
HAL Id: hal-00332447
https://hal.science/hal-00332447

Submitted on 21 Oct 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Abstract Simulation: a Static Analysis of Simulink
Models

Alexandre Chapoutot, Matthieu Martel

To cite this version:
Alexandre Chapoutot, Matthieu Martel. Abstract Simulation: a Static Analysis of Simulink Models.
International Conference on Embedded Software and Systems, May 2009, Zhejiang, China. pp.83-92,
�10.1109/ICESS.2009.80�. �hal-00332447�

https://hal.science/hal-00332447
https://hal.archives-ouvertes.fr

Abstract Simulation:

a Static Analysis of Simulink Models

Alexandre Chapoutot1 and Matthieu Martel2

1 LIP6 - Université Pierre et Marie Curie
4,place Jussieur F75252 Paris Cedex 05 France

alexandre.chapoutot@lip6.fr

2 Laboratoire ELIAUS-DALI - Univeristé de Perpignan Via Domitia
52, avenue Paul Alduy F66860 Perpignan Cedex France

matthieu.martel@univ-perp.fr

Abstract. Simulink is one of the most widely used industrial tools to
design embedded systems. Applying formal methods sooner in the cycle
of development is an important industrial challenge in order to reduce
the cost of bug fixing. In this article, we introduce a new method, called
Abstract Simulation and based on abstract interpretation of Simulink
models. Abstract Simulation uses several numerical domains such as a
domain for Taylor forms or floating-point numbers with errors. These
domains allow us to estimate errors introduced by numerical algorithms
and by computations during simulations. As a result, our method makes
it possible to validate numerical behaviors of embedded systems modeled
in Simulink. A prototype has been implemented and experimental results
are commented.

1 Introduction

In regard to the growth of complexity of embedded systems, software tools are
needed at design-time. Simulink3 or Lustre/Scade4 are the main industrial tools
used in this context. Despite of the numerous features added in both tools,
such as simulation, test or code generation, Simulink is more often used due to
its important system design expressiveness. It allows us to model and simulate
continuous-time and discrete-time systems, as well as a mix of both. For em-
bedded systems, Simulink offers a convenient way to model and specify both
the embedded software and the physical environment. The application of formal
methods on such specifications is an important challenge for the validation of
embedded software [6].

In this article, we define a static analysis by abstract interpretation [7] of
Simulink models. This static analysis is called Abstract Simulation (A.S.) and it
has been shortly introduced in [4]. The aim of A.S. is to provide a correctness
criterion for the executions of Simulink models because they are often used for

3 Trademarks of Mathworks
4 Trademarks of Esterel Technologies

the validation of systems. However, such simulations are closer to test-based
verifications than to formal proofs and, consequently, they do not permit to
validate, in regards to the specification, a system. A.S. provides a correctness
criterion for numerical behaviors of the Simulink models in the sense that they
mimic what happens in the real world.

Our contribution. We assume that the mathematical model encoded as a
Simulink model is correct (the physical system is correctly modeled). We aim
at automatically and conjointly compute an over-approximation of the mathe-
matical behaviors and the simulation behaviors for all the possible inputs of the
model. We can thus estimate the whole imprecision introduced by the simulation,
i.e. numerical errors as truncation errors and round-off errors as well as sensor
errors like quantization and sampling. The correctness criterion of continuous-
time models is given by the distance between numerical integration algorithm
(Simulink solver) and guaranteed numerical integration algorithm based on Tay-
lor method [21]. The correctness criterion of discrete-time models is given by us-
ing the abstract numerical domain of floating-point numbers with errors [18, 11].
Furthermore, A.S. uses two abstract numerical domains, such that the domain
of floating-point numbers with errors and the domain of Taylor forms, and A.S.
is also based on an abstraction of sequences using set partitioning.

Related work. Static analysis has already been successfully applied to high
level design languages such as Lustre [17, 1], Signal [10] or VHDL [15]. The main
difference with our approach is that they validate the embedded software, using
assumptions on the environment while we consider, thanks to Simulink, the
software and its environment of execution. Some applications of formal methods
to Simulink models have been proposed by Tiwari [22], based on hybrid automata
and symbolic computation. An other approach for applying formal methods to
Simulink models is to translate them in other paradigms, like Lustre [3]. However,
all these methods focus on either the mathematical behaviors or the execution
behaviors but they do not provide a way to compute both behaviors together
and then a way to compare them. The strength of our method is then to validate
the mathematical model, that is the specification, of the embedded systems and
its robustness to a set of imprecision which generally arises in the final systems.

Outline. In Section 2, we give an overview of the different features of A.S..
In section 3, we introduce Simulink through a running example. We define the
numerical domain of Taylor forms in Section 4.1 while, in Section 4.2, we recall
the numerical domain of floating point with errors. We define the abstractions of
sequences in Section 5 before defining A.S., in Section 6. Finally, experimental
results are presented in Section 7.

2 Overview of Abstract Simulation

Simulink offers a convenient way to describe dynamic systems, that is systems
evolving during time. Such systems are mathematically represented by systems
of equations that are differential equations in case of continuous-time systems,
difference equations in case of discrete-time systems and a mix of both in case

2

of hybrid systems. The simulation of Simulink models is based on numerical
algorithms, so the solution of systems of equations (i.e. the semantics of Simulink
models) is given by sequences of values representing temporal functions.

As consequence, A.S. is mainly based on two abstractions of sequences. Equa-
tion (1) describes those abstractions with a sequential composition of Galois
connections.

(◆→ ℘(V),�⊆) −−−−→←−−−−
αV

γV
“

◆→ V♯,�⊑♯

”

−−−−→←−−−−
αµ

γµ
“

D → V♯,�⊑♯

”

(1)

A set of sequences over a numerical values V is denoted by ◆ → ℘(V), we see
this set as the complete lattice of total function space. The first abstraction,
defined with the Galois connection (αV , γV), turns set of values into an abstract
numerical domain. We will use two abstract numerical domains in this paper:
the domain of Taylor forms T , defined in Section 4.1, and the domain of floating-
point numbers with errors [18], denoted by E , we will briefly recall the definition
of it in Section 4.2. The second Galois connection (αµ, γµ) transforms infinite
length sequences into finite length ones (D is a finite set) thanks to the parti-
tion function µ. We will define this abstraction in Section 5. The definition of
A.S. using the abstract domain of sequences is given in Section 6. A.S. closely
follows the simulation process of Simulink which is adapted to use the guarantee
numerical integration method [21].

A.S. aims at statically analyze Simulink models that is validate the numeri-
cal behaviors of the specifications of embedded control systems. The semantics
of Simulink is given by numerical algorithms. In consequence, A.S. uses various
abstract numerical domains in order to follow semantics of Simulink. These do-
mains are tuned to be compatible with such numerical algorithms which is not
necessary the case with the polyhedral domains [9, 19]. Furthermore, the inaccu-
rate experimental results using interval domain, especially to deal with numerical
integration algorithms, have lead to consider more elaborated domains, in par-
ticular the domain of Taylor forms.

3 Presentation of Simulink

This section is organised as follows. First, we present the main aspects of the
Simulink language through an example issued from an industrial case study.
Next, we define the generation of the semantic equations related to Simulink
models.

3.1 Simulink

Simulink is a tool to model and to simulate systems evolving during time as
critical embedded systems are. In Figure 1, an example of Simulink model is
given. It represents a simple braking detector and it is split in three sub-systems.
A continuous-time sub-system, given in Figure 1(a), represents a braking pedal
as a mass-spring-damper mechanical system. A discrete-time sub-system, given
in Figure 1(b), detects when the pressing force on the pedal becomes greater

3

Out1

1

1

s

1

s

Gain2

0.5 100

250

In1

1

(a) Continuous-time model

Out1

1

Unit Delay

z

1

True

1

Gain

0.5

False

0

Add

In1

1

(b) Discrete-time model

Out1

1

Pedal

In1 Out1

Control

In1 Out1

In1

1

(c) Hybrid model

Fig. 1. A breaking pedal detector.

than a given threshold and then detects the braking action. Finally, the main
system, given in Figure 1(c), has one input, the pressing force, and one output,
the detection result. This last system is a simple composition of the continuous-
time sub-system and of the discrete-time sub-system.

In regards to our example, we can see that Simulink models are composed of
blocks connected by wires (named signals). These blocks are either elementary
blocks such as arithmetic operations or sub-system blocks which are the composi-
tion of elementary blocks. We have listed in Figure 2 the main blocks used in this
article. Integrator and UnitDelay are special because they introduce the notion
of time (t represent the continuous-time variable and k represents the discrete-
time one). When an Integrator is used, the model is called continuous-time and
the operation associated to Integrator is a mathematical integration over time.
Conversely, a model using UnitDelay is called discrete-time. A mix of these two
operators yields an hybrid model defined in a fully dataflow way: signals are
functions of time which are either continuous-time functions or discrete-time
functions. We remark that a model which does not contain such blocks can be
either continuous-time or discrete-time; we assume for the rest of the paper we
know the type of such systems.

3.2 Semantic Equations

In this section, we describe the generation of the semantic equations for the
blocks defined in the second column of Figure 2. E{M} denotes the semantic
equations associated to the Simulink model M . We annotate each wire of M
by an unique label ℓ. Moreover, each block Integrator and UnitDelay is also
annotated by a label η. We denote by L the finite set of labels. Semantic equations
define the relation between the inputs and the outputs of a block. The equation
associated to each block is given in the last column of Figure 2.

The system of equations associated to a Simulink model is described by a
pair whose first argument is the set of semantic equations needed to compute the
outputs of the model and the second argument is the set of semantic equations

4

Name Block Description Equations

Input
1

In1

ℓ1

System input {ℓ1 = In(t), ∅}

Constant

c

Constant

ℓ1

Constant value {ℓ1 = c, ∅}

Output
1

Out1

ℓ1

System output {Out(t) = ℓ1, ∅}

Add Add

ℓ1

ℓ2
ℓ3

Addition {ℓ3 = ℓ1 + ℓ2, ∅}

Sub Subtract

ℓ3
ℓ1

ℓ2

Subtraction {ℓ3 = ℓ1 − ℓ2, ∅}

Gain

g

Gain

ℓ1 ℓ2

Multiplication by con-
stant

{ℓ2 = g × ℓ1, ∅}

Switch Switch

ℓ1

ℓ2

ℓ3

ℓ4

Conditional statement {ℓ4 = if(p(ℓ1), ℓ2, ℓ3), ∅}

Integrator

1/s

Integrator

ℓ1 ℓ2

Continuous-time inte-
gration

{ℓ2(t) = η(t), η̇(t) = ℓ1(t)}

UnitDelay
z

1

Unit Delay

ℓ2ℓ1

Discrete-time delay {ℓ2(k) = η(k), η(k + 1) = ℓ1(k)}

SubSystem
ℓ1 ℓ2In1 Out1

Sub-system {ℓ2 = f(ℓ1), ∅} with f = E{S}

Fig. 2. Simulink blocks with their graphical representation and their equation.

computing the states of the model. Intuitively, states are values (e.g. previous
outputs) of one model needed to compute its current output. We denote by
Eo{M} the set of output semantic equations of M and by Es{M} the set of
state semantic equations of M . Then E{M} = Eo{M} ∪ Es{M}. The system of
semantic equations provides a mathematical description of the Simulink models
close to the mathematical state-space formalism [14]. Remark that the Integrator
blocks generate a first order ordinary differential equation. This is a key point of
our semantics: for an integrator, we state that the output ℓ2(t) is η(t) which is
constrained by the input ℓ1(t) by the relation η̇(t) = ℓ1(t) where η̇ denotes the
first order derivative of η with respect to t. For the UnitDelay block, the semantic
equation is a recursive relation of order one. Only these two blocks generate state
semantic equations. When block generate only one set of semantic equations, the
set of state semantic equation is empty (denoted by ∅). The semantic equations
of the arithmetic operation blocks are very intuitive. For the Switch block, p is
a predicate which is either ℓ1 > c or ℓ1 ≥ c with ℓ1 the first input signal of the
block and c a constant value. A sub-system block S associates a set of equations
E{S} named f and it generates one output equation ℓ2 = f(ℓ1).

Remark that this subset of Simulink language is enough to deal with more
complex blocks such as, for example, State-Space block which is a block asso-

5

ciated to set of linear differential equations or Saturation block which may be
represented by two conditional statements.

4 Numerical Domains

We present the two abstract numerical domains used in the definition of Abstract
Simulation. The domain of Taylor forms is defined in Section 4.1 and the domain
of floating-point numbers with errors is defined in Section 4.2.

4.1 Domain of Taylor Forms

The aim of the domain of Taylor forms of order d is to compute, by an interval
method, the image of an interval X by a real function f . f has to be d-times
continuously differentiable and X has to be bounded. Domain of Taylor forms
are used to extend numerical integration method, such as Euler or Runge-Kutta,
to deal with interval values.

Concrete domain. We define the arithmetic operations over Taylor forms. We
assume that we know how to compute the coefficients of Taylor forms. Automatic
differentiation techniques [12] may be used for this purpose. We denote by T d

the set of Taylor forms with remainder of order d. These terms are defined in
Equation (2), f : ❘ → ❘ is a d-times continuously differentiable function over
the interval [x1, x2], Rd is the Lagrange remainder and h = |x2 − x1|.

f(x2) = f(x1) +

d−1
X

i=1

hi

i!
f
(i)(x1) + Rd (2)

f (i) is the i-th derivative of f and Rd is the remainder. This definition can be
easily extended to deal with vectorial values. We represent Taylor forms by a
vector of real values of length d + 1 where the latest element represent the re-
mainder. That is, for a function f at point x, its d-th order Taylor representation
T d(f)(x) is:

T d(f)(x) =

„

f(x), hf
(1)(x), . . . ,

hd−1

(d− 1)!
f
(d−1)(x), Rd

«

(3)

We denote by (T d(f)(x))i the i-th coefficient of the d-th order Taylor form
of function f at point x with (T d(f)(x))0 = f(x). We define the arithmetic
of Taylor forms in Equation (4). We denote by +T ,−T ,×T the addition, the
subtraction and the multiplication of Taylor forms. We restrict our presentation
of the operations on Taylor forms to the ones needed for this article but such
operations exist for division and for transcendental functions like sin, cos, exp,
etc. [12].

T d(f1)(x) +T T d(f2)(x) = ∀i, (T d(f1)(x))i + (T d(f2)(x))i

T d(f1)(x)−T T d(f2)(x) = ∀i, (T d(f1)(x))i − (T d(f2)(x))i

T d(f1)(x)×T T d(f2)(x) = ∀i,
i

X

j=0

(T d(f1)(x))j(T
d(f2)(x))i−j

(4)

6

We define, in Equation (5), the concrete semantics J.K
T

based on Taylor forms
by induction on the structure of expressions (we consider arithmetic and compar-
ison expressions appearing in the right hand side of the equations in Figure 2).
We denote by θ the environment function which maps variable to Taylor forms.
A constant value c is associated to a constant function and all its derivatives
are equal to zero. ⋄ stands for an arithmetic operation among {+,−,×} and ⋄T
is the equivalent operation in the Taylor arithmetic. The comparison between
Taylor forms and constant values c, △ stands for > or ≥, uses the function eval
which evaluates Taylor forms into real values.

JcK
T
(θ) = (c, 0, . . . , 0)

JℓK
T
(θ) = θ(ℓ)

Je1 ⋄ e2KT
(θ) =

`

Je1KT
(θ)

´

⋄T
`

Je2KT
(θ)

´

Je1 △ cK
T
(θ) = eval

`

Je1KT
(θ)

´

△ c

(5)

Abstract domain. We define the abstract domain associated to Taylor forms
and based on the domain of intervals [7]. However, in our case, the straight-
forward abstraction by intervals yields very frequently imprecise results which
are useless in practice. Instead, we use an abstraction called Taylor inclusion
function [16] and based on the extension of the mean-value theorem.

For all function f : ❘n → ❘, (d-1)-continuously differentiable on the interval
[a, b] and d-differentiable on the interval]a, b[, the Taylor-Lagrange form is:

∀u ∈ [a, b], ∃z ∈]a, b[, f(u) =

d−1
X

i=0

u− c

i!
f
(i)(c) + f

(d)(z)(u− c)

c stands for the center of [a, b] and f (i) denotes the i-th derivative of f . Then,

f([a, b]) ⊆
d−1
X

i=0

u− c

i!
f
(i)(c) + [f (d)]([a, b])([a, b]− c)

[f (d)] stands for the evaluation of f (d) using interval arithmetic and it is a bound
of the highest derivative on the interval [a, b]. Then, we obtain a new abstraction
based on the interval domain which produces better bounds in practice. Let
(αI, γI) be the Galois connection between the complete lattice 〈℘(❘),⊆〉 and the
complete lattice of intervals 〈I,⊑I〉. We write m([a, b]) the center of the interval
[a, b]. eval ♯((T d♯(f)(x)) evaluates the centered interval Taylor forms at point x
into interval values.

Proposition 1. 〈T d♯,⊑♯
T ,⊔♯

T ,⊓♯
T 〉 as defined below is a complete lattice:

T d♯(f1)(x) ⊑♯
T T d♯(f2)(x)

def
=

`

eval ♯
`

T d♯(f1)(x)
´´

⊑♯
I

`

eval ♯
`

T d♯(f2)(x)
´´

T d♯(f1)(x) ⊔♯
T T d♯(f2)(x)

def
= (z♯

0, z
♯
1, . . . , z

♯
d) where ∀i < d,

z♯
i = m

“j“

T d♯(f1)(x)
”

i
,
“

T d♯(f2)(x)
”

i

k”

and z♯
d =

“

T d♯(f1)(x)
”

d
⊔I

“

T d♯(f2)(x)
”

d

T d♯(f1)(x) ⊓♯
T T d♯(f2)(x)

def
= (z♯

0, z
♯
1, . . . , z

♯
d) where ∀i < d,

z♯
i = m

“j“

T d♯(f1)(x)
”

i
,
“

T d♯(f2)(x)
”

i

k”

and z♯
d =

“

T d♯(f1)(x)
”

d
⊓I

“

T d♯(f2)(x)
”

d

7

The comparison ⊑♯
T compares the interval values associated to the Taylor forms.

The join operation ⊔♯
T computes the centered values of the convex hull of the

d− 1 first elements, ⌊r1, r2⌋ denotes the convex hull of the points r1 and r2, and

computes the interval join result of the d-th elements. The meet operations ⊓♯
T

is similar to ⊔♯
T .

Proposition 2. (Galois connection of centered interval Taylor forms)

(℘(Td),⊆) −−−−→←−−−−
αT

γT
“

T d♯,⊑♯
T

”

with αT

`

{T d(f)(xj) : 1 ≤ j ≤ n}
´ def

= (z♯
0, z

♯
1, . . . , z

♯
d) where ∀i < d,

z♯
i = m

“

αI

“

{(T d(f)(xj))i : 1 ≤ j ≤ n}
””

and z♯
d = αI

“

{(T d(fj)(x))d : 1 ≤ j ≤ n}
”

and γT

`

T d♯(f)(x)
´ def

= {(z0, z1, . . . , z) : z ∈ Zd} where ∀i < d,

zi = (T d♯(f)(x))i and Zd = γI

“

(T d♯(f)(x))d

”

The abstract semantics J.K
♯
T

is obtained by abstracting sets of Taylor forms
by centered interval Taylor forms. The semantics of arithmetic operations is
straightforward and the semantics of comparisons uses the function eval ♯.

4.2 Domain of Floating-point Numbers with Errors

In this section, we briefly recall the definition of the second numerical abstract
domains used in this article: the domain of floating-point numbers with errors.
We aim at validating numerical behaviors of Simulink models and, more pre-
cisely, the influence of the finite precision on the simulation process. Intuitively,
a floating-point number with error is a pair made of the same floating-point
number manipulated by the computer and of an exact error term which is the
distance between the value used by the machine and the exact result (computing
with infinite precision) of the calculation. So, floating-point numbers with errors
allows us to follow the control-flow induced by the computer arithmetic while
tracking the errors due to finite precision.

In Equation (6), we recall the definition of the arithmetic operations of
floating-point numbers with errors. A real constant value r is represented by
the couple (↑◦ (r), ↓◦ (r)) where ↑◦ is the rounding function mapping real val-
ues to floating-point values and ↓◦ is the rounding error function which gives
the distance between the real value and its floating-point representation. So,
↓◦ (r) = r− ↑◦ (r). A variable a is represented by a couple (fa, ea) with fa the
floating-point value and ea the sum of all the errors arisen during the computa-
tion. We focus our presentation on the only operators used in this article. More
details are given in [18].

a +E b = (↑◦ (fa + fb), ea + eb+ ↓◦ (fa + fb))

a−E b = (↑◦ (fa − fb), ea − eb+ ↓◦ (fa + fb))

a×E b = (↑◦ (fa × fb), eafb + ebfa + eaeb+ ↓◦ (fa × fb))

(6)

8

We denote by φ the environment function which maps variable to floating-
point with errors values. The concrete semantics J.K

E
is given by extending the

arithmetic operations to floating-point numbers with errors operations. The com-
parison operations is performed either on the floating-point part or on the real
value in order to follow the simulation control flow or the mathematical con-
trol flow. l stands for the evaluation function which computes the floating-point
value or the real value of the floating-point with errors value.

JcK
E
(φ) = (↑◦ (c), ↓◦ (c))

JℓK
E
(φ) = φ(ℓ)

Je1 ⋄ e2KE
(φ) =

`

Je1KE
(φ)

´

⋄E
`

Je2KE
(φ)

´

Je1 △ cK
E
(φ) = l

`

Je1KE
(φ)

´

△ l
`

JcK
E
(φ)

´

(7)

The abstract semantics J.K
♯
E

is obtained by abstracting the two elements of a
floating-point number with error, that is the floating-point number and the
rounding error, into intervals and by extending the arithmetic operations to
these of the interval arithmetic.

5 Domain of Sequences

In this section, we define the two abstractions over sequences introduced in
Equation (1). The first is a classical abstraction of total function space. The
second is an abstraction over partitions of a set. We assume that V is a numerical
domain which is either the domain of Taylor forms, defined in Section 4.1, or
the domain of floating-point numbers with errors, defined in Section 4.2.

Let {◆→ ℘(V)} the complete lattice of total functions ordered by �⊆:

∀f1, f2 ∈ {◆→ ℘(V)}, f1 �⊆ f2 ⇔ ∀n ∈ ◆, f1(n) ⊆ f2(n)

Even if we take {◆ → ℘(V)} for our concrete semantic domain, many consider
it as an abstraction of {℘(◆ → V)} the set of maps from ◆ to V. If there is a
Galois connection (αV , γV) such that:

(℘(V),⊆) −−−−→←−−−−
αV

γV
“

V♯,⊑♯
”

then, we have the complete lattice of total functions {◆→ V♯} ordered by �⊑♯ :

∀f1, f2 ∈ {◆→ V
♯}, f1 �⊑♯ f2 ⇔ ∀n ∈ ◆, f1(n) ⊑♯

f2(n)

For each function f in {◆ → ℘(V)}, we can define the Galois connection
(α′

V(f), γ′
V(g)) such that:

α′
V(f) = αV ◦ f

γ′
V(g) = γV ◦ g with g = α′

V(f)

This first abstraction offers a way to deal with set of behaviors of Simulink
models induced by set of inputs. The second abstraction, introduced below, is a
way to make an infinite length sequences fit into a finite length sequence using

9

the partitioning of the set ◆. A partition of ◆ is given by a function µ : ◆→ D
which defines an equivalence relation ∼µ such that:

∀n1, n2 ∈ ◆, n1 ∼µ n2 ⇔ µ(n1) = µ(n2)

Let Pµ(◆) the partition associated to the equivalence relation ∼µ, that is:

Pµ(◆) = {{n : n ∈ ◆, n ∼µ k} : k ∈ D}

Let Pµ(◆)|k the k-th element of the set Pµ(◆), that is: Pµ(◆)|k = {n : n ∈
◆, n ∼µ k}. As sequences are associated to temporal functions, we require the
function µ to have its co-domain D to be a finite set because the size of D is
associated to the number of elements in the partition that is the length of the
sequences. An example of such function is:

µ1(n) =

(

n if n ≤ l

l + 1 otherwise.
(8)

This function separates the l first elements and it gathers all the other elements
in one.

Theorem 1.
˘

◆→ V♯,�⊑♯

¯

−−−−→←−−−−
αµ

γµ ˘

D → V♯,�⊑♯

¯

is a Galois connection. With,

αµ(f) =

8

>

<

>

:

D → V♯

k 7→
G♯

n∈Pµ(◆)|k

f(n) γµ(f ♯) =

(

◆→ V♯

n 7→ f ♯(k) with k ∼µ n

Proof. Straightforward use of the definitions of αµ and γµ. More details are given
in Appendix A. ⊓⊔

The semantics of Simulink based in the domain of sequences is very intuitive.
Each equation of the system of equations EJMK associated to Simulink models
M is split in two equations: one for the current instant, e.g. the equation associ-
ated to output and which is of the form ℓ(k) = e; and one for the next instant,
e.g. the equation associated to a state, of the form ℓ(k + 1) = e. k denotes the
discrete-time variable. The concrete semantics L.MK is defined as a substitution
of the k-th or of the (k+1)-th element of the sequences associated to the vari-

able ℓ. The abstract semantics L.M♯
K

is based on the function µ and it is defined
in Equation (9). We denote by σ♯ the function mapping variable to sequences

over V♯, and σ♯
i stands for the environment mapping variable to i-th element

of the sequence in σ♯. To each instant k is associated an abstract instant µ(k).
At instant µ(k), the abstract sequences gathers all the values of the concrete
sequences for each instant k in relation with µ(k) by ∼µ.

Lℓ(k) = eM♯
K
(σ♯) = σ♯

µ(k)

h

ℓ← σ♯

µ(k)(ℓ) ⊔
♯
V JeK♯

V
(σ♯

µ(k))
i

Lℓ(k + 1) = eM♯
K
(σ♯) = σ♯

µ(k+1)

h

ℓ← σ♯

µ(k+1)(ℓ) ⊔
♯
V JeK♯

V
(σ♯

k)
i (9)

10

6 Static Analysis of Hybrid Simulink Models

In this section, we define Abstract Simulation using domains of Sections 4.1, 4.2
and 5. The simulation process of Simulink gives an effective way to compute se-
quences of values. Such sequences are the approximate numerical solutions of the
system of equations attached to Simulink models. Moreover, the approximations
are dependent of the numerical integration algorithms used during the simula-
tion. Then, we define a static analysis which is parametrized by the numerical
integration algorithm. This makes our approach generic for the static analysis
Simuink models.

Simulink uses a lot of features coming from compilation (e.g. typing, reduc-
tion of block number, . . .) but if we only considered the simulation loop, we
obtain these three steps: i) Computing the outputs of the model ii) Comput-
ing the states of the model and iii) computing the time at the next step. The
main complex operations are in the step ii), especially in the case of continuous-
time models because this step involves numerical integration. But in the case
of discrete-time models, our semantics L.MD is straightforwardly given by the
domain of floating-point numbers with errors and the semantics of sequences
because step ii) does not need the use of complex numerical algorithms.

In Section 6.1, we define the semantics of continuous-time models, denoted
by L.MC. We will show, in Section 6.2, that the semantics of hybrid Simulation
models is a combination of the previous defined semantics.

6.1 Semantics of Continuous-time Models

The mathematical behavior of Simulink models is given using guaranteed nu-
merical integration algorithms [21, 2] while the simulation behaviors is given by
an abstraction of numerical integration algorithms with Taylor forms.

For the sake of simplicity, we examine now how the guaranteed integration
algorithms are added to the simulation loop. Recall that a Simulink model M is
represented by a set of equations E{M} = Eo{M} ∪ Es{M}. The output of the
model is the result of the system of equations Eo{M} and the state evolution
is given by the system of equations Es{M}. Let ρk the environment based on
Taylor form and Ek the guaranteed environment, the loop iteration at instant k
is given by:

i) Compute the outputs of the model that is evaluated Eo{M} in ρk,
ii) Evaluate Es{M} in ρk where each expression η̇ = e are substituted by

η(k + 1) = η(k) + he with h the integration step. In other words, differ-
ential equations are transformed into recurrence equations following Euler
algorithm,

iii) Compute the guaranteed outputs of the model evaluating Eo{M} in Ek,
iv) Compute the guaranteed states using the Taylor method [21] in Ek,
v) Compute the distance between the result of steps ii) and step iv).

Remark that the simulation loop, when using more sophisticated methods, such
as Runge-Kutta is similar. The main changes are the evaluation of Eo{M} which

11

needs to be done several times, at different instants in order to apply the nu-
merical integration method [13].

6.2 Semantics of Hybrid Models

We define now the semantics of hybrid Simulink models based on the semantics
of continuous-time models L.MC and the semantics of discrete-time models L.MD.
L.MC stands for the semantics based on the sequence domain over the Taylor
domain and L.MC stands for the semantics based on the sequence domain over
the floating-point with errors domain. We assume that a Simulink model M
is represented by a list L of sub-systems such as the model of Figure 1(c). In
addition, we assume that we know the kind of each sub-system, that is, if it
is a continuous-time or a discrete-time sub-system. Moreover, we assume that
elements in the list are in the topological order. The evaluation of M is then the
evaluation of the list L. The loop of simulation is simple. Assuming that initial
values are sets, starting from the first element L(1) of L, we apply, until the last
element of L is reached, the following steps:

– If L(i) is a continuous-time sub-system then apply L.MC,
• if L(i + 1) is a continuous-time sub-system, continue with L.MC,
• if L(i+1) is a discrete-time sub-system, convert the results into floating-

point numbers with errors and continue with L.MD;
– if L(i) is a discrete-time sub-system then apply L.MD,

• if L(i + 1) is a discrete-time sub-system, continue with L.MD,
• if L(i + 1) is a continuous-time sub-system, either we take the floating-

point value or the real value (that is the sum of the floating-point value
and the error term) and continue with L.MC.

The choice made in the cast from discrete-time to continuous-time enables to
cope with the combinatorial explosion due to the necessity to follow both possible
paths in the analysis. So, we choose, before the analysis, to follow the computer
path in the control flow or the mathematical one thanks to the function l (see
Section 4.2).

7 Experimental Results

A static analyzer of Simulink programs has been implemented, including Eu-
ler ’s algorithm and using interval Taylor domain, floating-point numbers with
errors and the abstraction of sequences. In this section, we consider two Simulink
models: in Section 7.1, the one given in Figure 1 and, in Section 7.2, an elec-
tronic throttle control system. In all the experiments, we have used the validated
numerical solver of differential equations VNODE[20] to compute the real be-
haviors of the continuous-time systems. Moreover, the cast of values v between
continuous-time system and discrete-time system, that is the quantization ac-
tivity of the sensor, is made by converting v in floating-point with a precision of
10 bits.

12

7.1 Breaking Pedal Detector

For this first experiment, we take the input function u(t) depicted in Figure 3(a)
and defined by:

u(t) =

8

>

<

>

:

[100, 200]× t if 0 ≤ t < 1

[100, 200] if 1 ≤ t < 1.5

0 otherwise

The gray area represent the set of values and we represent with the black line

(a) Input of the model. (b) Output of continuous-time sub-system.

(c) Distance between numerical integration

and guaranteed numerical integration.

(d) Output of the model.

Fig. 3. Results analysis of system at Figure 1.

a particular trajectory computed with Simulink. We use the partition function
µ defined in Equation (8) with l = 3. The output of the continuous-time sys-
tem, given by interval Euler algorithm with the integration step h = 0.01, is
represented in Figure 3(b). The correction criterion given by the maximal error
between the simulation and the guarantee solution, in Figure 3(c), shows the
numerical stability of the system design. The maximal error is less than 4e−9

for the all the analysis duration. The output of the system is given in Figure
3(d). The controller, with a threshold equal to 0.1, correctly detects the pressing
force on the pedal for this set of inputs and the rounding-errors do not exceed

13

S_2

S_4 S_3

S_1

l_2
In1

Out1

Out2

In1Out1

In1 Out1

In1

In2

Out1

Add

In1

1

l_5

l_4

l_3

l_6l_7

l_1

Fig. 4. Simulink model of an electronic throttle control system.

5e−8. Furthermore, we remark that we fully enclose the Simulink results obtain
by simulation with an input equals to the mean of the interval input.

7.2 Electronic Throttle Controller

The second example is an electronic throttle control system5 which is a common
automobile feature used, for example, in fuel injection. The Simulink model is
given in Figure 4. The system is made of four sub-systems in a feedback loop.
S1 is a proportional-integral controller (PI controller), S3 is the mathematical
model of the dynamic of the throttle, S2 and S4 are conversion operations. The
dynamic of the throttle is described mathematically in Equation (10). A throttle
is a valve described by its angular position θ and its angular velocity ω. It is
controlled by an electric motor represented by its rotating direction (Direction)
and its rotating speed (Speed).

8

>

<

>

:

T (t) = Direction × Speed × 3

ω̇(t) = 4081.6(−0.2(θ(t)− 0.5223599)− 0.03ω(t) + T (t)) with 0 < θ < π/2

((θ < 0 ∧ sign(ω̇(t)) = −1) ∨ ((θ > π/2 ∧ sign(ω̇(t)) = 1)))⇒ ω̇(t) = 0

(10)

We set as input of the system a periodic function, depicted in Figure 5(a).
The period of 2 seconds is split into two parts: the first second is an interval
constant force between [200, 600] and, in the last second, the function is equal
to zero. We use in this case the partition function µ defined by considering the
first period and componentwisely gathering all the elements of the next periods.

The output of the PI controller is given in Figure 5(c). Moreover, the rounding-
errors are bounded in the interval [−3e−15, 3e−15] (see Figure 5(d)). These results
show that the PI controller is numerically stable and follows the dynamic of its
input. The output of S3, given in Figure 5(b) with the integration step h = 0.01,
is include in the interval [0, π/2] and its dynamic follows the input of the systems.
The static analysis of this Simulink model validates that for this set of inputs
and for an infinite duration the electronic throttle controller is numerically stable
despite computer arithmetic and sensor errors.

5 Issue from the Simulink course (SL01) given by Mathworks

14

(a) Input of the system. (b) Output of the system S3.

(c) Output of the system S1. (d) Rounding-error of the output of S1.

Fig. 5. Experimental results of the electronic throttle controller.

8 Conclusion

In this article, we have presented a new method, called Abstract Simulation, to
validate Simulink programs by static analysis. A.S. enables one to analyze both
the continuous-time and discrete-time sub-systems of a Simulink program. In
addition, Abstract Simulation provides a correctness criterion for the numerical
quality of large sets of simulations. A.S. computes the distance between the sim-
ulation result and the mathematical result of the continuous-time models and it
computes the distance between the floating-point behaviors and the mathemat-
ical ones. A.S. is based on the new abstract numerical domain of Taylor forms
and on an abstraction of sequences using set partitioning. Hence, we can validate
the design of embedded systems and assert that a program may be embedded
in a certain (physical) system.

Our experimental results highlight the advantages, for the validation of criti-
cal embedded systems, of applying static analysis on high-level design languages:
first, we can take into account the physical environment during the analysis. Sec-
ond, we can bound safely the approximation errors arising during a simulation.
Third, we may treat in one pass a large class of inputs. We strongly believe that,
as more and more complex systems are designed using Simulink-like tools, the

15

needs to detect bugs as soon as possible in the development process are going to
increase hugely. We also believe that static analysis is the adequate framework
to perform the validation required in this context. The results presented in this
article are our first steps in this direction.

In future work, we will take into account more language features of Simulink
such as Stateflow, the statecharts plug-in, that is the combination of dataflow
language and automata like [5]. Moreover, the correctness criterion computed by
A.S. offers a new perspective to validate more complex properties such as tempo-
ral ones. We currently investigate the use of the temporal abstract interpretation
framework [8] to achieve this goal.

References

1. J. Bertrane. Proving the Properties of Communicating Imperfectly-Clocked Syn-
chronous Systems. In Static Analysis Symposium, 2006.

2. O. Bouissou and M. Martel. GRKLib: a Guaranteed Runge-Kutta Library. In
Scientific Computing, Computer Arithmetic and Validated Numerics, 2006.

3. P. Caspi, A. Curic, A. Maignan, C. Sofronis, and S. Tripakis. Translating Discrete-
Time Simulink to Lustre. In Embedded Computing Systems, 2003.

4. A. Chapoutot and M. Martel. Static Analysis of Simulink Programs (short paper).
In Model-Driven High-Level Programming of Embedded Systems, 2008.

5. J.-L. Colaço, G. Hamon, and M. Pouzet. Mixing Signals and Modes in Synchronous
Data-flow Systems. In Embedded Software, 2006.

6. P. Cousot. Integrating physical systems in the static analysis of embedded control
software. In Asian Symposium on Programming Languages and Systems, 2005.

7. P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Principles of Programming Languages, 1977.

8. P. Cousot and R. Cousot. Temporal Abstract Interpretation. In Principles of

programming languages, 2000.
9. P. Cousot and N. Halbwachs. Automatic Discovery of Linear Restraints Among

Variables of a Program. In Principles of Programming Languages, 1978.
10. A. Gamatié, T. Gautier, and L. Bensard. An Interval-Based Solution for Static

Analysis in the Signal Language. In Engineering of computer-based systems, 2008.
11. E. Goubault, M. Martel, and S. Putot. Static Analysis-Based Validation of

Floating-Point Computations. In Numerical software with result verification, 2004.
12. A. Griewank. Evaluating Derivatives: Principles and Techniques of Algorithmic

Differentiation. Society for Industrial and Applied Mathematics, 2000.
13. E. Hairer, S.P. Norsett, and G. Wanner. Solving Ordinary Differential Equations

I: Nonstiff Problems. Springer, 1993.
14. D. Hinrichsen and A.J. Pritchard. Mathematical Systems Theory I : Modelling,

State Space Analysis, Stability and Robustness. Springer, 2005.
15. C. Hymans. Checking Safety Properties of Behavioral VHDL Descriptions by

Abstract Interpretation. In Static Analysis Symposium, 2002.
16. L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied Interval Analysis. Springer,

2001.
17. B. Jeannet, N. Halbwachs, and P. Raymond. Dynamic Partitioning in Analyses of

Numerical Properties. In Static Analysis Symposium, 1999.

16

18. M. Martel. Semantics of Roundoff Error Propagation in Finite Precision Compu-
tations. Journal of Higher Order and Symbolic Computation, 19(1):7–30, 2006.

19. A. Miné. The octagon abstract domain. Journal of Higher-Order and Symbolic

Computation, 19(1):31–100, 2006.
20. N.S. Nedialkov and K.R. Jackson. The design and implementation of an object-

oriented validated ode solver, 2002.
21. N.S. Nedialkov, K.R. Jackson, and G.F. Corliss. Validated Solutions of Initial

Value Problems for Ordinary Differential Equations. Applied Mathematics and

Computation, 105(1):21–68, 1999.
22. A. Tiwari. Formal Semantics and Analysis Methods for Simulink Stateflow models.

Technical report, SRI International, 2002.

A Proof of Theorem 1

Proof. (αµ, γµ) is a Galois connection between {◆ → ℘(V),�⊑♯} and {D →

V♯,�⊑♯} with µ : ◆→ D a partition function.

– αµ is monotone: ∀f1, f2 ∈ {◆→ V♯,�⊑♯}

f1 �⊑♯ f2 ⇔ ∀n ∈ ◆, f1(n) ⊑♯
f2(n)

⇔
G♯

n∈Pµ(◆)|1

f1(n) ⊔♯ . . . ⊔♯
G♯

n∈Pµ(◆)|k

f1(n) ⊑♯
G♯

n∈Pµ(◆)|1

f2(n) ⊔♯ . . . ⊔♯
G♯

n∈Pµ(◆)|k

f2(n)

⇔ ∀i ∈ D,
G♯

n∈Pµ(◆)|i

f1(n) ⊑♯ ∀i ∈ D,
G♯

n∈Pµ(◆)|i

f2(n)

⇔ αµ(f1) �⊑♯ αµ(f2)

– γµ is monotone: ∀f ♯
1 , f ♯

2 ∈ {D → V
♯,�⊑♯}

f
♯
1 �⊑♯ f

♯
2 ⇔ ∀i ∈ D, f

♯
1(i) ⊑♯

f
♯
2(i)

⇔ ∀i ∈ D, ∀n ∈ Pµ(◆)|i, f1(n) = f
♯
1(i) ⊑♯

f2(n) = f
♯
2(i)

⇔ ∀n ∈ ◆, f1(n) ⊑♯
f2(n)⇔ f1 �⊑♯ f2

– ∀f ∈ {◆→ V♯} and ∀f ♯ ∈ {D → V♯}

• γµ(αµ(f))
?

�⊑♯ f

γµ(αµ(f))⇒ γµ

0

@∀i ∈ D,
G♯

n∈Pµ(◆)|i

f(n)

1

A

⇒ ∀j ∈
G♯

i∈D

Pµ(◆)|i = ◆, g(j) =
G♯

n∈Pµ(◆)|i

f(n) with j ∼µ i

⇒ g �⊑♯ f

• αµ(γµ(f ♯))
?

�⊑♯ f ♯

αµ(γµ(f ♯))⇒ αµ

“

∀j ∈ ◆, f(j) = f
♯(i) with j ∼µ i

”

⇒ ∀i ∈ D, g♯(i) =
G♯

n∈Pµ(◆)|i

f(n) = f
♯(i)

⇒ g
♯ �⊑♯ f

♯

17

