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Appearance of Gauge Fields and Forces beyond the adiabatic approximation
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Institut Fourier, UMR 5582 CNRS-UJF, UFR de Mathématiques,
Université Grenoble I, BP74, 38402 Saint Martin d’Héres, Cedex, France and
2 Laboratoire de Physique Moléculaire et des Collisions, ICPMB-FR CNRS 2843,
Université Paul Verlaine-Metz, 57078 Metz Cedex 3, France

We investigate the origin of quantum geometric phases, gauge fields and forces beyond the adia-
batic regime. In particular, we extend the notions of geometric magnetic and electric forces discov-
ered in studies of the Born-Oppenheimer approximation to arbitrary quantum systems described
by matrix valued quantum Hamiltonians. The results are illustrated by several physical relevant

examples.

PACS numbers:

A physical system can never be considered as com-
pletely isolated from the rest of the universe. For a slow
(adiabatic) cyclic variation of its environment, the wave
function of the quantum system gets an additional geo-
metric phase factor, known as the Berry phase [ﬂ] In
fact, the driving environment, the ’heavy’ or ’slow’ sys-
tem, is also subject to back reaction from the ’light’ or
'fast” system. In the context of the Born-Oppenheimer
theory of molecules, the back reaction of the light system
leads to the appearance of a gauge field in the effective
Hamiltonian for the slow one (the environment) [ [H][H.
The gauge field consists of a vector and a scalar potential
and turns out to depend on a quantum geometric tensor
[B]. Tt can both induce interference phenomena and mod-
ify the dynamics through geometric Lorentz and electric

forces [H][f].

In this note we investigate the origin of quantum gauge
fields and forces in a more general context, by considering
the diagonalization of an arbitrary matrix valued quan-
tum Hamiltonian. To be precise, by diagonalization it
is meant the derivation of an effective in-band Hamil-
tonian made of block-diagonal energy subspaces. For
that purpose we use the results of a powerful method
developed recently [E] This approach based on a new
differential calculus on non-commutative space, where
h plays the role of running parameter, leads to an in-
band energy operator that can be obtained systemati-
cally up to arbitrary order in A. Particularly important
for our purpose, it is possible to give an explicit effec-
tive arbitrary diagonal Hamiltonian to order A% in terms
of non-canonical coordinates and commutators between
gauge fields (Eq. (79) in [{§]). We will directly apply
this result to systems whose Hamiltonian has the sim-
ple form H = T(K) + V(Q) and the components are
assumed to fulfill the canonical commutation relations
[Qi, K;] = ihd;;. We then discuss how gauge fields arise
in physical situations as various as Dirac and Bloch elec-
trons in electric fields or Born-Oppenheimer theory. Note
that there exists another totally different method of di-
agonalization in a formal series expansion in A which
uses symbols of operators via Weyl calculus [E] To
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our knowledge this method was only applied to a Born-
Oppenheimer-type Hamiltonian @]

Our approach reveals the appearance at order A2 of a
scalar gauge potential expressed in terms of two tensors.
One is the quantum metric tensor [ff|[L], and the other
is a new tensor generalizing an additional term found in
[E] for the Born-Oppenheimer case. Another very impor-
tant consequence of the Hamiltonian diagonalization is
the appearance of gauge invariant intraband coordinates.
The advantage of using these coordinates is that the di-
agonal Hamiltonian is also gauge invariant. Moreover,
these coordinates fulfill a non-commutative algebra which
strongly affects the dynamics through a Lorentz term and
the gradient of a new scalar potential, generalizing thus
the adiabatic dynamics of the Born-Oppenheimer theory.

Hamiltonian diagonalization. Consider a Hamiltonian
of the form

H=TK)+V(Q) (1)

where we assume that H has a matrix representation
with T'(K) non-diagonal and V(Q) diagonal. In [§], by
considering i as a running parameter, we relate the in-
band Hamiltonian UHU = ¢ (X) and the unitary trans-
forming matrix U (X) (where X = (Q, K)) to their clas-
sical expressions through integro-differential operators,
ie. e(X) =0 (g9 (Xp)) and U (X) = N (Ug (Xp)), where
matrices with the subscribe 0 correspond to operators re-
placed by classical commuting variables Xo=(Qo, Kj) -
The only requirement of the method is therefore the
knowledge of Up(Xp) which gives the diagonal form
€0 (Xo) . Generally, these equations do not allow to find
directly ¢ (X), U (X), however, they allow us to produce
the solution recursively in a series expansion in h. With
this assumption that both ¢ and U can be expanded in
power series of /i, we determined in Eq. (79) of [§], the
explicit diagonalization of an arbitrary Hamiltonian to
order 2. The expression of the effective n-th in-band
energy €, greatly simplifies for Hamiltonian given by Eq.
(m) Indeed, the first order is easily obtain by an uni-
tary transformation Up(K) diagonalizing T'(K) giving
UoHUS = eo(K) + V(Q + hA) with A = iUyVkU, .



Then V is now non-diagonal. The diagonalization at
the next order is done by an unitary transformation ma-
trix U = Uy + hUyU; with the antihermitian matrix
(U1)mn = %(A)mn.vu which removes the off-
diagonal elements of A and leads to corrections of order
h? such that ¢, in Eq. (79) of [§ becomes

en (K, q,) =0 (K)+ V (an) + h®, (2)
where the geometric scalar potential is

2,(Q.K) = 00,V (QHTIOVQIVQ) (3)

with two gauge invariant tensors G% and T% defined as

G =33 (W) (W) 4 he) (1)

and

TY(K) = lzmin(m +he)  (B)

2 €0,m —€o,n

The tensor G¥% is known as the quantum metric ten-
sor [HI[Ld] and T is a new tensor generalizing an addi-
tional term found in @ for the Born-Oppenheimer the-
ory. In Eq. () we introduced the intraband coordinate
q» = Q + ha, where a, is a gauge connection usually
called the Berry connection defined as a,,(K) = (A),, =
i(n|Vkn). Here |n) are the eigenstates of the non-
diagonal part of H, ie., T(K)|n) = €0,(K)|n). The
introduction of the non-canonical coordinate q, essen-
tial to maintain the gauge invariance of the Hamiltonian,
implies non-canonical commutation relations [qfl, ‘Z%] =
ih?0Y with 0% (K) = g?é — g?é + [}, al] the Berry
gauge curvature in the n-th eigenstate. The Heisenberg
equations of motion to the second order in A are

a, = VKen — S(K x0,-0,xK), K=-V,V (6)
where we introduced the "magnetic field” @}, = ¢, ©7F.
The dynamics of the intraband operators leads directly
to a Lorentz-type term. The scalar potential is a con-
sequence of transitions between eigenstates and impacts
the dynamics through its gradient. Working with the
non-canonical coordinates is a short-cut to determine the
dynamics of a system prepared in an eigenstate of the full
Hamiltonian. This state will evolve in the same energy
subspace as far as we can neglect higher contributions
in the expansion in A. In comparison, the equations of
motion derived from the Hamiltonian H do not seem to
include a Lorentz force, and the determination of the
”eigendynamics” can be a very difficult to achieve. An
appealing example is given in [[][[j] where the ”exact”
slow motion of a massive neutral particle coupled to a
spin is compared with the Born-Oppenheimer theory.

We underline that our diagonalization does not need
the adiabatic assumption, because it is an ”exact” diag-
onalization. However, the expansion in A breaks down
in regions of mode conversion where €g,, — €o,n << R
or for large values of (A%),, = i(m |0;n). Now, if in
a particular regime the probability transition between
different eigenstates is very small, on can neglect with
a good approximation the off-diagonal elements. This is
usually considered as an adiabatic approximation and we
see that it coincides with the semiclassical approxima-
tion. In a mode conversion region, one can easily gener-
alize the diagonalization of H to a block-diagonalization
allowing transitions between eigenstates inside the block.
In this case, we can therefore consider the semiclassical
limit without having adiabaticity.

Born-Oppenheimer approximation. Consider the fol-
lowing Hamiltonian describing a fast system in interac-
tion with an external environment

1 i p?

H =SBy PP+ 2=+ p(R.) (7)
where the fast system is described by a set of dynamical
variables (r,p) and the slow one by coordinates (R, P).
As in [ﬂ] we consider a general kinetic energy with B, a
positive definite inverse mass tensor. Applying the pre-
vious results with the mapping Q@ — P, K — R (and
iVk — —iVR) we have V(Q) — B;;P,P;/2 and we ob-
tain the following eigenvalues for the slow system (as-
suming a non-degenerate spectrum for the fast system)

1 o

En = EBijp;p% +1?®, + E,(R) (8)
where p, = P—ifi (n |[Vrn) and [n(R)) is the eigenstate
of the fast Hamiltonian with energy E,(R). The scalar
potential Eq. (f) then becomes

G (R)

(R P) = 71

Bij+T9(R)By B, P'P*  (9)

with the quantum metric tensor GY(R) =

Re 3,2, (Oin [m) (m |0;n) and

TIR) =
gin|m)(m|0;n iq .
Re Y, n % The Gi(R)B;; is

the usual part of the scalar potential discussed in
several circumstances [[][][ffl, whereas the term
T3 (R)Biy B, P'P* was found in [{]. Here we see
that the Born-Oppenheimer theory can be obtained
straightforwardly from our Hamiltonian diagonalization
to order /2. In the same manner from Eq.(f) we imme-
diately get the Born-Oppenheimer equations of motion

p, = —VrE, - 2R x ©, — ©, x R) — i*Vgr®,

with R, = Bijp{l. Similar equations of motion for
a classical system consisting of a classical magnetic
moment interacting with an inhomogeneous magnetic
field [][f] were studied in details. It was found that the

term



Lorentz force results from a slight misalignment of the
magnetic moment relative to the magnetic field. This
corresponds to the semi-classical approximation. The
electric force is a time average of a strong oscillatory
force induced by the precession of the magnetic moment.
This is a kind of zitterbewegung effect.

Particle in a linear potential. Another interesting rel-
evant situation concerns a particle in a linear poten-
tial exemplified here by a Bloch electron in an con-
stant external electric field (see also ref. [[L1]). Consider
H = Hy(P,R) + ¢(R) with Hj the energy of a particle
in a periodic potential and p(R) = —eE.R. the external
electric perturbation (and e < 0 the charge). Using the
mapping Q — R, the scalar gauge potential reduces to
®, (k) = e*TE;E;, and the energy eigenvalues are

en = con (k) — eErg+e?R°T7 (k) E;E;  (10)

with €9, (k) is the n-th energy band and k the
pseudo-momentum. The intraband position operator
is r, = R + ih{u, |Viku,) with |u,(k)) the peri-
odic part of the Bloch wave function and T/ (k) =
Re}, . 2n Oitn ) (m [95un) 416 ducing the " magnetic

£0,m —€0,n
field” w, = “LExVy®, and x,, = —zE.Vx®, the
equations of motion are

rn = ViEon — E(k x Q4+ Q, x k) + A*x,k, k=¢eE

where Q,, = ©,, + hw,,. This shows that ®,, contributes

to the Lorentz term hk x €2, known as the anomalous
velocity which is orthogonal to the applied electric field.
This anomalous velocity is at the center of many recent
experimental and theoretical works. ®,, contributes also
to the velocity in the direction of E, through the term

h2x, k.
Berry phase. The linear potential case has another
interest. It allows us to also consider the fast system

and derive the Berry phase in a different way. Indeed,
consider a time dependent Hamiltonian H(¢) and intro-
duce the differential operator D = H (t) — Py where
Py = ihd/0t is the conjugate of time which is treated
formally as an operator such that [Py, t] = ¢h. The time
dependence is due to the time evolution of some param-
eters x(t) describing the environment. To transform the
system of differential equations (Schrédinger equation)
D |¥(t)) = 0, which couples all components of |¥(¢)) into
a decoupled set of differential equations, we introduce an
unitary transformation |0’ (¢)) = U(t) |¥ (¢)) such that
Ut)D (t, Py) UT(t) = A(t, Py) is a diagonal differential
operator and A(t, Py) |¥’ (t)) = 0. Therefore the time
evolution is given by [¥/ (£)) = e Jo A®d [P/ (0)) . Since
A(t) = A(t) + Py is diagonal, no time ordered product is
required. Returning back to the initial state we have

U (1)) = Ut(t)e™ Jo A0y 0) 1w (0)  (11)

A system prepared in a state |A,(0)) which is an eigen-
state of D, i.c., D(0)|A(0)) = A,(0)]A,(0)) will evolve
with A(¢) and thus stays in the instantaneous eigenstates
|[An(t)) of D(t) (for simplicity we assume non degen-
erate eigenvalues). In this case the wave function be-
comes |U (t)) = en Jo At |A (1)), Since eigenstates
of D instead of H are considered, the time evolution Eq.
(@) is non-adiabatic. In general we need an approxi-
mation scheme for the diagonalization of D and we will
use the expansion to order h2. The problem of finding
A, = A, (t) + Py is formally equivalent to the Bloch elec-
tron example discussed above with K —t, Q = R — Py
and eE = 1. We obtain from Eq.([L0))

An =0 () — iR <n ‘n> FR2T, (1) (12)

where €, (t) and n(t) are instantaneous eigenvalues and
eigenstates of H, i.e., H(t)|n(t)) = &, (t)|n(t)), and

T, (t) = Re}, 4, nlg?_(:ln . Therefore for a periodic
motion of period T, not necessarily adiabatic, such that
[An(T)) = |An(0)) (single valued eigenstates), we have

@ (7)) = e~ [T (0)) (13)

with

1 (7 T ’
5, = —/ sn(t)dt+i/ <n ’n> dt +h/ T, () dt
h 0 0 0

The phase v, appears as an expansion in power of h.
The first term is the usual dynamical phase and the sec-
ond one the geometric Berry phase independent of 7 and

of the velocity of parameters z(¢). The additional phase
h fOT T, (t)dt of order h is non-geometric as it depends

on . It cancels in the infinitely slow z — 0 adiabatic
regime, which thus coincides with the semiclassical ap-
proximation. Diagonalization at order h? thus goes be-
yond the adiabatic approximation and takes into account
transitions between eigenstates. Quantitatively, if the
system is prepared in an eigenstate |n(0)) of H(0), then
| (t)) is given by Eq. ([L]) with U = Uy + hU1 Uy where
B .(1—6m,n)<m n>

U1 (t) =1

mn em(t)—en(t)
expansion up to order A:

, so that we have the following

W(t)) = e Jo At |n(p)) 4 3 (e% Jo Anhit 4 (1)
m#n

= TR0, () fm(®) + O(1)

The magnitude of transitions is then controlled by the
i{ m(t)|n(t

i(t()iiti())) which is neglected in the adi-
abatic limit <m(t) ’n(t)> — 0. Note that |¥(¢)) is nor-

malized to unity at order & only. A normalization at a

term A, =



lé]gher order needs an expansion of U to the same order
-

In principle deviation from adiabaticity could be mea-
sured by interferometry. Consider a periodic two states
system, and write the initial state in the eigenbase
[n(0)) = |An(0)) + HAnm(0)|Ap(0)). Then, after one
cycle |U (T)) = e~ |A,(0)) + he™m Ay (T) |A1n (0))
For an observable O which does not commute with H
one will find in the average (¥ (T)| O |V (T)) an interfer-
ence term 2/ Re (Apm (T) (An(0)] O [An (0)) e20n=7m))
which would signal deviation from adiabaticity. As dis-
cussed below, this interference effect is formally equiva-
lent to the zitterbewegung of Dirac particles.

Dirac particle in an external potential.

We will now show that our formalism can also be used
for relativistic Dirac particles, which are usually treated
with the Foldy Wouthuysen approach [@] The Hamil-
tonian is (with ¢ = 1)

H=ap+pfm+V (R) (14)

where o and (3 are the usual (4 x 4) Dirac matrices and
V (R) is the external potential. The matrix diagonalizing
the free part of the Hamiltonian Uy (a.p + fm) Uy =

BE with E = /p? + m?2 is the usual Foldy Wouthuysen

unitary transformation Uy = %. For the Dirac
particles we have two energy subspaces e+ of dimension 2
corresponding to the positive and negative energy. Now
with the correspondence Q — R, K — p and formula
Eq. (E) , one easily sees that the diagonal matrix can be

written

e(p,r) =pBE(p)+V (r) + 52 (15)
The position operator is given by the (4 x 4) matrix
r= R+% with ¥ = 1 ® o where o are the Pauli

matrices. The band index of the scalar potential has been
transferred to the matrix @, and we have G = @g”
and TY = S%gij with the notation g% = §% — p;p;, SO
that finally we can write

2

® =39

y 1

K (81<9JV+E&V8JV) (16)
If for central potential one can neglect the contribution
+0;V 9,V this is not always true and for some potentials
both terms in Eq. ([[f) can be of the same magnitude. In
fact for constant electric field V= —e&.R, the first term

. 2:2 .
vanishes and ® = $ b’:g g EE;.

In the non-relativistic limit p << m, ® becomes

2
P ~ 2o (AV+LE(VV)?)) + O(R?p?/m*) which gives
two conztributions. The first one is the usual Darwin
term ;”WAV traditionally obtained as the result of the
Foldy Wouthuysen transformation expanded in power of

1/m. The second term % (VV)? of higher order in 1/m

is usually not considered in the Foldy Wouthuysen ap-
proach. It is also interesting to note that the external
potential in the non relativistic limit can be expanded as
V(r) = V(R)+ {£%.(VV x p) + O(h*p*/m*) where
1.3, (VV x p) is the spin-orbit coupling term. There-
fore the Hamiltonian can be approximated as

P2 P4 h
I ﬂ(er%%)JrV(R)ﬁLWZ.(VVXp)

*8%6 (AV+%(VV)2) (17)

A Born-Oppenheimer treatment of the Dirac equation
where the spin is the fast variable and the momentum
the slow one has led to the same Hamiltonian Eq. ([[7)
but without the scalar potential [@] This corresponds to
the semiclassical approximation. The additional electric-
type potential ® is a consequence of transitions between
energy levels. This is in agreement with the usual in-
terpretation of the physical origin of the Darwin term,
the zitterbewegung phenomenon, whereby the electron
does not move smoothly but instead undergoes extremely
rapid small-scale fluctuations due to an interference be-
tween positive and negative energy states.
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