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Abstract

In this paper we present a simple colorization

method that relies on nonlocal graph regularization.

We introduce nonlocal discrete differential operators

and a family of weighted p-Laplace operators. Then,

p-Laplace regularization on weighted graphs problem

is presented and the associated filter family. Image

colorization is then considered as a graph regulariza-

tion problem for a function mapping vertices to chromi-

nances. Several results illustrate our framework and

demonstrate the benefits of nonlocal graph regulariza-

tion for image colorization.

1. Introduction

Colorization is the process of adding color to

monochrome images. It is usually made by hand by

color experts but this process is tedious and very time-

consuming. In recent years, several methods have been

proposed for colorization [4, 6] that less require inten-

sive manual efforts. These techniques colorize the im-

age based on the user’s input color scribbles and are

mainly based on a diffusion process. However, most of

these diffusion processes only use local pixel interac-

tions that cannot properly describe complex structures

expressed by nonlocal interactions.

In this paper, we propose to use nonlocal graph regular-

ization for image colorization. Regularization by vari-

ational methods has shown its effectiveness for many

applications. Since the advent of the nonlocal means

filters [1, 3], the use of nonlocal interaction to cap-

ture complex structures of the data has received a lot

of attention. The nonlocal approach has also shown

to be very effective and more flexible in the regular-

ization process. We have recently proposed a nonlo-

cal discrete p-Laplacian regularization framework for
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the processing of images and manifolds represented by

weighted graphs of the arbitrary topologies [2]. The

proposed methodology enables local and nonlocal reg-

ularization by using appropriated graphs topologies and

edge weights. In this work, we consider the image

colorization problem within this nonlocal graph-based

framework.

2. Nonlocal graph regularization

In this Section, basic definitions on graphs are re-

called, nonlocal discrete differential operators and a

family of weighted p-Laplace operators are introduced.

The p-Laplace regularization on weighted graphs prob-

lem is presented and the associated filter family.

2.1. Preliminary definitions

A weighted graph G = (V,E, w) consists in a fi-

nite set V = {v1, . . . , vN} of N vertices and a finite

set E ⊂ V × V of weighted edges. We assume G
to be undirected, with no self-loops and no multiple

edges. Let (u, v) be the edge of E that connects ver-

tices u and v of V . Its weight, denoted by w(u, v),
represents the similarity between its vertices. Similari-

ties are usually computed by using a positive symmet-

ric function w : V × V → R+ satisfying w(u, v) = 0
if (u, v) is not an edge of E. The notation u ∼ v is

also used to denote two adjacent vertices. Let H(V )
be the Hilbert space of real-valued functions defined on

the vertices of a graph. A function f : V → R of

H(V ) assigns a real value f(v) to each vertex v ∈ V .

The function space H(V ) is endowed with the usual

inner product 〈f, h〉H(V ) =
∑

v∈V f(v)h(v), where

f, h : V → R. Similarly, one can define H(E),
the space of real-valued functions defined on the edges

of G.



2.2. Weighted gradient and divergence opera-
tors

Let G = (V,E, w) be a weighted graph, and let f :
V → R be a function of H(V ). The difference operator

of f , noted d : H(V ) → H(E), is defined on an edge

(u, v) ∈ E by: (df)(u, v) =
√

w(u, v)(f(v) − f(u)).
The directional derivative (or edge derivative) of f , at

a vertex u ∈ V , along an edge e = (u, v), is defined as:

∂vf(u) = (df)(u, v). The weighted gradient operator

of a function f ∈ H(V ), at a vertex u ∈ V , is the vector

operator defined by: ∇wf(u) = [∂vf(u) : v ∼ u]T .

The L2-norm of this vector represents the local varia-

tion of the function f at a vertex of the graph. It is de-

fined by |∇wf(u)| =
√

∑

v∼u w(u, v)(f(v) − f(u))2.

The local variation is a semi-norm that measures the

regularity of a function around a vertex of the graph.

The adjoint of the difference operator, noted d∗ :
H(E) → H(V ), is a linear operator defined by

〈df, H〉H(E) = 〈f, d∗H〉H(V ), for all f ∈ H(V ) and

all H ∈ H(E). Using the definitions of the inner

products in H(V ) and H(E), and of the difference

operator, we obtain the expression of d∗ at vertex u
by (d∗H)(u) =

∑

v∼u

√

w(u, v)(H(v, u) − H(u, v)).
The divergence operator, defined by −d∗, measures the

net outflow of a function of H(E), at each vertex of the

graph.

2.3. A family of weighted p-Laplace operators

Let p ∈ (0,+∞) be a real number. The weighted

p-Laplace operator of a function f ∈ H(V ), noted

∆p
w : H(V ) → H(V ), is defined by ∆p

wf(u) =
1
2d∗(|∇wf(u)|p−2df(u, v)). The p-Laplace operator of

f ∈ H(V ), at a vertex u ∈ V , can be computed by:

∆p
wf(u) = 1

2

∑

v∼u

γf
w(u, v)(f(u) − f(v)), (1)

with γf
w(u, v) = w(u, v)(|,wf(v)|p−2 +

|,wf(u)|p−2). The p-Laplace operator is nonlin-

ear, with the exception of p = 2. When p = 2, it

corresponds to the combinatorial graph Laplacian.

When p = 1, it corresponds to the weighted curvature

of the function f on the graph.

2.4. p-Laplace regularization on weighted
graphs

In this Section, one considers a general function

f0 : V ⊂ R
n → R

m defined on graphs of the arbi-

trary topologies and we want to regularize this function.

The regularization of such a function corresponds to an

optimization problem which can be formalized by the

minimization of a weighted sum of two energy terms:

min
f∈H(V )

{

Ep
w(f, f0, λ) = Rp

w(f) +
λ

2
‖f − f0‖2

}

.

(2)

with Rp
w(f) = 1

p

∑

u∈V |∇wf(u)|p a regularization

functional. The first term in (2) is the smoothness term

or regularizer, meanwhile the second is the fitting term.

The parameter λ ≥ 0 is a fidelity parameter, called the

Lagrange multiplier, which specifies the trade-off be-

tween the two competing terms. Both terms of the en-

ergy Ep
w are strictly convex functions of f . In particu-

lar, by standard arguments in convex analysis, the prob-

lem (2) has a unique solution, for p = 1 and p = 2 ,

which satisfies
∂Ep

w(f,f0,λ)
∂f(u) = 0, ∀u ∈ V . This is

rewritten as

∂Rp
w(f)

∂f(u)
+ λ(f(u) − f0(u)) = 0, ∀u ∈ V, (3)

that is equivalent to:

2∆p
wf(u) + λ(f(u) − f0(u)) = 0, ∀u ∈ V, (4)

since
∂Rp

w(f)
∂f(u) = 2∆p

wf(u), ∀u ∈ V . Substituting the

expression of the p-Laplace operator in (3), we obtain:
(

λ +
∑

v∼u

γf
w(u, v)

)

f(u)−
∑

v∼u

γf
w(u, v)f(v) = λf0(u).

(5)

We propose to use the linearized Gauss-Jacobi iterative

method to solve the system (5). Let t be an iteration

step, and let f (t) be the solution of (5) at the step t.
Then, the method is given by the following algorithm

∀u ∈ V :















f (0)(u) = f0(u)

f (t+1)(u) =
λf0(u) +

∑

v∼u γf(t)

w (u, v)f (t)(v)

λ +
∑

v∼u γf(t)

w (u, v)
.

(6)

It describes a family of discrete diffusion processes,

which is parameterized by the structure of the graph

(topology and weight function), the parameter p, and

the parameter λ. Also, the stopping time can be given

a priori, or can be determined by a stopping criterion.

To get the convergence of the process, a classical stop-

ping criterion is ‖f (t+1) − f (t)‖ < τ , where τ → 0
is a small fixed constant. At each iteration of the al-

gorithm (6), the new value f (t+1)(u) depends on two

quantities: the original value f0(u), and a weighted av-

erage of the filtered values of f (t) in a neighborhood of

u. This shows that the proposed filter, obtained by it-

erating (6), is a low-pass filter which can be adapted to

many graph structures and weight functions.
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Figure 2. Colorization results in local or nonlocal configurations for a boy image.

2.5. Construction of graphs

The minimization problem (2), and the discrete dif-

fusion processes (6), can be used to regularize any func-

tion defined on a finite set V of discrete data. This

is achieved by constructing a weighted graph G =
(V,E, w), and by considering the function to be reg-

ularized as a function f0 : V ⊂ R
n → R

m, defined on

the vertices of G. A typical graph in image processing is

the 8-adjacency graph where vertices are associated to

pixels and edges correspond to pixel adjacency relation-

ships: this corresponds to a classical local processing.

By changing the graph topology and the edge weights,

we naturally obtain an expression of nonlocal process-

ing methods which is embedded in the graph structure.

Indeed, once edges are added between vertices, they

are considered as direct neighbors and the processing

is local over the graph. Figure 1 resumes all these el-

ements. A classical 8-adjacency grid graph is consid-

ered and expresses only local interactions through lo-

cal edges. An example of nonlocal interaction is de-

picted for one vertex by adding nonlocal edges between

vertices not spatially connected (for a 5 × 5 neighbor-

hood in Figure 1). Let F (f0, v) ∈ R
q denote a fea-

ture vector associated to each vertex v ∈ V . This fea-

ture vector associated to vertices can be the initial func-

tion value: F (f0, v) = f0(v) (for a local configura-

tion) or a vector F (f0, v) = [f0(u) : u ∈ Bv,s]
T

(for a nonlocal configuration). For this latter case,

F (f0, v) is a patch where Bv,s denotes a bounding box

of size (2s + 1)× (2s + 1) centered at v (s = 1 in Fig-

ure 1). Weights are computed according to a measure of

similarity w(u, v) = exp
(

−‖F (f0,u)−F (f0,v)‖2

σ2

)

. To

have a parameterless weight function, σ has to be com-

puted locally at each vertex of the graph [5].

A local edge

A nonlocal edge

F (f0, v) = f0(v)

F (f0, v) = [f0(u) : u ∈ Bv,s]
T

Vertices to compare

Figure 1. Graph topology and feature vec-
tor illustration.

3. Application to image colorization

We now explain how to perform image colorization

with the proposed framework. From a gray level im-

age f l : V → R, a user provides an image of color

scribbles fs : Vs ⊂ V → R
3 that defines a map-

ping from vertices to a vector of RGB color channels:

fs(v) = [fs
1 (v), fs

2 (v), fs
3 (v)]T where fs

i : V → R is

the i-th component of fs(v). From these functions, one

computes fc : V → R
3 that defines a mapping from

the vertices to a vector of chrominances:










fc(v) =

[

fs
1 (v)

f l(v)
,
fs
2 (v)

f l(v)
,
fs
3 (v)

f l(v)

]T

,∀v ∈ Vs.

fc(v) = [0, 0, 0]T ,∀v /∈ Vs.

(7)

We then consider the regularization of function fc(v)

by applying algorithm (6) where γf(t)

w (u, v) is replaced

by γf l

w (u, v) and weights are computed on the gray level
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Figure 3. Colorization results in local or
nonlocal configurations for a girl image.

image: w(u, v) = exp
(

−‖F (f l,u)−F (f l,v)‖2

σ2
l

)

, with σl

estimated from f l. At convergence, final colors are ob-

tained by f l(v) ×
[

fc(t)

1 (v), fc(t)

2 (v), fc(t)

3 (v)
]T

,∀v ∈

V . For all the experiments λ = 0.01, p = 1 and the

data-fitting term is measured only on vertices v ∈ Vs.

This is needed to ensure that the original scribbles do

not change too much of color. Figures 2 and 3 present

colorization results on two gray level images obtained

from color images given a set of color scribbles as input.

Local (8-adjacency grid graph with F (f l, v) = f l(v))
and nonlocal (99-adjacency grid graph that corresponds

to add nonlocal edges in a 11 × 11 neighborhood with

F (f l, v) as a 5 × 5 patch) are presented. The benefits

of nonlocal processing are evident for the boy (Figure

2): the eyes and several areas of the bib are not prop-

erly colored and have diffused over straight edges. On

the opposite, nonlocal colorization has successfully col-

ored these areas thanks to its ability to discover similar

textures and fine details. For the girl (Figure 3), even

with precise locations of color scribbles, local results

are less good than nonlocal ones: too much diffusion

around the hairs and the shirt (see the zoomed areas in

Figure 3). To have a quantitative evaluation between lo-

cal and nonlocal colorization, PSNR measures between

the original color image (before its conversion into a

gray level one) and the colored one are provided and

show once again the benefits of nonlocal colorization.

4. Conclusion

In this paper, we first presented a framework that en-

ables local or nonlocal regularization by using appro-

priated graph topologies and edge weights. We have

shown how the proposed framework can be used to per-

form nonlocal image colorization. Moreover, results

were provided that demonstrate the benefits of nonlocal

image colorization compared to local image coloriza-

tion.
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