xν(V )| = ∞, ν = 1, 2, 3 and:

σX(β, ρ) := lim
V ↑∞

(σΛ,X)(V ) > 0, (5.50)

where (σΛ,X)(V ) is the two-point scaled-correlation function (two-point s-correlation func-
tion) for x(V ), x′(V ) ∈ Λ, see (2.11):

(σΛ,X)(V ) := σΛ(β, ρ; x(V ) − x′(V )) =
∑

k∈Λ∗

ρΛ(k)eik·X(V ), (5.51)

here X(V ) = (x − x′)(V ) ∈ Λ.

Remark 5.1 By (2.1) and (2.2) one can write (2.11) like:

σ(β, ρ; x, x′) =

∞
∑

j=1

ejβµΛ

3
∏

ν=1

θ3(
π

V αν
(xν − x

′

ν), e
−jπ

λ2
β

V 2αν ) , (5.52)

where θ3(u, q) :=
∑

n∈Z1 qn2
e2inu is the elliptic theta-function.
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This implies the following proposition:

Proposition 5.1 By (5.51) the two-point correlation function as well as the two-point
s-correlation function (see Definition 5.1) are non-negative symmetric and Lν-periodic
functions of xν − x′

ν , ν = 1, 2, 3 on R, and decreasing/increasing on [nLν , nLν + Lν/2] ⊂
R

+, n ∈ N, respectively on [nLν + Lν/2, (n + 1)Lν ] ⊂ R
+, n ∈ N (i.e. monotone on the

semi-periods).

Proof : These properties follow from the properties of the elliptic theta-function [A-S].
�

The following statement is a direct consequence of Definitions 2.3 and Remark 5.1:

Lemma 5.1 For any vector-valued X(V ) we have:

0 6 σX(β, ρ) 6 σ(β, ρ) . (5.53)

This Lemma means that the s-ODLRO implies standard ODLRO.

5.2 Hierarchy and anisotropy of ODLRO, coherence of the con-
densate

Here we use Definition 5.1 to analyze the s-BEC and the s-long cycles in the Casimir
boxes. Notice that the usual criterion of ODLRO is such that we have no indication of
the scale of long correlations because we study their correlations after thermodynamical
limit.

We introduce a classification of the s-OLDRO which is formally defined by:

Definition 5.2 The PBG manifests the macroscopic-ODLRO in the direction xν, if there
exist a vector X(V ) = (X1(V ), X2(V ), X3(V )) ∈ Λ such that: limV ↑∞ |Xν(V )|/V αν > 0
and σX(β, ρ) > 0.

Definition 5.3 If the PBG does not manifests the macroscopic-ODLRO in the direction
xν although the PBG manifests the s-ODLRO, then it manifests the microscopic-ODLRO
in the direction xν .

With the periodic boundary conditions the system is homogeneous and so there is no
localization of the condensate in the space contrary to the case of the Dirichlet boundary
conditions. However the coherence length of the condensate could be studied on the basis
of the precedent Definitions 5.2 and 5.3.

Theorem 5.1 Let us consider the grand-canonical PBG in Casimir boxes Λ = V α1 ×
V α2 × V α3 with Dirichlet boundary conditions and a fixed density of particles ρ. Let
X : V ∈ R

+ 7→ X(V ) = (X1(V ), X2(V ), X3(V )) ∈ Λ, limV ↑∞ Xν(V ) = ∞, 0 < Xν(V ) 6

V αν/2, ν = 1, 2, 3. Then we have the following results concerning the s-ODLRO, see
(5.50):

σX(β, ρ) = 0, for ρ < ρc(β), (5.54)
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Whereas for ρ > ρc(β) we get:
for α1 < 1/2:

σX(β, ρ) = ρ0(β) , (5.55)

for α1 = 1/2:

σX(β, ρ) = ρ0(β), for lim
V ↑∞

(X1(V )/V α1) = 0 , (5.56)

=
∑

n1∈Z1

cos 2πn1x

πλ2
βn2

1 + B
< ρ0(β), for X1(V ) = xV α1/2, 0 < x < 1, , (5.57)

for α1 > 1/2:

σX(β, ρ) = ρ0(β), for lim
V ↑∞

(X1(V )/V δ) = 0, δ = 2(1 − α1) , (5.58)

= ρ0(β)e−2x
√

πc/λβ < ρ0(β), for X1(V ) = xV δ/2, x > 0 , (5.59)

= 0, for lim
V ↑∞

(X1(V )/V δ/2) = 0 . (5.60)

Proof : To ensure a monotonous decreasing of the correlation functions for the case of
periodic boundary conditions, we choose 0 < Xν 6 1

2
V αν , ν = 1, 2, 3, see Proposition 5.1.

The first step of the proof is to study the case ρ < ρc(β):
Since σ(β, ρ) = 0 (Theorem 2.1), by Lemma 5.1 we get σX(β, ρ) = 0 for any vector

X(V ) ∈ Λ.
The second step is to study the case ρ > ρc(β):
For α1 < 1/2 by Definition 5.1 we have:

σX(β, ρ) = lim
V ↑∞





∑

k∈Λ∗

0,I

ρΛ(k)eik.X(V )



+ lim
V ↑∞





∑

k∈Λ∗

I\Λ∗

0,I

ρΛ(k)eik.X(V )





= lim
V ↑∞

(

1

V

∞
∑

j=1

e−Aj/V

)

+ lim
V ↑∞





∑

k∈Λ∗

I\Λ∗

0,I

ρΛ(k)eik.X(V )



 (5.61)

where Λ∗
I is the dual vector space given by equation (4.26) and Λ∗

0,I = {k = 0} is the
subset corresponding to the condensate defined by (4.27). The first term of (5.61) is equal
to ρ0(β, ρ) by virtue of Theorem 4.1, so given that σ(β, ρ) = ρ0(β, ρ) (Theorem 2.1) and
by Lemma 5.1 the second term of (5.61) have to be null and we get the result.

For α1 = 1/2 by Definition 5.1 we obtain:

σX(β, ρ) = lim
Γ↑∞

lim
V ↑∞





∑

k∈Λ∗

0,II,Γ

ρΛ(k)eik.X(V )



+ lim
Γ↑∞

lim
V ↑∞





∑

k∈Λ∗

II\Λ∗

0,II,Γ

ρΛ(k)eik.X(V )





= lim
Γ↑∞

lim
V ↑∞

(

1

V

∞
∑

j=1

e−Bj/V
Γ
∑

n1=−Γ

e−πλ2
βn2

1(j/V )e2πiX1(V )(n1/V )

)

+ lim
Γ↑∞

lim
V ↑∞





∑

k∈Λ∗

II\Λ∗

0,II,Γ

ρΛ(k)eik.X(V )



 (5.62)
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where Λ∗
II is the dual vector space given by equation (4.35) and Λ∗

0,II,Γ is the subset
corresponding to the condensate defined by (4.36).

If limV ↑∞(X1(V )/V α1) = 0, the first term in the right-hand side of (5.62) is equal to
ρ0(β, ρ) by virtue of Theorem 4.2. Given that σ(β, ρ) = ρ0(β, ρ) (Theorem 2.1) and by
Lemma 5.1, the second term in (5.62) is null and we obtain the result.

Let limV ↑∞(X1(V )/V α1) = x, 0 < x 6 1/2. Since the sum inside the limit in the first
term of the right-hand side of (5.62) is a Darboux-Riemann sum, one get:

∫

R+

dχe−Bχ
∑

n1∈Z1

e−πλ2
βn2

1χe2πixn1 =
∑

n1∈Z1

cos 2πn1x

πλ2
βn

2
1 + B

.

The second term in the right hand side of (5.62) is null because the phase implies that it
is smaller than the density of particles in Λ∗

II\Λ∗
II,0,Γ which is null in the limit Γ → ∞.

For α1 > 1/2 by Definition 5.1 and by virtue of (4.48) we have:

σX(β, ρ) = lim
Γ↑∞

lim
V ↑∞





∑

k∈Λ∗

0,III,Γ

ρΛ(k)eik.X(V )



+ lim
Γ↑∞

lim
V ↑∞





∑

k∈Λ∗

III\Λ∗

0,III,Γ

ρΛ(k)eik.X(V )





= lim
Γ↑∞

lim
V ↑∞





1

V δ

1

V 2α1−1

∞
∑

j=1

e−Cj/V δ
∑

n1:|n1/V 2α1−1|6Γ

e−πλ2
β(j/V δ)(n1/V 2α1−1)2e2πiX1(V )n1/V α1





+ lim
Γ↑∞

lim
V ↑∞





∑

k∈Λ∗

III\Λ∗

0,III,Γ

ρΛ(k)eik.X(V )



 (5.63)

where Λ∗
III is the dual vector space given by equation (4.43) and Λ∗

0,III is the subset
corresponding to the condensate defined by (4.44).

If limV ↑∞(X1(V )/V δ/2) = 0, the right-hand side of (5.63) is equal to ρ0(β, ρ) by virtue
of Theorem 4.3. Since σ(β, ρ) = ρ0(β, ρ) (Theorem 2.1), by Lemma 5.1 the second term
of (5.63) have to be null and we get the result.

Let limV ↑∞(X1(V )/V δ/2) = x, x > 0, δ = 2(1 − α1). Then the sum inside the limit
in the first term of (5.63) is a double Darboux-Riemann sum, which implies:

∫

R+

dξe−Cξ

∫

χ∈R

dχe−πλ2
βξχ2

e2πixχ =

√
π

λβ

√
C

e−2x
√

πc/λβ .

By the same argument as in the case α1 = 1/2 the second part of (5.63) is null (the
precedent expression is a decreasing function of x for x > 0) and thus we obtain the result.

Let limV ↑∞(X1(V )/V δ/2) = ∞. Since the correlation function is a decreasing function
for 0 < Xν 6 V αν/2 (see Proposition 5.1), it is uniformly bounded by the above estimate
with X(V ) = xV δ, x > 0:

∫

R+

dξe−Cξ

∫

χ∈R

dχe−πλ2
βξχ2

e2πixχ + lim
Γ↑∞

lim
V ↑∞





∑

k∈Λ∗

III\Λ∗

0,III,Γ

ρΛ(k)eik.X(V )



 .
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When x tends to infinity, the first part goes to zero (by the Riemann-Lesbegue theorem)
then the precedent arguments show that the second part is also null. This concludes the
proof. �

We give here a classification of the s-ODLRO for three cases of Casimir boxes:

Theorem 5.2 If one takes the Casimir boxes with α 6 1/2 then for a fixed density
ρ > ρc(β) the PBG manifests macroscopic-ODLRO in three directions. If α > 1/2 then
for a fixed density ρ > ρc(β) the PBG manifests microscopic-ODLRO in direction xν and
macroscopic-ODLRO in other directions.

Proof : Definitions 5.2, 5.3 and Theorem 5.1 give the proof of the theorem. �

It is remarkable that for type I and II g-BEC in Casimir boxes corresponding to α1 6

1/2 the condensate is spatially macroscopic whereas for the case α1 > 1/2 the condensate
is spatially macroscopic in two directions but microscopic in the most anisotropic direction
x1. It is naturally to guess that there is a link between the size of s-long cycles and
coherence length of the condensate. We can see this explicitly in [U] where the competition
between the size of correlation X and the size of cycle j indicates that the coherence length
is of the order of the square root of the size of the s-long cycles (e.g. V δ/2, δ = 2(1− α1)
in the case of the PBG in Casimir boxes with α1 > 1/2).

6 Concluding remarks

Some technical remarks
In this paper we introduce a new concept of BEC which is called the scaled BEC

(s-BEC) to adapt the London scaling approach to the problem of g-BEC. It implies the
van den Berg-Lewis-Pulé classification of BEC in three types (I,II,III) illustrated for the
particular case of the PBG in Casimir boxes. This is a first formal step necessary before
to study more carefully the different case of g-BEC for the PBG in Casimir boxes. One
can see this by virtue of Proposition and 3.1.

The fundamental question that we study in this paper is the relation of different types
of g-BEC (I,II,III) with the long cycles and with the ODLRO. Our results concerning the
PBG in Casimir boxes can be summarized as follows:

- we introduced new concept of short/long cycles called scaled short/long cycles (s-
short/long cycles, see Definition 3.2) to distinguish different types of g-BEC, see Theorems
4.1, 4.2 4.3 and Remark 3.2 and Proposition 3.3. This paper is based on the estimation of
the size of s-long cycles in the condensate, see Definitions 3.3 at 3.5. If the size of s-long
cycles is macroscopic, then the g-BEC is of the type I or II but if the s-long cycles are
microscopic, then the g-BEC is of type III.

- we introduced new concept of ODLRO, called scaled ODLRO (s-ODLRO, see Def-
inition 5.1), to distinguish the different types of g-BEC, see Theorems 5.1, 5.2. Our
arguments are based on the estimate of the coherence length of the condensate, see Def-
initions 5.2, 5.3. If the coherence length is macroscopic in the three directions, then the
g-BEC is of type I or II, and if in one of the three dimensions the coherence length is
microscopic, then the g-BEC is of type III.

It is clear that the proof of the Theorem 4.1, 4.2 and 4.3 is based on an analysis of
geometric series easily done via s-long cycles. For this reason we can say that s-long
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cycles is a well adapt technique to study classification of BEC. Another reason is that the
concept of cycles is independent of the representation of the gas (Feynman-Kac versus
spectral representation). Therefore the cycles seem to be useful to study generalized BEC
for an interacting Bose gas.

For simplicity we consider here the PBG with periodic boundary conditions but one
can adapt present paper to Dirichlet or Neumann boundary conditions for which we can
characterize the geometric form of the condensate cloud via the concept of scaled local
density. In these cases the results concerning the hierarchies of cycles and ODLRO do not
change. However, if one takes attractive boundary conditions, see [V-V-Z], we guess that
the result should be different, since in this case the condensate is localized in two modes
and it is not homogeneous. One can suppose that the s-long cycles are macroscopic but
the most interesting is the coherence length of the condensate and its geometric form.

The last technical remark concerns the validity of the results in the canonical ensem-
ble. It is known [P-Z] that in the canonical ensemble for the PBG in Casimir boxes there
is the same type of generalized BEC as in the grand-canonical ensemble for the equivalent
geometry. Thus we believe that the principle conclusions concerning the hierarchy of long
cycles and of ODLRO should not change. However given that the amount of condensate
in individual states are different [P-Z] from the grand-canonical case and some results
(formulae in the Propositions 3.1 and 3.3 and Theorem 5.1) should be different.

Conceptual and physical remarks

First notice that ODLRO, long cycles and generalized BEC are equivalent criterions
for PBG in Casimir boxes. Consequently generalized BEC is more relevant than usual
BEC (macroscopical occupation of ground state) because it contains all cases of BEC
(fragmented or not).

In this article we present a scaling approach of Bose-Einstein condensation. It allows
classification of different types of condensate via scaling size of long cycles in relation with
scaling size of large correlations. The interest of the study of long cycles using scaling
approach is the knowledge on coherence properties of condensate by virtue of the rule of
Bose statistics in the two points correlation function. Heuristically the order of the size
of large correlation is the square root of the order of the size of long cycles.

Scaling approach should be useful for interpretation of thermodynamical results for
large particles number systems. It is interesting because one can study the effect of the ge-
ometry of the box on geometry and coherence properties of the condensate. In this paper,
we show that a condensate is like a finite or infinite number of macroscopic particle (type I
or II) or infinite number of microscopic particles (type III, analogous to quasi-condensate
[M-H-U-B], [P-S-W]) formed by ”closed polymers chain” (cycles) of macroscopic or mi-
croscopic size related to coherence length (square root of size of cycles). Physically it
could be interesting to study the correlation function of a condensate in an harmonic trap
with pulsations ωx, ωy, ωz using our scaling approach (e.g. for very anisotropic traps).

Perspectives

In the present paper we the choice of Casimir boxes serves to illustrate our concepts.
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But we can use the van den Berg boxes, which are a generalization of Casimir ones
(ΛL = L1(L) × L2(L) × L3(L) with VL := |ΛL| = L1(L)L2(L)L3(L) where Li(L) are
functions of a parameter L such as limL→∞ Li(L) = ∞). These boxes are very interesting
to study since with particular choice of the functions Li(L), e.g. (see[vdB]) L1(L) =
L2(L) = eL, L3(L) = L with Dirichlet boundary conditions, for ρc(β) < ρ < ρm(β) the
g-BEC is of type III and for ρ > ρm(β) it seems there is the coexistence of g-BEC of
type I and type III, where ρc(β) is the critical density defined by (2.5) and ρm(β) is a
critical density defined in this particular case by ρm(β) = ρc(β) + 1/βπ. In fact ρc(β)
separates regimes condensate - non condensate and ρm(β) separates the different types of
generalized BEC. This seems to be analogous to quasi-condensate/condensate transition
[P-S-W]. It is natural now to study this curious phenomena using our approach, which
will be a subject of another paper.

Whether the scaling approach for the interacting gas problem is still relevant? One can
see that the concept of g-BEC is well formulated for the PBG but not for the interacting
Bose gas. Then how to study the classification of BEC for the interacting Bose gas if
we have no more indications about the spectral properties of the gas? This problem
could be solved using our scaling approach (of long cycles or ODLRO). Thus the next
step will be the application of these new methods for some models of interacting Bose
gas (especially for weakly interacting Bose gas at first time, take e.g. an interaction
U =

∑

k∈Λ∗ gN2
k/2V, g > 0, see [Br-Z])). For strongly interacting bosons in quantum

crystals, there is a formation of infinite cycles [U2]. It could be interesting to study them
using scaling approach of long cycles.

Another interesting problem is the characterization of quantum fluctuations in many
body systems. Scaling approach could be also relevant to study finite size scaling effect
[B-D-T] appearing in some systems, like Casimir effect in quantum liquids [M-Z], [Z-al].
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