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Abstract

The medial axis is a classical representation of digital objects widely used in many
applications. However, such a set of balls may not be optimal: subsets of the medial
axis may exist without changing the reversivility of the input shape representation.
In this article, we first prove that finding a minimum medial axis is an NP-hard
problem for the Euclidean distance. Then, we compare two algorithms which com-
pute an approximation of the minimum medial axis, one of them providing bounded
approximation results.

Key words: Minimum Medial Axis, NP-completeness, bounded approximation
algorithm.

1 Introduction1

In binary images, the Medial Axis (MA) of a shape S is a classic tool for shape2

analysis. It was first proposed by Blum [2] in the continuous plane; then it3

was defined by Pfaltz and Rosenfeld in [14] to be the set of centers of all4

maximal disks in S, a disk being maximal in S if it is not included in any5

other disk in S. This definition allows the medial axis to be computed in a6

discrete framework, i.e., if the working space is the rectilinear grid Z
n. The7

medial axis has the property of being a reversible coding: the union of the8

disks of MA(S) is exactly S.9

1 Supported in part by ANR grant BLAN06-1-138894 (projet OPTICOMB)
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In order to compute the medial axis of a given discrete shape S, we first pro-10

ceed by computing the Distance Transform (DT) of S. The distance transform11

is a bitmap image in which each point is labelled with the distance to the clos-12

est background point. For either d4 or d8 (the discrete counterparts of the l113

and l∞ norms), any given chamfer distance or the Euclidean distance dE, the14

distance transform can be computed in linear time with respect to the number15

of grid points [18,4,7,11]. For the simple distances d4 and d8, MA is extracted16

from DT by picking the local maxima in DT [18,4,16].17

Polynomial time algorithms exist to extract MA from DT in the case of the18

chamfer norms or the Euclidean distance [16,17]. A Reduced Medial Axis19

(RMA) is presented in [8]: it is a reversible subset of the medial axis, that20

can be computed in linear time. Despite the fact that the medial axis exactly21

describes the shape S, it may not be a set with minimum cardinality of balls22

covering S: indeed, a maximal disk of the medial axis covered by a union of23

maximal disks is not necessary for the reconstruction of S.24

In this article, we investigate the minimum medial axis problem that aims at25

defining a set of maximal balls with minimum cardinality which cover S. This26

problem has already been addressed with algorithms that experimentally filter27

the medial axis [5,15,6,13].28

In section 2 we first detail some preliminaries and the fundamental defini-29

tions used if the remainder of the paper. Section 3 presents the proof that30

the minimum medial axis problem is NP-hard. Finally, we compare a greedy31

approximation algorithm with the approximation algorithm proposed in [15]32

(Section 4). The greedy approximation algorithm is a first bounded heuristic.33

2 Preliminaries and Related Results34

First of all, we recall definitions related to the discrete medial axis. Given a35

metric d, a (open) ball B of radius r and center p is the set of grid points36

q such that d(p, q) < r. In the following, we consider the Euclidean metric,37

while the extension of the results to other metrics (such as Chamfer norms for38

example) will be discussed in section 5.39

Definition 1 (Maximal ball) A ball B is maximal in a discrete shape S ⊆40

Z
n if B ⊆ S and if B is not entirely covered by another ball contained in S.41

Based on this definition, the medial axis is given by:42

Definition 2 (Medial axis) The medial axis of a shape S ⊆ Z
n is the set43

of all maximal balls in S.44
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Fig. 1. (Left) Unfilled points correspond to the centers of the medial axis balls for
the Euclidean metric. In this figure, we represent the discrete maximal balls with
the help of their continuous counterpart (open continuous balls) in order to make
them distinguishable. (Right) A subset of the medial axis the balls of which still
cover the entire shape.

In the remainder of the paper, we focus on dimension 2. By definition, the45

medial axis of a shape S is a reversible encoding of S. Indeed given the cen-46

ters and the radii associated to the medial axis balls, the input shape S can47

be reconstructed entirely (this process is called the Reverse Distance Trans-48

formation [18,3,4,19,8]).49

However, this representation is not minimum in the number of balls as illus-50

trated in Figure 1: the set of balls with highlighted centers in the left shape is51

the medial axis given by Definition 2. However, if we consider the subset of the52

medial axis depicted in the right figure, we still have a reversible description53

of the shape with fewer balls. In the following, we define the k−medial axis of54

a shape as follows:55

Definition 3 (k−Medial axis (k−MA)) A k−medial axis of a shape S ⊆56

Z
n is a subset of the medial axis of S with k balls which entirely covers S.57

In this paper, we address the problem of finding a subset of the medial axis58

that still covers all points of S. In the remainder of the paper, we illustrate59

the proofs with discrete ball coverings of several complex discrete objects. In60

order to help the reader, we choose to represent each discrete ball with the61

polygon defined by the convex hull of the grid points inside this ball.62

In computational geometry, covering a polygon with a minimum number of a63

specific shape (e.g. convex polygons, squares, rectangles,. . . ) usually leads to64

NP-complete or NP-hard problems [10]. From the literature, a related result65

proposed in [1] concerns the minimum decomposition of an orthogonal poly-66

gon into squares. At first sight, this result seems to be closely related to the67

k−MAP for the d8 metric. However, in the discrete case, d8 balls are centered68

on grid points and thus have odd widths. Due to this specificity, results of69

[1] cannot be used neither for the d8 nor the Euclidean metrics. However, the70

proof given in the following sections is inspired by this related work.71
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3 NP-completeness of the k-Medial Axis Problem72

Definition 4 (k−Medial Axis Problem (k−MAP)) Given a discrete shape73

S ⊆ Z
2 of finite cardinality and a positive integer k, does S admit a k−MA ?74

In order to prove the NP-hardness of k−MAP, we use a polynomial reduction75

of the Planar-4 3-SAT problem. Let φ(V, C) be the boolean formula in Con-76

junctive Normal Form (CNF) consisting of a list C of clauses over a set V of77

variables. The formula-graph G(φ(V, C)) of a CNF formula φ(V, C) is the bi-78

partite graph in which each vertex is either a variable v ∈ V or a clause c ∈ C,79

and there is an edge between a variable v ∈ V and a clause c ∈ C if v occurs in80

c. A Planar 3-SAT formula φ is a CNF formula for which the formula-graph81

G(φ) is planar and each clause is a 3-clause (i.e., a clause having exactly 382

literals).83

In the following, we prefer a reduction based on the Planar-4 3-SAT problem:84

an instance of this problem is an instance of Planar 3-SAT such that the85

degree of each vertex associated to a variable in the formula-graph is bounded86

by 4. In other words, a variable may appear at most four times in the boolean87

formula.88

Definition 5 (Planar-4 3-SAT Problem) Given a Planar-4 3-SAT formula89

φ(V, C), does there exist a truth assignement of the variables in V which sat-90

isfies all the clauses in C ?91

Planar-4 3-SAT was shown to be NP-complete in [12].92

The reduction from any given Planar-4 3-SAT formula φ to an instance of93

k−MAP consists in constructing a discrete shape S(φ) and finding an integer94

k(φ) in polynomial time such that φ is satisfiable if and only if S(φ) can be95

covered by k(φ) balls.96

3.1 Variables97

Let us first consider a geometrical interpretation of variables. Figure 2 presents98

a 4-connected discrete object, so called variable gadget in the following, defined99

by the set of grid points below the horizontal dashed line. The eight vertical100

parts of width 3 of the gadget (numbered on Figure 2) are called the extremities101

of the variable gadget. These extremities are used to plug the “wires” that102

represent the edges of a formula-graph.103

Any minimum covering of this object has 72 balls. This comes first from the104

fact that all the balls depicted with a thick border belong to any minimum105
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covering; hence 40 balls are required. Moreover, on the remaining part, any two106

of the 32 circled points (on Figure 2) cannot be covered by a single ball , which107

proves that at least 72 balls are required to cover a variable gadget. Finally,108

coverings with exactly 72 balls can be exhibited (see Figure 2), which proves109

that a minimum covering has 72 balls. Then, if we consider the point p depicted110

in Figure 2, p can be covered by two different balls, which in turn implies111

two minimum different coverings. None of these minimum coverings allow112

protrusions from both one odd extremity and one even extremity. However,113

one minimum covering allows balls to protrude out at all odd extremities114

by one row of grid points (Figure 2 top); while another minimum covering115

allows balls to protrude out at all even extremities also by one row of grid116

points (Figure 2 bottom). These two coverings mimic the two possible truth117

assignements of a variable. Without loss of generality, the first covering will118

correspond to a True assignment, and the other one to a False assignment of119

the variable.120

If the gadget represents the variable x, then each odd extremity carries the121

literal x, while each even extremity carries the literal x̄. A protrusion from a122

variable extremity can be viewed as a signal ’True’ sent from the variable to123

the clauses. Thus, wires which are used to connect variables and clauses are124

plugged on odd extremities for positive literals and on even extremities for125

negative literals.126

1 2

87

7 8

21

p

Fig. 2. Two minimum coverings of a variable gadget, corresponding to a True as-
signement of the variable (top), and False assignement (bottom). Balls with a thick
border belong to any minimum covering; any two circled points cannot be covered
by a single ball.

Note that this object and its decomposition are invariant under rotation of127
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angle π

2
. Furthermore, the extremities are centered on abscissas with equal128

values modulo 6 (represented by vertical lines of Figure 2). This property will129

be used to align the objects and to connect them to each other.130

3.2 Wires131

In order to connect variables to clauses, we need wires that correspond to edges132

in the embedding of the formula-graph. A wire must be designed such that it133

carries either a ’True’ signal (protrusion), or a ’False’ signal (no protrusion)134

from variable extremities to clauses without altering the signal (see Fig. 3).135

We can define a straight wire of width 3 and whose length is equivalent to136

0 mod 3, so that the signal sent at the left extremity of the wire will be137

propagated to the right extremity. Furthermore a wire can be bent at angle138

π

2
(see Fig. 3). In this case, two minimum decompositions still exist such that139

if a ball protrudes from one extremity of the wire, then another ball also140

protrudes out at the other extremity. Furthermore, straight wires and bends141

can be designed such that the alignment of the abscissa and ordinates of the142

shape is preserved (i.e. is constant modulo 3).143

Now, if we consider a complex wire with straight parts and bends, the signals144

are propagated during the construction of the minimum covering from one145

extremity to the other one (by induction on the number of bends and straight146

parts).147

Fig. 3. Wires carrying ’True’ or ’False’ signals - from left to right: a straight wire,
a simple bend, a shift.

3.3 Clauses148

Finally, we introduce the clause gadget, a component that geometrically sim-149

ulates a clause. This gadget is the set of grid points to the right of the vertical150

dashed line in Fig.4. Note that this gadget is not symmetrical because we shall151

not allow an open ball of radius
√

8 to be placed in its center.152

Again, the 5 balls depicted with a thick border belong to any minimum cov-153

ering. Furthermore, any two of the 5 circled points (on Fig.4, left) cannot be154

covered by a single ball. Thus, independently covering this gadget requires at155
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least 5+5=10 balls. However, if one open ball of radius 2 is protruding from156

some wire by one column, carrying a ’True’ signal (e.g. the upper one in Fig.4,157

middle), then minimaly covering the remainder of the gadget can be done158

with only 9 balls. Similarly, if two or three wires are carrying a protrusion, a159

minimum covering of the remainder of the clause gadget also has cardinality160

9. The case of three protrusions appears on the right in Fig.4, showing that161

even here 9 balls are still necessary to finish covering the gadget (similarly,162

any two of the 4 circled points cannot by covered by a single ball). Note that163

in general there may be several possible minimum coverings of the gadget,164

although only one is drawn here in each case.165

According to these observations, it follows that the clause gadget can be min-166

imaly covered by 10 balls if and only if no input protrusion is observed, in167

other words if and only if the corresponding clause is not satisfied. Otherwise,168

if at least one literal of the clause is set to ’True’ (protrusion), implying that169

the clause is satisfied, then only 9 balls are necessary to cover the remainder170

of the gadget.171

Fig. 4. Three minimum coverings of a clause gadget, depending on the following in-
put signals (from left to right): False-False-False, True-False-False, True-True-True.
Balls with a thick border belong to any minimum covering; any two circled points
cannot be covered by a single ball.

3.4 Overall Construction and Proof172

Given a Planar-4 3-SAT formula φ(V, C), we are now ready to construct S(φ)173

by drawing a variable gadget for each variable vertex in G(φ), a clause gadget174

for each clause vertex in G(φ), and drawing wires corresponding to the edges175
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in G(φ), thus linking each literal (the extremity of a variable gadget) to every176

clause where it occurs.177

N

S

EW
N EWS

Fig. 5. Illustration of the transformation of a vertex of the planar orthogonal embe-
ding into a variable gadget. In this case, the associated variable appears four times
in φ, three times as a positive literal, and once as a negative literal.

Lemma 1 The shape S(φ) can be computed in polynomial time in the size of178

φ.179

PROOF. We know from [20] that every planar graph with n vertices (with180

degree ≤ 4) can be embedded in a rectilinear grid in polynomial time and181

space. This algorithm produces an orthogonal drawing such that edges are182

intersection free 4-connected discrete curves. Since our variable gadgets and183

clause gadgets have a constant size and our wires have constant width, and184

since φ is an instance of Planar-4 3-SAT , it is clear that the construction of185

S(φ) can also be done in polynomial time and space. For example, Figure 5186

illustrates how to bend the orthogonal drawing edges in order to connect them187

to our variable gadget extremities. �188

In the following, let w(φ) denote the minimum number of balls necessary to189

cover the wires of S(φ), and let k(φ(V, C)) = 72.|V | + w(φ) + 9.|C|.190

Lemma 2 If the formula φ is satisfiable, then there exists a covering of S(φ)191

with k(φ) maximal balls.192

PROOF. Given a truth assignment T of the variables V of φ such that193

φ is satisfiable, the following algorithm builds a covering of S(φ) with k(φ)194

maximal balls:195

• cover the variable gadgets according to the truth assignment T (’True’ or196

’False’ value for each variable): each one requires 72 balls allowing protru-197

sions in each extremity carrying a ’True’ assignement (Section 3.1);198
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• cover the wires: since the grid embedding of G(φ) is computed in polynomial199

time, so is w(φ); the protrusions from the extremities of the variables are200

transmitted to the clause gadgets;201

• cover the clause gadgets: since φ is satisfiable, at least one input wire of202

each clause gadget carries a protrusion which implies that 9 maximal balls203

are enough to cover each clause gadgets (Section 3.3).204

Altogether, 72.|V | + w(φ) + 9.|C| = k(φ) maximal balls are used in this cov-205

ering. �206

Lemma 3 If there exists a covering of S(φ) with k(φ) maximal balls, then the207

formula φ is satisfiable.208

PROOF. Suppose that there exists a covering of S(φ) with k(φ) maximal209

balls. By construction, 72.|V | plus w(φ) maximal balls are required to cover210

the |V | variable gadgets and the wires of S(φ). This leaves us with k(φ) −211

72.|V | − w(φ) = 9.|C| maximal balls to cover the clause gadgets. Since there212

are |C| clause gadgets, each one is totally covered with 9 maximal balls in213

the covering, which is possible only if at least one input wire of each clause214

gadget carries a protrusion (Section 3.3). By construction, this means that the215

clauses are all satisfied, and in turn that φ is satisfiable. �216

According to lemmas 2 and 3, there exists a truth assignement of the variables217

in V which satisfies all the clauses in φ if and only if there exists a covering218

of S(φ) with cardinality k(φ) = 72.|V | + w(φ) + 9.|C|. Thus, if any instance219

of the k−Medial Axis Problem could be solved in polynomial time, then we220

would have a polynomial time algorithm to solve the Planar-4 3-SAT Problem.221

Therefore, the k−MAP Problem is NP-hard. It is also clear that the k−MAP222

problem is in NP, since we can easily verify in polynomial time wether a set of223

k balls covers a discrete shape S. Consequently, we have the following theorem:224

Theorem 4 k−MAP is an NP-complete problem.225

As a consequence, finding a k−MA with minimum k of a shape S is NP-hard.226

4 Approximation Algorithms and Heuristics227

Even if the theoretical problem is NP-hard, approximation algorithms can228

be designed to find the k−MA with the smallest possible k. In the literature,229

several authors have discussed simplification techniques to extract an approxi-230

mation of the k−MA with minimum cardinality [5,15,6,13]. When dealing with231
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NP-hard problems, we usually want to have bounded heuristics in the sense232

that the results given by the approximation algorithm will always be at most233

at a given distance from the optimal solution.234

In the following, we first detail the simplification algorithm proposed by Rag-235

nemalm and Borgefors [15] and extended to 3-D by Borgefors and Nyström236

[6]. Then, we compare their result with a simple but bounded heuristic de-237

rived from the MinSetCover problem. These algorithms are presented in a238

generic way, for any dimension. The experiments are conducted in dimension239

3, which is the highest standard dimension for digital objects. Even if the240

NP-completeness proof is established in dimension 2 in the previous sections,241

a similar result in dimension 3 can be conjectured.242

4.1 Ragnemalm and Borgefors Simplification Algorithm243

The algorithm is quite simple but provides interesting results: we first con-244

struct a covering map CM(p) : S → Z where we count for each discrete245

point p ∈ S, the number of discrete maximal balls containing p. Basically, if246

a ball B contains a grid point p for which CM(p) = 1, then B is necessary to247

maintain the reconstruction and B belongs to any k−MA. Based on this idea,248

the approximation algorithm can be sketched as follows: let F = MA(S), we249

consider each ball B of F by increasing radii. If for all points p ∈ B we have250

CM(p) > 1, then we decide to remove B from F and we decrease by one the251

value of CM(p) for each p ∈ B. Then, we process the next ball.252

The resulting set F̂ may be such that |F̂ | < |F|. In [15], the author illustrates253

the reduction rates with several shapes in dimension 2 but no simplification254

rate is formally given in the general case. In our experiments, instead of con-255

sidering the medial axis of S, we set F = RMA(S) [8].256

If F = {Bi, i = 1 . . . k}, the overall computational cost of this algorithm is257

O(
∑

k

i=1
|Bi| + k log k).258

4.2 Greedy Algorithm: a Bounded Heuristic259

To have a bounded heuristic, let us consider another problem called the Min-260

SetCover problem [9]: an instance (S,F) of the MinSetCover consists of261

a finite set S and a family F of subsets of S, such that every element of S262

belongs to at least one subset of F . The problem is to find a family of sub-263

sets F∗ ⊆ F with minimum cardinality such that F∗ still covers S. From the264

optimization MinSetCover problem, we can define the following decision265

problem: can we cover S with a family F∗ such that |F∗| ≤ k for a given266
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k? This decision problem is known to be NP-complete [9]. Replacing S by a267

discrete object and F by the medial axis, we have a specific instance of the268

MinSetCover problem.269

The greedy approximation algorithm is presented in 1. Even if this algorithm
is simple, it provides a bounded approximation: if we denote H(d) =

∑
d

i=1

1

i
,

HF = H(max |B|, B ∈ F) and F∗ the k−MA, the greedy algorithm produces
a set F̂ such that:

|F̂ | ≤ HF · |F∗|

Algorithm 1: Greedy algorithm for MinSetCover.

Data: S and F
Result: the approximated solution F̂
U = S;
F̂ = ∅;
while U 6= ∅ do

Select B ∈ F that maximizes |B ∩ U |;
U = U − B;
F̂ = F̂ ∪ {B};

return F̂270
271

If we consider S as a discrete object and F the medial axis of S, the medial272

axis simplification problem is a sub-problem of MinSetCover. Hence, Algo-273

rithm 1 provides a bounded heuristic for the medial axis reduction and this274

is, at the time of writing, the only known approximation algorithm for the275

minimum k−MA for which we have an approximation factor. Despite the fact276

that Algorithm 1 has a computational cost in O(|S||F|min(|S|, |F|)), a linear277

in time algorithm can be designed, for instance in O(
∑

k

i=1
|Bi|) [9, Section278

37.3].279

4.3 Experiments280

In Figure 6, we present some experiments of both approximation algorithms.281

Two observations can be addressed: first, the reduction rate is very interest-282

ing since almost half of the medial axis balls can be removed. Secondly, the283

computational time of both algorithms are similar.284

Despite the fact that Ragnemalm and Borgefors’s algorithm gives slightly285

better results, the theoretical bound provided by the greedy algorithm makes286

this approach a bit more satisfactory.287
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Objet F = MA(S) F̂ Ragnemalm et al. F̂ Greedy

104 56 (-46%) [<0.01s] 66 (-36%) [< 0.01s]

1292 795 (-38%) [0.1s] 820 (-36%) [0.19s]

17238 6177 (-64%) [48.53s] 6553 (-62%) [57.79s]

Fig. 6. Experimental analysis of simplification algorithms:(from left to right) Dis-
crete 3-D objects, the discrete medial axis (ball centers), simplification obtained by
[15] (ball centers), simplification obtained by the proposed greedy algorithm (ball
centers). The cardinality of the sets are given below the figure with the reduction
ratio (in percent) and the computational time.

5 Discussion and Conclusion288

In this paper, we prove that finding a k-medial axis with minimum cardinality289

k of a discrete shape is an NP-hard problem. To do so, we provide a poly-290

nomial reduction from the Planar-4 3-SAT problem to the k−MAP. We also291

experimentally compare the greedy approximation algorithm which provides292

a bounded approximation, with existing simplification algorithms.293

In the proof, we have considered the Euclidean distance based medial axis. In294

order to derive a proof for the other metrics, new gadgets must be defined.295

Some cases are trivial, such as the d8 case for which only the variable gadget296

must be redefined (see Figure 7). Concerning other metrics, even if the gadgets297

may be difficult to design, we conjecture that theoretical results may be the298

same.299

Future works concern both the complexity of specific restrictions of the300
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k−MAP, and the approximation algorithms. Concerning the theoretical part,301

the result we give induces the construction of very specific discrete shapes,302

whose genus depends on the number of cycles in the Planar-4 3-SAT instance.303

Thus, an important question is whether k-MA is still NP-complete in the304

case of connected discrete shapes without holes. Concerning approximation305

algorithms, experiments show that the results of the greedy approximation306

algorithm are slightly worse than other existing algorithms. An important fu-307

ture work is to merge the two approaches to improve the results while keeping308

the bounded approximation.309

1 2

Fig. 7. Outline of a variable gadget for d8
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