
HAL Id: hal-00332722
https://hal.science/hal-00332722v2

Preprint submitted on 20 Nov 2009 (v2), last revised 10 Oct 2010 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Best-effort Group Service in Dynamic Networks
Bertrand Ducourthial, Sofiane Khalfallah, Franck Petit

To cite this version:
Bertrand Ducourthial, Sofiane Khalfallah, Franck Petit. Best-effort Group Service in Dynamic Net-
works. 2008. �hal-00332722v2�

https://hal.science/hal-00332722v2
https://hal.archives-ouvertes.fr


Best-effort Group Service in Dynamic Networks∗

Bertrand Ducourthial‡ Sofiane Khalfallah‡

Franck Petit†

‡ (1) Université de Technologie de Compiègne
(2) CNRS Heudiasyc UMR6599

Centre de Recherche de Royallieu
B.P. 20529, Compiègne, France

† (1) Université PM. Curie
(2) CNRS LIP6

Paris, France

Abstract

We propose a group membership service for dynamic ad hoc networks. It maintains
as long as possible the existing groups and ensures that each group diameter is always
smaller than a constant, fixed according to the application using the groups. The pro-
posed protocol is self-stabilizing and works in dynamic distributed systems. Moreover,
it ensures a kind of continuity in the service offer to the application while the system is
converging, except if too strong topology changes happen. Such a best effort behavior
allows applications to rely on the groups while the stabilization has not been reached,
which is very useful in dynamic ad hoc networks.

Keywords: Group maintenance, Best effort, Stabilization, Dynamic network

1 Introduction

Self-stabilization in dynamic networks. A dynamic network can be seen as an (a priori

infinite) sequence of networks over time. In this paper, we focus on dynamic mobile net-
works. Examples of such networks are Mobile Ad hoc networks (MANETs) or Vehicular Ad

hoc networks (VANETs).
Designing applications on top of such networks require to deal with the lack of infrastruc-

ture [20, 15]. One idea consists in building virtual structures such as clusters, backbones, or
spanning trees. However, when the nodes are moving, the maintenance of such structures
may require more control. The dynamic of the network increases the control overhead. Thus,
distributed algorithms should require less overall organization of the system in order to remain
useful in dynamic networks.

Another paradigm for building distributed protocols in mobile ad hoc networks consists
in designing self-stabilizing algorithms [4]. These algorithms have the ability to recover by
themselves (i.e., automatically) from an inconsistent state caused by transient failures that
may affect a memory or a message. A topology change can be considered as a transient
failure because it leads to an inconsistency in some memories. Indeed, when a node appears
or disappears in the network, all its neighbors should update their neighborhood knowledge.

∗Supported by Région Picardie, proj. APREDY.
1



Self-stabilizing algorithms have been intensively studied the two last decade for their ability
to tolerate transient faults [8]. However, it is important to notice that such algorithms do not
ensure all the time the desirable behavior of the distributed system, especially when faults
occur and during a certain period of time following them. In dynamic systems, it becomes
illusory to expect an application that continuously ensures the service for which it has been
designed. In other words, what we can only expect from the distributed algorithms is to behave
as “the best” as possible, the result depending on the dynamic of the network.

In this paper, we propose a new approach in the design of distributed solutions for dynamic
environments. We borrow the term “best-effort” from the networking community to qualify
the algorithms resulting of our approach. Roughly speaking, a best-effort algorithm is a self-
stabilizing algorithm that also maintains an extra property, called continuity, conditioned by
the topology changes.

Continuity aims to improve the output of the distributed protocol during the convergence
phase of the algorithm, provided that a topological property is preserved. This means that
there is a progression in the successive outputs of the distributed protocols, except if the
network dynamic is too high. This is important in a distributed system where the dynamic
(that is, the frequent topology changes) can prevent the system to converge to the desirable
behavior. Since the output of the protocol will certainly be used before the stabilization, the
continuity ensures that third party applications can rely on it instead of waiting. The output
will certainly be modified in the future, but without challenging previous ones.

In some aspects, our approach is very close to the ones introduced in [16] and in [9]. In [16],
the authors introduce the notion of safe-convergence which guarantees that the system quickly
converges to a safe configuration, and then, it gracefully moves to an optimal configuration
without breaking safety. However, the solution in [16] works on a static network. In [9],
the authors use the notion of passage predicate to define a superstabilizing system, i.e., a
system which is stabilizing and when it is started from a legitimate state and a single topology
change occurs, the passage predicate holds and continues to hold until the protocol reaches
a legitimate state. By contrast, the continuity property is intended to be satisfied before a
legitimate configuration has been reached. It must be satisfied during the stabilization phase,
and between two consecutive stabilization phases (convergence phase followed by stability
phase).

We illustrate our approach with a new group management protocol adapted to vehicular
ad hoc networks (VANET), an emblematic case of dynamic ad hoc networks.

Dynamic group membership service in VANET. The Intelligent Transportation Sys-
tems (ITS) currently attract a lot of attention. It is expected that such systems could improve
the road safety, offer a better resource usage, increase the productivity, reduce the impact of
transport on the environment. ITS is extensively studied by both theoretical and experimental
researchers, especially the vehicular ad hoc networks (VANET), showing characteristics that
are different from many generic MANETs [3].

Many VANET applications require cooperation among close vehicles during a given period:
collaborative driving, distributed perception, chats and other infotainment applications. Vehi-
cles that collaborates form a group. A group is intended to grow until a limit depending on the
application. For instance, the distributed perception should not involve too far vehicles, a chat
should be responsive enough, that limits the number of hops, etc. When the group diameter is
larger than the bound given by the application, it should be split into several smaller groups.

2



However, a group should not be split if this is not mandatory by the diameter constraint in
order to ensure the best duration of service to the application relying on it. Even if another
partitioning of the network would have been better (e.g., less groups, no isolated vehicle), it
is preferable to maintain the composition of existing groups. It is expected that, thanks to
the mobility of the nodes, small groups will eventually succeed in merging. It is then more
important to maintain existing groups as long as possible.

To achieve this specific group membership service, we propose a self-stabilizing distributed
algorithm in a wireless communication model. This algorithm stabilizes the views in such a
way that all the members of a group will eventually share the same view (in which only the
members appear). The groups’ diameters are smaller than a fixed applicative constant Dmax

and neighbor groups merge while the diameter constraint is fulfilled. Moreover, our algorithm
admits the following continuity property: no node disappears from a group except if a topology
change leads to the violation of the diameter constraint (or a node leaves).

To the best of our knowledge, only a few number of papers addresses the problem of group
membership maintenance in the context of self-stabilization. Recently, in [6], the authors
propose a self-stabilizing k-clustering algorithm for static networks. In [10], the authors propose
a self-stabilizing group communication protocol. It relies on a mobile agent that collects and
distributes information during a random walk. This protocol does not allow to build groups
limited to k hops.

Group communication structures have been proposed in the literature to achieve fault-
tolerance in distributed systems [2], by providing for instance replication, virtual synchrony,
reliable broadcast, or atomic broadcast (e.g., [19, 14]). Other works deal with the k-clustering
or k-dominating set problem, e.g., [5, 1, 17, 18, 16], where nodes in a group are at most at
distance k from a cluster-head or dominant node. The aim of these algorithms is to optimize
the partitioning of the network. The group service we propose in this paper is different in the
sense that its aim is not to optimize any partitioning nor to build group centered to some nodes.
Instead, it tries to maintain existing groups as long as possible while satisfying a constraint on
the diameter, without relying on a specific node (that may move or leave).

Contributions. In Section 2, we describe the distributed system we consider in this paper.
We also state what it means for a protocol to be self-stabilizing and best effort regarding
a continuity property conditioned by topology changes. Next, in Section 3, we specify a
new group service (inspired from VANET). In the same section, our best-effort self-stabilizing
algorithm is presented. The proofs are given in Section 4. Finally, we make some concluding
remarks in Section 5. By lake of place, some proofs are in appendix.

2 Model

We consider a system S composed of mobiles nodes that communicate by wireless communi-
cation devices.

Node. Let V be a set of nodes spread out in an Euclidean space. The total number of nodes
in V is finite but unknown. Each node is equipped with a processor unit (including local
memory) and a wireless communication device. A node can move in the Euclidean space. A
node u has either the state active or passive. If it is active, a node u can compute, send and

3



receive messages by executing a local algorithm. The distributed protocol P is composed of all
the local algorithms.

Communication. We define the vicinity of a node v as the part of the Euclidean space from
where a node u can send a message that can be received by v (the vicinity depends on the
communication devices, the obstacles, etc.). A node v can receive a message from u if (i) both
u and v are active, (ii) u is in the vicinity of v, (iii) u is sending a message, (iv) no other node
in the vicinity of v is currently sending a message, and (v) v is not sending a message itself
(any active node that is not sending is able to receive).

We admit the following fair channel hypothesis: there exists two time constants τ1 and τ2

with τ1 ≥ τ2 such that, starting from a date t, any node v is able to receive before the date
t + τ1 a message from each node u, providing that u is in the vicinity of v between t and t + τ1

and attempts to send a message every τ2 units of time. As in [10], we use timers rather than
an asynchronous distributed algorithm for discovering the neighborhood because our approach
is intended to dynamic networks with too frequent changes for considering an asynchronous
distributed algorithm.

At any time instant t, there is a communication link from u to v if both u and v have
the state active (at t), and if u is into the vicinity of v (at t). A communication link is
oriented because u could be in the vicinity of v while the converse is false. The capacity of a
communication link is one message.

Dynamic. Since nodes can move and change their states, the topology of the system S
evolves over time. Even if a communication link exists from u to v at date t, a communication
may fail because previous conditions are not fulfilled, or because the duration of the link is too
short.

The dynamic of a network is in fact a relative notion, depending on both the dynamic of
the nodes (moving and state changing) and the speed of the messages. Indeed, even if the
nodes move slowly, if the communication are very slow, some distributed applications may
fail. Conversely, the nodes could move rapidly without disturbing distributed applications if
communications are efficient. We then introduce the following metric of dynamic.

The system S is δ-dynamic if any node u experimenting a neighborhood change is able to
send a message to all the nodes v at distance smaller than or equal to δ before a new topology
change occur (note that during this message propagation, the topology is fixed). In the rest of
this paper, we admit the following hypothesis: S is 1-dynamic.

Executions. A configuration c of S is the union of the states of memories of all the processors
and the contents of all the communication links. An empty communication link is denoted in
the configuration by a link that contains an empty set of messages; obviously a non existing
communication link is not reported in the configuration (this is important to tackle topology
changes). Let C be the set of configurations.

An execution of a distributed protocol P over S is a sequence of configurations c0, c1, . . .
of S which (i) does not contain successive identical configurations (∀i ∈ N, cti 6= cti+1

), (ii)
contains all the successive configurations the system S reached by executing the distributed
protocol P, providing that at least one node has noticed the change and (iii) is either infinite,
or the computation is finite, no action is enabled and no message is in transit in the final
configuration (this implies that links remain stable).

4



By consequence, any topology change detected by at least one node leads to a new con-
figuration. There is then a single topology per configuration; we denote by Gi the topology
of S during the i-th configuration. In a static system S, we have Gi = G0 in every execution
c0, c1, c2, . . .. Otherwise, the system S is said to be dynamic.

Self-Stabilization. Let X be a set. Then x ⊢ Π means that an element x ∈ X satisfies the
predicate Π defined on the set X and X ⊢ Π with X ⊂ X means that any x ∈ X satisfies
x ⊢ Π. We define a special predicate true as follows: ∀x ∈ X , x ⊢ true. Let Π1 and Π2 be two
predicates defined on the set of configurations C of the system S. Π2 is an attractor for Π1 if
and only if the following condition is true: for any configuration c1 ⊢ Π1 and for any execution
e = c1, c2, . . ., there exists i ≥ 1 such that for any j ≥ i, cj ⊢ Π2.

Define a specification of a task as the predicate Π on the set C of configurations of system
S. A protocol P is self-stabilizing for Π if and only if there exists a predicate LP (called the
legitimacy predicate) defined on C such that the following conditions hold:
1. For any configuration c1 ⊢ LP , and for any execution e = c1, c2, . . ., we have e ⊢ Π
(correctness).
2. Π is an attractor for true (closure and convergence).

Best effort continuity of service. We denote by ΠT a topological predicate defined on the
pairs of successive configurations in an execution. Such a predicate is intended to be false when
an “important topology” change happens. We denote by ΠC a continuity predicate defined on
the pairs of successive configurations in an execution. Such a predicate is intended to be false
when the quality of the outputs produced by protocol P in the two successive configurations
decreases.

The protocol P offers a best effort continuity of services if ΠT ⇒ ΠC .

3 Dynamic Group Service

In this section, we first state the group membership service considered in this paper. Next, we
present an algorithm for this problem, followed by its proof.

3.1 Specification

Let G(V, E) be a graph. Let d(u, v) be the distance between u and v (length of the shortest
path from u to v in G). A subgraph H(VH , EH) is defined as follows: VH ⊆ V and ∀(u, v) ∈
E, (u ∈ VH and v ∈ VH)⇒ (u, v) ∈ EH . Two subgraphs H1(V1, E1) and H2(V2, E2) of a graph
G are said distinct if V1 ∪ V2 = ∅. Let X ⊆ V be a set of nodes. We denote by dX(u, v) the
distance between u and v in the subgraph H(X, EH), that is, the length of the shortest path
from u to v with only edges of EH . If such a path does not exists, then dX(u, v) = +∞.

Given a graph G, the problem considered in this paper consists in designing a distributed
protocol that provides a partition of G into disjoint subgraphs called groups that satisfies
constraints described below.

Denote by viewc
v the knowledge of v about its group in configuration c (output on node v).

Let ΠA be the predicate defined on the configurations and called agreement property : ΠA(c)
holds if and only if there exists a partition of disjoint subgraphs H1(V1, E1), H2(V2, E2), . . . ,

5



Hi(Vi, Ei), . . . of G(V, E) such that for every pair u, v, u ∈ Vi and v ∈ Vi ⇔ viewc
u = viewc

v =
Vi.

Let Ωc
v be the group of v in configuration c, defined by: (i) Ωc

v = viewc
v if v ∈ viewc

v

and ∀u ∈ viewc
v, view

c
v = viewc

u, (ii) Ωc
v = {v} otherwise. Note that given any configuration

c, if ΠA(c) holds, {Ωc
v, v ∈ V } defines a partition of G into disjoint subgraphs of G, i.e.,

there exists a partition of disjoint subgraphs H1(V1, E1), H2(V2, E2), . . . , Hi(Vi, Ei), . . . such
that ∀v ∈ Vi, Ωc

v = Vi for every subgraph Hi.
Let Dmax be an integer representing the maximal admissible distance between two nodes

belonging to the same group. Let ΠS be the predicate defined on the configurations and called
safety property : ΠS(c) holds if each group is connected and its diameter is smaller than Dmax.
More formally ΠS(c) ≡ ∀v ∈ V , maxx,y∈Ωc

v
dΩc

v
(x, y) ≤ Dmax.

Let ΠM be the predicate defined on the configurations and called maximality property :
ΠM(c) holds if by merging two existing groups, we cannot obtain a partition satisfying the safety
property. More formally ΠM(c) ≡ ∀u, v ∈ V with Ωc

u 6= Ωc
v, ∃x, y ∈ Ωc

u ∪ Ωc
v, dΩc

u∪Ωc
v
(x, y) >

Dmax.
The problem considered in this paper is to design a self-stabilizing protocol regarding

predicates ΠS ∧ΠS ∧ΠM : after the last failure or topology change, the algorithm converges in
finite time to a behavior where ΠA, ΠS, and ΠM are fulfilled.

Note that the above requirement is suitable for fixed topologies only. The following predi-
cate deals with dynamic system, i.e., with topological change of the network. Let Gc(V c, Ec)
be the graph modeling the topology of the system at configuration c. We introduce the fol-
lowing notation: dc refers to the distance in the graph Gc, and dc

X(u, v) denotes the distance
between u and v in Gc by considering only edges of the subgraph H(X, EH) of Gc. Define the
topological property as the predicate ΠT defined on any couple of two successive configurations
ci, ci+1 of an execution e as follows: ΠT (ci, ci+1) holds if, for any pair of nodes belonging to
the same group in ci, the distance between them will still be smaller than Dmax in ci+1. In
other words, if a topology change occurred between ci and ci+1, it has preserved the maximal
distance condition. More formally, ΠT (ci, ci+1) ≡ ∀v ∈ V , maxx,y∈Ω

ci
v

d
ci+1

Ω
ci
v

(x, y) ≤ Dmax.

Finally, we are looking for protocols attempting to preserve a group partition when a topol-
ogy change occurs. Let ΠC be the predicate defined on the couples of successive configurations
and called continuity property : ΠC(ci, ci+1) holds if in any group, no node disappears. In other
words, an application can work with the given view because it defines a group in which no
node will disappear. More formally, ΠC(ci, ci+1) ≡ ∀v ∈ V , Ωci

v ⊂ Ω
ci+1

v . Obviously, if the
dynamic of the network is too large, such a property cannot be satisfied. We then introduce
the best effort requirement: ΠT ⇒ ΠC .

3.2 Distributed Protocol

3.2.1 Informal description

For a given node, the candidates to form a group are neighbors up to distance Dmax. Nodes build
lists of candidates by diffusing messages in the neighborhood (see under). Only symmetric links
are taken into account. In O(Dmax) the knowledge of the Dmax neighborhood can be known.
Malformed lists are rejected (such as lists larger than Dmax). Moreover, when a node receives
a list which is too long compared to its current list, it rejects it to avoid any split of its current
group.

When a node enters in a new group, its arrival will be propagated to the group’s members
6



in O(Dmax). Such an arrival can increase the diameter of the group. A new member will be
accepted only if the diameter constraint is respected. Two nodes could be accepted concurrently
by two distant members of a given group and the diameter constraint is no more fulfilled for
this group. In this case, one of the new member must leave the group (instead of splitting the
existing group). To avoid any inopportune change in the views, a new member enters in the
view of a node after the end of its quarantine period. This allows to guarantee that its arrival
has been approved by all the members (no conflicts).

When a node has to leave the group to fulfill the diameter constraint, the choice is done
using priority (function pr). Priorities are totally ordered; if pr(u) < pr(v), then u has the
priority. We do not detail pr in this paper. This may be the identity of the nodes, but
dynamic priorities are more useful. For instance, if priorities are based on nodes’ identities,
a new member with a small identity may split an old group just after entering it because it
moves too far (consider a group of vehicles in a stable convoy and a rapid vehicle that overtakes
the convoy). To the contrary, if priorities are based on the logical date of entrance into the
group (implemented using time-stamps), then this is the last arrived node that will leave (the
vehicles that overtakes).

Priorities on the nodes allow to easily define priorities on the groups by taking the smallest
priority of the members1. Priorities on the groups allows to ensure the merging of neighbor
groups (and the maximality property ΠM) in particular cases (loop of groups willing to merge).

3.2.2 Building the lists of ancestor sets

The messages sent to the neighbors contain ordered list of ancestors’ sets. The ordered list of

ancestors’ sets of a node v is defined by: (a0
v, a1

v, . . . , ap
v) where any node x ∈ ai

v satisfies
d(x, v) = i (a0

v = {v}) and p is the distance of the farthest ancestor of v.
Computations are done using the r-operator ant [7, 13, 11]. Let S be the set of lists of

vertices’ sets. For instance, if a, b, c, d, e are vertices, ({d}, {b}, {a, c}) and ({c}, {a, e}, {b})
belong to S. Let ⊕ be the operator defined on S that merges two lists while deleting needless
or repetitive information (a node appears only one time in a list of ancestors’ sets). For
instance, ({d}, {b}, {a, c}) ⊕ ({c}, {a, e}, {b}) = ({d, c}, {b, a, e}, {a, c, b}) = ({d, c}, {b, a, e}).
Finally, let r be the endomorphism of S that inserts an empty set at the beginning of a list.
For instance, r({d}, {b}, {a, c}) = (∅, {d}, {b}, {a, c}). We then define the operator ant by:
ant(l1, l2) = l1⊕ r(l2), where l1 and l2 are lists belonging to S. This is a strictly idempotent r-
operator [11] inducing a partial order relation. It leads to self-stabilizing static tasks (building
the complete ordered lists of ancestor sets) in the register model [13]. Since our wireless
communication model admits bounded links, these results can be extended to this model.
(Refer to the discussion related to r-operators in wireless networks in [7].)

3.2.3 Algorithm

The distributed protocol Dynamic Group Service is composed of a single algorithm per node
(uniform protocol), see below. Each node computes its output (list, view and priorities) when
its timer Tc expires. It broadcasts its output in the neighborhood when the timer Ts expires
(Ts ≤ Tc). Timers Tc and Ts are chosen according to the fair channel hypothesis. In case
both Tc and Ts expire simultaneously, we assume that the action related to Tc are performed

1During the stabilization, the topology is supposed to be fixed and then no node leaves. The dynamicity is
taken into account thanks to the best effort property.

7



before those of Ts (computation before sending) in order to avoid any fairness problem (no
computation).

All messages received from the neighborhood are collected in msgSet. If a neighbor sends
more than one message before the timer expiration, only the last received is kept. After
computation, the variable msgSet is reset in order to detect when a neighbor leaves.

Algorithm Dynamic Group Service (node v)

1 Upon reception of a message msg sent by a node u:
2 update message of u in msgSet

3 Upon Tc timer expiration:
4 compute()
5 reset msgSet
6 restart timer Tc with duration τ1

7 Upon Ts timer expiration:
8 send( listv with priorities, priority of viewv ) to the neighbors

9 restart timer Ts with duration τ2

A computation (in procedure compute, below) consists in building the ordered list of an-
cestor’ sets as well as the view. The list is sent to the neighbors to be used in their ant
computation. The view is the output of the protocol used by the third party applications (eg.
chat, collaborative perception...) which requested the dynamic group service, and which gave
the diameter constraint Dmax (fixed during all the execution).

First, the incoming lists are checked. Line 3, when the list sent by u and received by v
does not contain v, is malformed or is too long2, it is replaced by (u). When u receives the list
of v containing u, it accepts the list of v and sends a list containing v. Thanks to this triple
handshake, the link has been detected as symmetric (by the way, asymmetric link information
are not propagated).

Line 6, if the received list is too long, the sender u is marked as incompatible (u). Roughly
speaking, a list received by a node u from another node v is compatible if, by combining its
list with the one of v, u does not increase the diameter of its group beyond Dmax. In order
to reach this goal, it is enough to test if the sum of the lengths of both lists is less than or
equal to Dmax+1. But, such simple test would avoid to merge two groups by taking advantage
of short cuts between both groups. In other words, this would ignore the knowledge that
nodes of a group have on nodes belonging to the other group. The technical condition used in
Function compatibleList() deals with such an optimization.

Line 9, if the sender is external to the group, the priorities of the nodes inside its lists are
replaced by the priority of its view (received with its list Line 8): inter-groups comparisons are
realized using groups’ priorities instead of nodes’ priorities.

Then a first computation is performed using the ant operator (Lines 13-16; this computation
ought to be performed inside the first forall loop but we preferred to separate it for clarity).
Thanks to the goodList test, the size of the incoming lists are smaller than Dmax+1. However,
the computed list could reach the size of Dmax + 2 while the maximum is Dmax + 1 (the ant
operation increases by one the list sizes). In this case, a choice has to be done between either
the local node v or the farthest nodes in the received lists. This choice is done by using the
priority (function pr, Line 19). If the local node v has not the priority on the too far node
w (positions in the list start from 0 to Dmax+1 here), the list in which w appears are ignored

2s(list) returns the number of elements in list; list.i returns the ith element of list, starting from 0.
8



(Line 22). At the opposite side of the group, node w keeps the list containing v but the end of
its ordered list of ancestor’s sets will be truncated (meaning that v and w will not belong to
the same group). Indeed, after the too far nodes have been all examined, the list of ancestors
is computed again (Lines 27-30) and is truncated (Line 31) in order to delete the too far nodes
(these remaining too fare nodes have less priority than v).

In order to not include a node in a view while it could be rejected later, a quarantine

mechanism is used. The quarantine period of a node willing to enter in a group is fixed at
Dmax timers. Each time a computation is done (and then the new node progresses in the
group), its quarantine period decreases. Since the group diameter is less than or equal to
Dmax, any conflict would have been detected before the new node enters into a view. Moreover,
if a member of the group accepts the new node, then all the members will accept it. The
procedure compute() is given below.

Procedure compute()
⊲ Checking the received lists

1 for all listu in msgSet do
2 delete marked nodes except v in listu ⊲ Marked nodes are only useful between neighbors.
3 if ¬ goodList(listu) then ⊲ List of u cannot be used;
4 replace listu by (u) in msgSet ⊲ this list is ignored but the sender is kept.
5 end if ⊲ Now, incoming lists cannot be larger than Dmax.
6 if u 6∈ viewv and ¬ compatibleList(listu) then ⊲ u is new, but its list cannot be accepted;

7 replace listu by (u) in msgSet ⊲ u is denoted as an incompatible neighbor
8 end if
9 if u 6∈ viewv then ⊲ If the sender is external, using group priorities.
10 update priorities in listu with priority of viewu

11 end if
12 end for

⊲ Computing the list of ancestors’ sets of v.
13 listv ← (v)
14 for all listu ∈ msgSet do
15 listv ← ant(listv, listu) ⊲ Computation using the ant r-operator.
16 end for

⊲ Removal of incoming lists containing too far nodes (after ant computation, listv cannot be larger than
Dmax+ 1)

17 if s(listv) = Dmax+ 2 then ⊲ The list is too long.
18 for all w at position Dmax+ 1 in listv do ⊲ Scanning too far nodes.
19 if pr(w) < pr(v) then ⊲ Far node w has the priority.
20 for all listu ∈ msgSet do ⊲ Looking for lists that provided w;
21 if w is at position Dmax then ⊲ they contain w in their last place.
22 replace listu by (u) in msgSet ⊲ The neighbor that provided w is ignored.
23 end if
24 end for
25 end if
26 end for

⊲ Computing listv again, without the incoming lists that contained too far nodes with priority.

9



27 listv ← (v)
28 for all listu in msgSet do
29 listv ← ant(listv, listu)
30 end for
31 keeping up to Dmax+ 1 first elements in listv ⊲ Deleted too far nodes have not the priority.
32 end if
33 Update quarantines: quarantine of new nodes is Dmax, non null quarantine of others decreases by 1
34 viewv ← non marked nodes in listv with null quarantine
35 Update priorities ⊲ Depends on the kind of priorities used.

Function goodList(list)
1 if v or v are in list.1 and s(list) ≤ Dmax+ 1 and ∅ /∈ list then
2 return true
3 end if
4 return false

Function compatibleList(list)
1 if s(listv) + s(list) ≤ Dmax+ 1 or

∃i ∈ {0, . . . , s(listv)}, listv.i ⊆ list.1 ∧min (s(listv) + s(list) + 1− i, s(list) + 1 + i/2) ≤ Dmax

2 return true ⊲ Refer to Proposition 13.
3 end if

4 return false

4 Proofs

We first focus on the self-stabilizing property of our algorithm. We show that assuming a
fixed topology, the system converges in finite time to an execution satisfying the statements
in Subsection 3.1, i.e., ΠS ∧ ΠA ∧ ΠM is an attractor. Next, we prove that, assuming topo-
logical changes preserving the maximal distance condition over the groups, then continuity is
preserved, i.e., ΠT ⇒ ΠC .

4.1 Stabilization

In the sequel, we prove that our protocol is self-stabilizing by showing that ΠS and ΠA and
ΠM are attractors—Propositions 8, 7 and 12, respectively.

We begin by showing that eventually lists will become correct (Propositions 1 and 2). We
first prove that any execution cannot remain infinitely with configurations having lists larger
than Dmax. We denote by eDmax the suffix of an execution e such that, for any configuration
c ∈ eDmax, for any node v ∈ V , the size of listv is smaller than or equal to Dmax + 1.

Proposition 1 (Dmax) On a fixed topology, any execution e reaches in finite time a suffix

eDmax.

Starting from this proposition, we now prove that any execution cannot remain infinitely
with configurations having a non existing node in a list. We denote by eexist the suffix of
an execution e such that, for any configuration c ∈ eexist, for any node v ∈ V , every node
u ∈ listc

v satisfies u ∈ V .

Proposition 2 (Exist) On a fixed topology, any execution e reaches in finite time a suffix

eexist. 10



Next, we establish the connection between marked nodes in the algorithms and subgraphs
(Propositions 3, 4, 5 and 6). We call double-marked edge an edge (u, v) such that either u
double-marks v or v double-marks u (denoted by u in the algorithm). The following proposition
is a consequence of the double-marked edge technique. A node v double-marks its neighbor
u only if the list sent by u cannot be accepted by v (Lines 7 and 22). In this case, node v
will ignore the list sent by u. Reciprocally, if u has been double-marked by v, u will detect an
asymmetric link (u does not appear in the list it received after Line 2) and only the identity
of v will be kept by u, the rest of the list of v will be ignored (Line 4).

Proposition 3 (No propagation) Let u and v be two vertices of G and suppose that, in

any execution e, there exists a configuration ce from which any path from u to v in G contains

a double-marked edge. Then u will eventually disappear from listc
v and v will eventually

disappear from listc
u.

The following proposition is a consequence of the ant computation (see Section 3.2.2).
It propagates nodes identities (providing there is no edge-marking technique for limiting it)
[13, 7].

Proposition 4 (Propagation) Let u and v be two vertices of G and suppose that, in any

execution e, there exists a configuration ce from which there exists a path from u to v in G
without double-marked edge. Then listc

v will eventually contain u and listc
u will eventually

contain v.

Proposition 5 (Double-marked edge) Suppose that d(u, v) > Dmax. Then any execution

admits a suffix eedge such that, for any configuration c ∈ eedge, there is a double-marked edge

on any path from u to v.

Let denote by Hc
v(VHv

, EHv
) the subgraph of G(V, E) defined in the configuration c by: for

any node u in VHv
, v ∈ listc

u. Such a subgraph is composed of vertices containing v in their
list. We prove that eventually Hu and Hv are distinct when d(u, v) > Dmax.

Proposition 6 (Subgraphs) Suppose that d(u, v) > Dmax. Then any execution admits a

suffix esubgraph such that, for any configuration c ∈ esubgraph, Hu and Hv are distinct subgraphs.

The preceding propositions give the Agreement. Consider any execution esubgraphs. Denote
by eagree the suffix of an execution e such that ΠA(c) holds for any configuration c ∈ eagree,
that is VHv

= viewc
w for any w ∈ Hv. The following proposition is given by Propositions 6, 4

and 3.

Proposition 7 (Agreement) On a fixed topology, any execution e reaches in finite time a

suffix eagree.

Proof. By Proposition 6, for any execution, there exists a suffix such that, for any nodes u
and v in G, if d(u, v) > Dmax, then the subgraphs Hu and Hv are distinct. Consider now two
nodes w and v such that w belongs to Hv

By Proposition 4, for any execution, there exists a suffix such that, for any configuration c in
this suffix, the identities of Hv will be in listc

w.
11



By Proposition 3, for any execution, there exists a suffix such that, for any configuration c in
this suffix, the listc

w contains only vertices of Hv.

After the end of the quarantine period, all the nodes in listw belong to vieww. Then the
system reaches a suffix in which all the nodes of Hv and only these nodes appear in vieww, for
any vertex w ∈ Hv. Hence, viewc

v = viewc
w = Ωc

v. This gives ΠA. �

Now we have the agreement, there is a connection between subgraphs and groups. We then
prove the Safety. Consider any execution eagree (Proposition 6). Denote by esafe the suffix of
an execution e such that ΠS(c) holds for any configuration c ∈ esafe. The following proposition
is a consequence of Proposition 6.

Proposition 8 (Safety) On a fixed topology, any execution e reaches in finite time a suffix

esafe.

Proof. By Proposition 6, for any execution and any nodes u and v in G satisfying d(u, v) >
Dmax, the subgraphs Hu and Hv will eventually be distinct. Hence, for any execution, there
exists a suffix esafe such that, for any configuration c ∈ esafe, for any vertex v in G, Diam(Hc

v) ≤
Dmax.

Then, by Proposition 7, we have maxx,y∈Ωc
v
dΩc

v
(x, y) ≤ Dmax. This gives ΠS. �

We consider any execution eagree. In order to prove the maximality property, we introduce
the following definitions. An edge (u, v) is internal in a given configuration c if Ωc

u = Ωc
v. In the

converse case (Ωc
u 6= Ωc

v), it is external. An external edge involves double-marked nodes and
it is then not propagated by the algorithm (marked nodes are deleted, see line 2 in Procedure
compute()). We denote by nee (resp. ndg) the function defined on C that returns the number
of external edges in a given configuration (resp. the number of distinct groups in configuration
c: ndg(c) = |{Ωc

v, v ∈ V }|.

Proposition 9 If nee is decreasing along a suffix es of an execution e, ndg is also decreasing

along es.

Proof. Let (u, v) be an external edge in a configuration ci and assume that it is an internal
edge in configuration ci+1. This means that Ωci

u 6= Ωci

v and Ω
ci+1

u = Ω
ci+1

v . Hence nee(ci) >
nee(ci+1)⇒ ndg(ci) > ndg(ci+1). �

We prove that any execution reaches in finite time a suffix in which the function nee does
not increase. We denote by enotincr such a suffix: ∀ci, ci+1 ∈ enotincr, nee(ci+1) ≤ nee(ci).

Proposition 10 (Not incr.) On a fixed topology, any execution e reaches in finite time a

suffix enotincr.

Proof. Let c ∈ eagree be a configuration (Proposition 7). Let (u, v) be an internal edge in
configuration c. Then we have Ωc

u = Ωc
v and u is in listc

v. In order (u, v) becomes an
external edge, one of its extremity (say v) would have double-marked the other (in Procedure
compute()). But this cannot happen after the goodList test (line 3) because c ∈ esubgraphs.
This cannot happen after the compatibleList test (line 6) because u is in already in viewc

v.
�

Now, we prove that any execution reaches in finite time a suffix in which the function nee is
decreasing while ΠM is not true. We denote by edecr such a suffix: ∀ci ∈ edecr, ΠM(ci) ∨ ∃cj ∈
edecr, i < j and nee(ci) > nee(cj). 12



Proposition 11 (Decreasing) On a fixed topology, any execution e reaches in finite time a

suffix edecr.

Proof. Let c ∈ enotincr be a configuration (Proposition 10). Starting from such a configuration,
the nee function cannot increase. Suppose that ΠM is not true in c. Then, by definition of
ΠM , there exists two neighbors nodes x and y with different views that could merge their
groups without breaking ΠS. By fair channel hypothesis, a timer later the system reaches a
configuration c′ in which x (resp. y) has received the list sent by y (resp. x).

Without loss of generality, suppose that Ωx has the smallest priority among all the subgraphs
that can merge, and Ωy has the smallest priority among all the groups that can merge with
Ωx.

During the compute() Procedure on x and y, the goodList tests are true because c′ ∈ enotincr
and then c′ ∈ esafe. The compatibleList test is true on both x and y because they cannot
have change their list since configuration c. Hence we obtain: x ∈ listy and y ∈ listx.

Since Ωy has the smallest priority among the neighbors of Ωx, no member of Ωx can receive
a message from a group with a smallest priority. Therefore x will never receive and then will
never send to y a list with a too far node with a smallest priority than y one’s. Hence y will
never double-mark x and x will remain in the list of y.

Similarly, since Ωx has the smallest priority among the groups that can merge, no member of
Ωy can receive a message from a group with a smallest priority. Therefore y will never receive
and then will never send to x a list with a too far node with a smallest priority than x one’s.
Hence x will never double-mark y and y will remain in the list of x.

After Dmax timer, the list of y (resp. x) has reached any u ∈ Ωx (resp. Ωy) thanks to the fair
channel Hypothesis. Moreover the quarantine of these new members reaches 0 and they are
now included in viewu. Thus, the edge (x, y) becomes an internal edge.

Hence, starting from configuration c with ¬ΠM (c), the system reaches in finite time a config-
uration c′′ with nee(c) > nee(c′′). �

The following proposition is given by Propositions 9, 10 and 11; it shows that any execution
reaches in finite time a suffix in which ΠM is true. We denote by emax such a suffix.

Proposition 12 (Maximality) On a fixed topology, any execution e reaches in finite time a

suffix emax.

Proof. By Proposition 10, the execution reaches a suffix enotincr such that the nee function
will no more increase. By Proposition 11, the execution reaches a suffix edecr such that the
nee function decreases while ΠM is not true. Hence, while ΠM is false, the number of external
edges will eventually decrease. By Proposition 9, this means that the number of subgraphs
will eventually decrease while ΠM is false. Since the graph is finite, the number of subgraphs
cannot decrease infinitely and ΠM will eventually become true. �

4.2 Continuity

In this subsection, we consider the dynamic of the network. We show that if the continuity
property is violated into a group, then their exists a pair of nodes belonging to that group
such that the distance between them is larger that Dmax. The following technical proposition
justifies the compatibleList test.

13



Proposition 13 (Compatible lists) Let v be a node having the list (a0
v, a

1
v, . . . , ap

v) and

assume that its neighbor w sends the list (a0
w, a1

w, . . . , aq
w). Then, the diameter of the group

of v will remain smaller than or equal to Dmax after v accepts w if and only if there exists

i ∈ {0, . . . , p} such that w is neighbor of all the nodes belonging to ai
v and either p− i+1+ q ≤

Dmax or i/2 + q + 1 ≤ Dmax.

Proposition 14 For any execution e, for any configuration ci in e, ΠT (ci, ci+1)⇒ ΠC(ci, ci+1).

Proof. Suppose that there exists a configuration ci and a node v such that viewci

v 6⊆ view
ci+1

v .
Then there exists a node u such that u ∈ viewci

v and u 6∈ view
ci+1

v . This cannot happen after
u or v has added a new node in its view, thanks to the quarantine mechanism. This can only
happen because either u or v removed a node from their views.

Without loss of generality, suppose that v removed a node x: x ∈ viewci

v and x 6∈ view
ci+1

v . If
x 6∈ view

ci+1

v , then (i) the quarantine of x is not null or (ii) x is not in list
ci+1

v or (iii) x is
marked in list

ci+1

v (Line 34 in Procedure compute()).

(i) The first case is exclude because x was already in viewci

v .

(ii) In the second case, if v has not received the message of x while it received it before,
then x left the neighborhood of v (fair channel Hypothesis). Moreover, x was not able to
reach the neighborhood of a node w in Ωc

v before a timer expiration on v (that guarantees the
propagation up to one hop of any message) thanks to the 1-dynamic Hypothesis. Hence, in
configuration ci+1, there is not path from x to v with only nodes of Ωci

v and d
ci+1

Ω
ci
v

(x, v) = +∞.

Thus ¬ΠT (ci, ci+1) (a neighbor left).

(iii) In the third case, if x is simple marked, its list is not good while it was in configuration ci,
which is exclude (Line 3). If x is double-marked, this cannot happen after the compatibleList
test (Line 7) because x was in viewci

v . If this happened after Line 22, then x sent a list with a
too far node y such that pr(y) < pr(v). If y 6∈ Ωci

v , then y 6∈ viewci

v . Then the quarantine of y
is not null and no node of Ωci

v has admitted y in its view. Therefore, thanks to Proposition 13,
y would have never been propagated inside Ωci

v until v, because of the compatibleList test
(Line 6). Finally, if y ∈ Ωci

v , then the distance from y to v in configuration ci+1 is larger than
Dmax: d

ci+1

Ω
ci
v

(x, v) > Dmax and ¬ΠT (ci, ci+1) (the group stretched out). �

5 Conclusion

This paper introduces the best effort concept to complete the self-stabilization in dynamic ad
hoc networks: a continuity of service is ensured if the dynamic of the network allows it. A new
group membership service inspired from VANET has been specified; its aim is to keep existing
groups as long as possible and with a diameter smaller than a constant.

To achieve this specific group membership service, a self-stabilizing distributed algorithm in
a wireless communication model has been designed and proved. The Dynamic Group Service
stabilizes the views in such a way that all the members of a group will eventually share the
same view (in which only the members appear). The groups’ diameters are smaller than a fixed
applicative constant Dmax. Neighbor groups merge while the diameter constraint is fulfilled.
Moreover, this algorithm admits the following continuity property: no node disappears from a
group except if a topology change leads to the violation of the diameter constraint (or a node
leaves).

14



The protocol has been implemented and its performances are currently studied by simu-
lation on Network Simulator, using several mobility models. We believe that the best effort
approach and the continuity property are promising for building useful services on dynamic ad
hoc networks.

References

[1] A.D. Amis, R. Prakash, and D.H.T. Vuaong. Max-min d-cluster formation in wireless ad hoc networks.
In IEEE INFOCOM, pages 32–41, 2000.

[2] Kenneth P. Birman. The process group approach to reliable distributed computing. Commun. ACM,
36(12):37–53, 1993.

[3] J. Blum, A. Eskandarian, and L. Hoffman. Challenges of intervehicle ad hoc networks. IEEE Transaction
on Intelligent Transportation Systems,, 5:347–351, 2004.

[4] O. Brukman, S. Dolev, Y. Haviv, and R. Yagel. Self-stabilization as a foundation for autonomic computing.
In The Second International Conference on Availability, Reliability and Security (ARES), pages 991–998,
Vienna, April 2007.

[5] G.V. Chockler, I. Keidar, and R. Vitenberg. Group communication specifications: a comprehensive study.
ACM Computing Surveys, 4(33):1–43, 2001.

[6] A. K. Datta, L. L. Larmore, and P. Vemula. A self-stabilizing O(k)-time k-clustering algorithm. Computer
Journal, 2009.

[7] S. Delaët, B. Ducourthial, and S. Tixeuil. Self-stabilization with r-operators revisited. In Journal of
Aerospace Computing, Information, and Communication, 2006.

[8] S. Dolev. Self-Stabilization. The MIT Press, 2000.

[9] S. Dolev and T. Herman. Superstabilizing protocols for dynamic distributed systems. In Proceedings of
the fourteenth annual ACM symposium on Principles of distributed computing (PODC), page 255, New
York, NY, USA, 1995. ACM.

[10] S. Dolev, E. Schiller, and J.L Welch. Random walk for self-stabilizing group communication in ad hoc
networks. IEEE Transactions on Mobile Computing, 5(7):893–905, 2006.

[11] B. Ducourthial. r-semi-groups: A generic approach for designing stabilizing silent tasks. In 9th Stabiliza-
tion, Safety, and Security of Distributed Systems (SSS’2007), pages 281–295, Paris, novembre 2007.

[12] B. Ducourthial and S. Tixeuil. Self-stabilization with r-operators. Distributed Computing, 14(3):147–162,
2001.

[13] B. Ducourthial and S. Tixeuil. Self-stabilization with path algebra. Theor. Comput. Sci., 293(1):219–236,
2003.

[14] R. Guerraoui and A. Schiper. Software-based replication for fault-tolerance. IEEE Transaction on Com-
puters, 30(4):68–74, 1997.

[15] Arshad Jhumka and Sandeep S. Kulkarni. On the design of mobility-tolerant tdma-based media access
control (mac) protocol for mobile sensor networks. In Tomasz Janowski and Hrushikesha Mohanty, editors,
ICDCIT, volume 4882 of Lecture Notes in Computer Science, pages 42–53. Springer, 2007.

[16] Hirotsugu Kakugawa and Toshimitsu Masuzawa. A self-stabilizing minimal dominating set algorithm with
safe convergence. In 20th International Parallel and Distributed Processing Symposium (IPDPS 2006),
2006.

[17] S. Kutten and D. Peleg. Fast distributed construction of small-dominating sets and applications. Journal
of Algorithms, 28(1):40–66, 1998.

[18] L. D. Penso and V. C Barbosa. A distributed algorithm to find k -dominating sets. Discrete Applied
Mathematics, 141(1-3):243–253, 2004.

15



[19] F.B. Schneider. Impliementing fault tolerant services using the state machine approach: a tutorial. Com-
puting Surveys, 22(4):299–319, 2990.

[20] I. Stojmenovic. Handbook of Wireless Networks and Mobile Computings. John Wiley & Sons, 2002.

16



A r-operators: a summary

When modeling the distributed algorithms with algebraic operators, interesting properties
(termination, self-stabilization) can be ensured by simply checking some local properties of
the operator. To stabilize a distributed algorithm while some loops exist in the network, the
idempotency is required (x · x = x). However, the operators of the idempotent semi-groups
(such as min(x, y) in N) cannot converge in presence of transient faults [12]. By using an
endomorphism (such as x 7→ x + 1 in N), these operators can be generalized in r-operators

(such as min(x, y + 1) in N). The Abelian idempotent semi-group is then a particular case of
r-semi-groups, where the endomorphism is the identity mapping x 7→ x [11]. An r-operator is
r-associative (x ⊳ (y ⊳ z) = (x ⊳ y) ⊳ r(z)), r-commutative (r(x) ⊳ y = r(y) ⊳ x), r-idempotent
(r(x)⊳x = r(x)) and admits a left neutral element (x⊳e⊳ = x). Under certain conditions, an r-
semi-group induces a semi-group and this gives a method to build r-operators [11] : finding an
Abelian idempotent semi-group (S,⊕) and then an endomorphism r : S→ S. These algebraic
structures admit an order relation. An idempotent r-operator satisfies ∀x ∈ S, x �⊕ x where
�⊕ is the order relation of the induced semi-group. When we have ∀x ∈ S, x ≺⊕ x, the
r-operator is strictly idempotent. In [7], it has been proved that the strictly idempotent r-
operators that induce a total order relation lead to self-stabilizing static tasks in unreliable
messages passing.

17



B Proofs

B.1 Proof of Proposition 1 (Dmax)

Proof. Starting from configuration c1, the system will reach in finite time a configuration in
which every node has computed its list after expiration of its timer. After such a computation,
the size of the lists is bounded by Dmax + 1 (because it is truncated at the Dmax + 1 position,
Line 31). �

B.2 Proof of Proposition 2 (Exist)

Proof. Let c ∈ eDmax be a configuration (Proposition 1). Let u be a node label such that u 6∈ V
and denote by U c

k the set of nodes having u in their list at position k in configuration c. Consider
the function φ(c) defined by φ(c) = min{k ∈ N, U c

k 6= ∅} and φ(c) = ∞ if ∀k ∈ N, U c
k = ∅.

We prove that φ is continuously growing along the execution to be eventually equal to infinity
forever.

Consider a node v in U c
φ(c): v contains u at position φ(c) in its computed list and no node in

configuration c contains u at a smaller position in its computed list. Until the next expiration
of its timer, v cannot receive a list containing u in a smaller position than φ(c). Hence, the
system will reach in finite time a configuration in which the node v has computed a new list that
does not contain u at a position smaller than φ(c)+1. After a timer (fair channel Hypothesis),
the system reaches in finite time a configuration in which the neighbors of v have received this
list.

After finite time, any node v ∈ U c
φ(c) will do the same. The system then reaches in finite time

after configuration c a configuration c′ in which U c′

φ(c) is empty, meaning that φ(c) < φ(c′).

By iteration, φ is growing along the execution. Since the size of the lists is bounded by Dmax+1
(Proposition 1), there exists a configuration c′′ reached in finite time after c in which φ(c′′) =∞,
meaning that u does not appear anymore in the computed lists of the nodes forever. �

B.3 Proof of Proposition 5 (Double-marked edge)

Proof. Let v and w two nodes of G such that d(v, w) = Dmax + 1. Without loss of generality,
we suppose that pr(w) < pr(v). Suppose that there exists a path from v to w that does not
contain any double-marked edge. By Proposition 4, there exists a neighbor u of v such that
u sends to v a list containing w. The size of this list is larger than Dmax. There is two cases.
(i) u 6∈ viewv. In this case, listu is replaced by (u). (ii) u ∈ viewv. In this case, v computes
a list using the one sent by u. Since d(u, v) > Dmax, the resulting list is too long. Since
pr(w) < pr(v), the computation will be done again without the list provided by u, which will
be replaced by (u). In the two cases, u is double-marked by v. Hence, any path from u to v
will eventually contains a double-marked edge. �

18



B.4 Proof of Proposition 6 (Subgraphs)

Proof. By Proposition 5, there exists a suffix s1 such that any path from u to v contains a
double-marked edge. By Proposition 3, there exists a suffix s2 included in s1 such that for any
configuration c in this suffix, u 6∈ listc

v and v 6∈ listc
u. Then u 6∈ Hv and v 6∈ Hu.

Let consider a node w such that w ∈ Hv and w ∈ Hu. Then there exists at least one path from
u to v containing w. The length of such a path is larger than Dmax. Then, by Proposition 5,
it admits a double-marked edge, either on the subpath from u to w or from the subpath from
w to v.

Now, let consider all the paths from u to v containing w; they all contain a double-marked
edge. Suppose that for one path P1, this double-marked edge is between w and v and for a
second path P2, it is between u and w. Then, by considering edges of P1 from u to w and edges
of P2 from w to v, we obtain a path from u to v without any double-marked edge, which is a
contradiction. Then, all paths from u to v containing w admit a double-marked edge, and this
edge is always between u and w or always between w and v. Thus, w cannot belong to both
Hu and Hv, meaning that there is no node w such that w ∈ Hu and w ∈ Hv.

Hence, any execution reaches a suffix such that, for any configuration c in this suffix, Hc
u and

Hc
v are distinct. �

B.5 Proof of Proposition 13 (Compatible lists)

Proof. Let c ∈ esafe be a configuration (Proposition 8). Let w be the first node of Ωc
w for

which the list of ancestor’s sets is received by v. Then, the only external edges between Ωc
v

and Ωc
w known by v are those joining w (external edges are not propagated). Hence, without

loss of generality, assume that only these external edges exist between the groups.

(⇒) Assume that the conditions are fulfilled. Let u ∈ ak
v and u′ ∈ al

w be two nodes in the
lists of v and w respectively. There exists at most two families of shortest paths from u to
u′, depending on the external edge used to reach w. Let P1 be a path that includes the edge
(v, w). It starts from u and joins v by k edges in the group of v, joins w by the edge (u, v)
and then reaches u′ by l edges in the group of u. Let P2 be a path from the second family. It
starts from u and joins a node v′ ∈ ai

v by |k − i| internal edges in the group of v, then joins w
by the edge (v′, w) and then reaches u′ by l internal edges in the group of u.

The length of P1 is bounded by k +1+ q. But since P1 is a shortest path, it is shorter to reach
u′ from u by joining a node of a0

v (i.e., v) than by joining a node of ai
v (such as v′). Hence

we have k ≤ i/2 and the length of P1 is bounded i/2 + 1 + q, which is smaller than Dmax by
hypothesis. The length of P2 is bounded by p− i + 1 + q, which is also smaller than Dmax by
assumption.

Hence, for any node u and u′ belonging to the group of v and w respectively, there exists a
path from u to u′ with less than Dmax edges. The list of w is then compatible with the list of
v, and can then be accepted by v.

19



(⇐) Assume by contradiction that the conditions are not fulfilled and that v accepts the list
of w, i.e., v includes the list of w by computing its new list with ant—refer to Lines 14− 16
of Procedure compute(). That means that the list of w is compatible—refer to Lines 6− 8—,
which contradicts the assumption. Then the nodes of listc

w will be propagated in the lists
of nodes of listc

v and reciprocally. But at least one node u ∈ listc
v will see that a node

u′ ∈ listc
w is too far from it and reciprocally. Either u or u′ will reject the lists of its neighbors

that contain the too far node (depending on the priority between u and u′) and either the
group of v or the group of w splits (when a neighbor is rejected by u, it disappears from listu,
and then from viewu; it is then no more in Hv). �

20


