N
N

N

HAL

open science

Hardware communication refinement in digital signal
processing, modelling issues

Sylvain Huet, Emmanuel Casseau, Olivier Pasquier, Sébastien Le Nours

» To cite this version:

Sylvain Huet, Emmanuel Casseau, Olivier Pasquier, Sébastien Le Nours. Hardware communication
refinement in digital signal processing, modelling issues. 2008. hal-00332397

HAL Id: hal-00332397
https://hal.science/hal-00332397

Preprint submitted on 20 Oct 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00332397
https://hal.archives-ouvertes.fr

Hardware
Communication
Refinement in Digital
Signal Processing,
Modelling Issues

Sylvain Huet, Emmanuel Casseau
Université de Bretagne Sud
LESTER Lab CNRS FRE 2734
56321 Lorient Cedex, France
firstname.lastname@univ-ubs.fr

Olivier Pasquier, Sebastien Lenours
Polytech’Nantes
IREENA
BP50609, 44306 Nantes Cedex 3, France

to Gajski [Gaj87] classifies the abstractions of a
system on structural, behavioural and geometrical
axes. Nevertheless, it lacks a representation of
time and data abstractions. This is the reason why
Ecker et al. introduce the Design Cube [EH92],
where a design flow can be categorized according
to the three following axes: timing, values, view.
Seven years later, Jantsch et al. introduced the
Rugby Model [JKH99|: they extend the notions of
timing, values, view and add a fourth dimension,
communication, to be able to classify modern
hardware software design flows. The idea of the
Design Cube has also been updated by Thabet
et al. [TGCMO04] with the aim at defining a
communication refinement flow which includes
data type refinements. This dimension is especially
important in the context of hardware refinement.
Actually, [DSP] application specifications often
rely on abstract data types (e.g. matrix) whereas
their hardware implementations work on scalar
arithmetic operators in a parallel way. It results in
a wide variety of implementation alternatives, each
of them characterized by temporal performances
(latency, throughput) and area costs (computation

firstname.lastname@polytech.univ-nantes.fr unit, memory unit).

Abstract

In this paper we present the different modelling
problems which a Digital Signal Processing
application designer has to tackle while refining an
abstract specification relying on coarse grain data
(e.g. matrices) toward a hardware implementation
model relying on fine grain data (e.g. scalar). To
address this problematic, we propose a modelling
framework which can be used to refine an algo-
rithm specified with coarse grain interfaces to a
form which allow, from the functionnality point of
view, to model all its fine grain hardware implmen-
tation.

1 Introduction

The classical approach for designing complex [DSP|
applications is based on a top-down refinement
flow where an initial abstract specification of the
application is progressively and hierarchically
decomposed into interacting subsystems.

There are many paths leading from the speci-
fication of a system to its implementation. To
mark it out, some researchers have established
graphical taxonomies which can help the designers
to analyse their designs or to define the path which
best suits their needs. The Y chart model due

To compare these implementations or to optimize
the system during its refinement, it is interesting to
have fine grain transactional models. For example,
Filo et al. [FKCM93], Coussy et al. [CBMO03]
demonstrate in the High Level Synthesis (HLS)
context that the adaptation of the fine grain
communication patterns between the different
components of a system can reduce the latency
and the memory costs. In this particular context,
it would be interesting to introduce the analysis of
the fine grain communication patterns before the

[HLS] process.

The paper is organized as follows. Section
presents the domain of application and the hard-
ware implementations we address with our mod-
elling framework. Section [3] presents the modelling
framework. Section [4] gives some examples of ap-
plication. At last we conclude in section

2 Problem formulation

2.1 Application
definitions

specification and

In the context of this paper, we focus on [DSP] ap-
plications which can be specified as Synchronous
Data Flow programs [LM8T]. These pro-
grams consist of directed graphs where each node
represents an actor and each arc a signal path. The

http://www.univ-ubs.fr/
http://web.univ-ubs.fr/lester/
http://www.polytech.univ-nantes.fr/
http://www.polytech.univ-nantes.fr/ireena/

number of data samples produced or consumed by
each node on each invocation is known a priori.
An actor is specified by an algorithm and in-
put and output interfaces. In this paper, we
consider that the interfaces are composed of com-
munication ports each of them corresponding to a
data token of the firing rules, i.e. as soon as all
the input ports received one data token, the algo-
rithm is fired and then all the output ports produce
one data token. For example, a coarse grain matrix
product function is composed of an input interface
which has two ports to receive the operand matri-
ces and of an output interface which has one input
port where the result matrix is produced.

Each port of the interfaces receives a particular
data type. We classify the data types in two cat-
egories. Firstly the fine grain data which are
operands or result of an operator used for the hard-
ware implementation of an algorithm. In the con-
text of this paper, a fine grain data is a scalar. Sec-
ondly the coarse grain data which are conceptual
clusterings of fine grain data. Matrices, vectors, are
common coarse grain data used to specify [DSP] ap-
plications.

Therefore an interface is either a fine grain in-
terface if all its ports exchanged fine grain data
or a coarse grain interface if at least one port
exchanges a coarse grain data.

The [SDF] specifications introduce regular and it-
erative behaviours. These characteristics allow to
define the algorithmic iteration concept. An algo-
rithmic iteration is composed of the set of the
input values and the set of resulting output values
obtained by the algorithm firing. An algorithmic
iteration is identified by an iteration number which
is incremented by one each firing. Let us consider
the algorithm f.

Let IN? = {ini,in}, ..., in%, } be the set of the val-
ues on the input interface of the algorithm f at the
iteration 1.

Let OUT® = {outi,out, ... out},} be the set of
the values on the output interface of the algo-
rithm f at the iteration 4, obtained by the relation
OUT! = f(IN?Y).

The algorithmic iteration number i of f is the cou-
ple (IN*,OUT?).

An algorithmic iteration is a logical organization of
the data productions and consumptions.

2.2 Hardware implementation

According to the implementation of the algorithm,
from the time line point of view, the execution of
the algorithm can have different algorithmic iter-
ation organisation schemes. Figure [1| presents the
four usual ones. A box represents the time window

in which the inputs or outputs are produced.

(a) refers to the case where the outputs production
time window of a given iteration coincide with
its inputs consumption time window,

(c) refers to the case where the output time win-
dow of a given iteration is shifted one iteration
period to the corresponding input time win-
dow,

(b)
(d)

is the intermediate case between (a) and (c),

refers to the case where the output time win-
dow of a given iteration is shifted at least
one iteration period to the corresponding in-
put time window.

Cases (a) and (b) can present input output over-
lapping, that is to say that given an iteration, some
outputs can be produced before all the inputs ar-
rived.

input

output ouT!

@ time

input
output [OUTH]
[

out

® time

input INY INH2
ouT® | ouT

output [out]

© time

input IN' IN*2
output [OUTZ[OUTE |

@ time

Figure 1: algorithmic iteration from timeline point
of view

These four schemes are classical behaviours of
hardware [DSP] algorithm implementations. Two
difficulties appear to model these behaviours.

Functionality From the functional point of view,
modelling the behaviours of patterns from (a) to (b)
is non trivial. Indeed, the hardware implementa-
tion can lead to input output overlapping. For ex-
ample, a matrix product algorithm implementation
can produce fine grain outputs as soon as the corre-
sponding left hand side operand row and right and
side operand column are available. In such cases,
it is not possible to use the original coarse grain
algorithm specification to compute the outputs ac-
cording to the inputs. Unlike the previous schemes,
from the functional point of view, the others pat-
terns are trivial to model, indeed the outputs of
a given iteration are produced when all the corre-
sponding inputs have already been received. Thus

it is possible to use the original coarse grain syn-
chronized algorithm to compute the outputs.

Pipeline An implementation is pipelined if at a
given instant, there is an overlapping between the
inputs of one iteration and the outputs of another
iteration. To model this effect, i.e. cases from (b)
to (d), an iteration memory effect has to be intro-
duced.

In the rest of this paper, cases (a), (b), (c)
and (d) refer to the corresponding figures on
figure [1].

The next section proposes a modelling framework
which can be used to model cases from (a) to (d).

3 Modelling

To model all input output overlapping potential
combinations of a given algorithm, i.e. all partial
orders of the algorithm, we introduce an iteration
object which has fine grain input and output inter-
faces. To model intermediate cases between coarse
grain and fine grain interfaces, it is possible to add
data grain wrappers to a fine grain interface, e.g. a
vector to scalar wrapper for the inputs or scalar to
vector wrapper for the outputs.

An iteration_list object is also introduced to
manage the iteration objects, e.g. to manage the
pipeline and to handle the inter-iterations depen-
dencies. Before presenting these two objects, we
present in the following sub-section the algo-
rithm model we use in these objects and in sub-
section [3.2] we present a method which can be used
to extract the sets F, and F, introduced in sub-

section B.1]

3.1 The algorithm model

In this paper we focus on [DSP] algorithms. These
ones can have an inter-iterations memory effect,
that is to say the algorithm can use past informa-
tion to compute the current one. This is the conse-
quence of the z~! operators. We introduce the pos-
sibility to model this memory effect with fine grain
variables which we call ageing variables. Consider
the algorithm f.

Let IN® = {inf,in}, ... ,in! } be the set of the val-
ues of the fine grain inputs of the algorithm f at
the iteration <.

Let OUT? = {out}, out}, ..., out!} be the set of the
values of the fine grain outputs of the algorithm f
at the iteration 1.

Let A" = {ai,ab,...,al} be the set of the values
of the ageing variables of the algorithm f at the
iteration 7.

From the functional point of view we have
(OUT?, Ay = f(IN', AY)

However, this definition can not be applied in cases
with input output overlapping. Indeed in such cases
it is necessary to compute at least one subset of
OUT" in function of a subset of A* and IN?. To
address such cases we define the two following al-
gorithms sets:

Let F, = {fa1,fa2,---,fak} be the set
of the algorithms which compute respectively
{at,d},. .., al}Vi.

Let F, = {fo1,fo2,---sfom} be the set

of the algorithms which compute respectively
{out’, outh, ..., out! }Vi.
The problems are:

(1) to find the smallest possible start spaces of
these algorithms which constitute the smallest
possible synchronisation grain,

(2) to find their expressions.

3.2 How to extract F, and F,?

To solve the first problem, the initial algorithm has
to be analysed to determine the fine grain input
output dependencies. To solve the second one it is
possible to envisage a transformation of the initial
algorithm specification or even to keep it untrans-
formed for algorithms which have no inter iteration
dependencies. In theses later cases the algorithm is
duplicated for each element of F, and Fj,.
Nevertheless we use a method which formally solve
theses two problems for algorithms which can be
represented as a Fine Grain Signal Flow Graph
(FCSFT).

A Signal Flow Graph is a polar oriented
acyclic graph SFG(V, E) where:

-V ={vg,...,v,} is the set of the operation nodes,
Vg is the source node, v,, is the sink node. The op-
erations can be arithmetic, data, logic or delay.

- E = {e;;} is the set of edges which represents the
dependencies between the operation nodes v; and
v; such that the operation v; can start iff the oper-
ation v; is completed.

The interfaces of the SEG] are:

- the input nodes v; € INgrg C V which represent
data produced toward the [SFG|

- the output nodes v; € Ogpg C V which represent
data produced by the [SFG]

The ageing variable nodes, v; € Agpg C V are the
data operations nodes which have for unique pre-
decessor a delay operation node.

A and a Data Flow Graph (]E differ from
the delay operation which is used in a[SFG|to model

inter algorithmic iteration dependencies.
A[FGSFQ]is an [SFG] where all the operation nodes
are fine grain operators.

To generate the algorithmic expressions and to ex-
tract the dependencies of each v; € Opgsra and
v; € Arpgsra, we use an object oriented model of
the [FGSFG] and do a recursive call of a polymor-
phic code generation method, i.e. which is specific
to each kind of operation nodes, e.g. adder, multi-
plier, delay.

This method is called on each node v; € Opgsra
and each node v; € Apgsrg of the FGSFG] The
recursion tree stops on delay operations, input oper-
ations, and constant data nodes. Figure 2] presents
the code generation method of an adder operator.
We use GAUT’s [gay] generator, based on
GCC [geq], to extract a from an algorithm.

String get_expression(NodeList nL) {
String s ="";

// for each predecessor of the current node
foreach node n of pred(this)

s += n.get_expression(nL);

if n is not the last element of pred
s4= Mgn

end if

end foreach

return(s);

Figure 2: adder get_expression algorithm

Class iteration< type >

Private Attributes

matrix< bool > * m_dep
matrix< bool > * v_in_pre
matrix< type > * v_in_val
matrix< bool > * v_out_pre
matrix< type > * v_out_val
matrix< bool > * v_out_con

Public Member Functions

bool refresh ()

bool in_exists (int ref)
bool out_exists (int ref)
bool put (type val, int ref)
type get (int ref)

bool is_consumed (int ref)
bool is_consumed ()

bool is_in_ageing (int ref)
bool is_out_ageing (int ref)

Figure 3: iteration object

3.3 The iteration object

The figure [3| presents the iteration object. This
object manages the sets IN?, OUT?, A*, A" and

applies the function f or the functions of F} or F,
for the input output overlapping cases. The two fol-
lowing paragraphs present its attributes and meth-
ods.

3.3.1 Attributes

- m_dep
outi outil azﬁ'l .. a?‘l
int | bool bool bool bool
m_depi = int, | bool bool bool bool
at bool bool bool bool
a}'c bool bool bool bool

The dependencies matrix, m_dep, is composed
of booleans which represent (1) the dependencies
of the outputs of the current algorithmic iteration
according to the inputs and the ageing variables
of the current algorithmic iteration (2) the de-
pendencies of the of ageing variables of the next
algorithmic iteration according to the inputs and
the ageing variables of the current algorithmic
iteration. True expresses a dependency, false a non
dependency.

-v_in_val, v_out_val

ini ... ind, at e a}‘c
v_in_val® = ‘ fgdt fgdt + fgdt fadt ‘
1
out’i outfl ai’H a?’l
v_out_val® = ‘ fgdt fgdt = fgdt fgdt ‘
1

The input values vector, v_in_val, contains
the values of the inputs and the ageing variables
of the current algorithmic iteration. The output
values vector, v_out_val, contains the values of
the outputs of the current algorithmic iteration.
The data types of theses values are fine grain data
types, integer float for example, referred as fgdt
on the figure.

- v_in_pre, v_out_pre

zn’l co.and, ai . a};
v_in_pre® = ‘ bool bool bool bool ‘
1
outi out; a§+1 a?jl
v_out_pre’ = ‘ bool bool bool bool ‘

The input presences vector, v_in_pre, is com-
posed of booleans which represent the presences
of the inputs and the ageing variables for the
current algorithmic iteration. If true the corre-
sponding input or ageing variable is available in
the current algorithmic iteration. That is to say
the corresponding value in v_in_pre is valid. The
output presences vector, v_out_pre, is composed
of boolean which indicate if the corresponding
output value in v_out_val is valid.

- v_out_con

i i it1 i+1
outy out, aj a,
v_out_con’ = | bool bool * bool bool

The output consumption vector v_out_con is
composed of booleans which indicates which values
of v_out_val have been consumed.

3.3.2 Methods

- bool refresh () This method computes the
the output and ageing variables. Its algorithm can
be summarized as follow: for each column of m_dep,
if the corresponding output or ageing variable is
not computed and v_in_pre equals the column of
m_dep, compute it with the expression of f, or f,
for input output overlapping cases or f for the oth-
ers cases, put the result in v_out_val and set the
corresponding boolean to true in v_out_pre. For
non input output overlapping cases, all booleans of
Mdep are set to true.

-bool in_exists (int ref) This method is used
to know if the element at row ref in v_in_val is al-
ready present.

- bool out_exists (int ref) This method is
used to know if the element at row ref in v_out_val
is valid, i.e. is computed.

- bool put (type val, int ref) This method
is used to put the value val at row ref in v_in_val.
-type get (int ref) This method is used to get
the value at row ref of v_out_val. When called, the
boolean at row ref of v_out_con is set to true.
-bool is_consumed (int ref)

This method is used to know if the value of
v_out_val at row ref has been consumed.

- bool is_consumed () This method is used to
know if all the values of the iteration have been
consumed.

-bool is_in_ageing (int ref) This method is
used to know if the value at row ref in v_in_val is
an ageing variable.

- bool is_out_ageing (int ref) This method
is used to know if the value at row ref in v_out_val
is an ageing variable.

3.4 The iteration list object

The figure [] presents the iteration object. This
object is the user interface of our modelling frame-
work. It instantiates the iteration and manages
the inter iterations dependencies. The two follow-
ing paragraphs present its attributes and methods.

Class iteration_list< type >

Private Attributes

iteration< type > * iteration_list

Public Member Functions

bool put (type val, int ref)
bool exists (int ref)
type get (int ref)

Figure 4: iteration_list object

3.4.1 Attributes

- iteration_list

It is an ordered list which contains the instances of
alive iterations. An alive iteration is an iteration
which has not consumed and produced all its fine
grain inputs and outputs.

3.4.2 Methods

- bool put (type val, int ref) This method
is used to put the input value val at position ref.
Its algorithm can be summarized as follow:

1. get the older iteration which has no input value
at position ref

2. if such an iteration does not exist create a new
iteration and add it at the end of the list

3. put the value val at position ref in the iteration
4. refresh the iteration

5. if ageing variables has been computed put
them in the next iteration. To perform that
task the present algorithm is applied in a re-
cursive way.

- bool exists (int ref) This method is used
to check if at least one iteration contains a value at
position ref.

- type get (int ref) This method is wused
to get the older value at position ref in the
iteration_list. Its algorithm can be summarized
as follow:

1. get the older iteration which has not consumed
output value at position ref

2. if such an iteration does not exist return 0

3. else get the value in the found iteration

4. if this iteration is now entirely consumed, re-
move it from the iteration_list

3.5 Conclusion

The iteration and iteration_list objects make
possible to model cases from (a) to (d), even the
input output overlapping cases. However, these ob-
jects lack of a model of time. Thus, we use them in
conjunction with Cofluent Studio [cfd]. The next
section presents some results of this cooperation.

4 Examples

To illustrate the dependencies matrix and the fine
grain synchronized algorithmic functions of F,, and
F,, the two following sub sections present these
concepts applied to pedagogical, but interesting,
examples: a FIR filter and a matrix product.
The third sub section presents the iteration and
iteration_list usage in Cofluent Studio [cfd] an
Electronic System Level design tool.

4.1 FIR Filter example

A N taps FIR filter has one input x,,, one output y,
and N coefficients h;. It has a N-1 memory effect.
Its algorithmic expression is:

N—-1
Yn = § hixy—;
1=0

where x,_; is the value of the input 4 algorithmic
iterations before.

Let consider the case of a four taps FIR filter. The
obtained dependencies matrix is:

e et e

a:ﬁl true true false false

m_dep’ = a_, | true Efalse true false
xt_o | true I false false true

x;73 true I false false false

The obtained F, set is:

Yl = hox! + hixl | 4 hoxt o + hyal 4
The obtained F, set is:

7

x7,+1 _

n_:ll =Zn

? — i

n+—12 =Tpa
?)

Tp—3 = Tp_2

From the analysis of Mé we can conclude
(1) that the FIR filter computation core is

able to compute the output ! as soon as
xbat x;722x273 are available (2) that the age-
ing variables z} _,x} _o, %}, _5 are available as soon
as M’~! is computed that is to say as soon as zi !
arrives, and so on. The reader can point out the
initialization problem: to have a working computa-
tion core, the ageing variables have an initial value
in v_in_val® and their corresponding boolean in
the presences vector v_in_pre0 are set to true.

4.2 Dependencies matrix and fine
grain input algorithmic expres-
sions

The matrix product is an interesting example since
its implementations have a potential fine grain in-
put output overlapping. Moreover, a lot of [DSP)]
transforms can be written as a matrix product. Let
us consider a 2x2 C=A.B matrix product. The ob-
tained dependencies matrix is:

n cla chy cha
ail true true false false
aiz true true false false
a;l false false true true

m_depi = a;z false false true true
bil true false true false
biz false true false true
b;l true false true false
b;2 false true false true

The obtained F, set is empty. The obtained F, set

e = ap; by +ajabsy
iz = aj;biy +ajybs,
o1 = ag1b7y + a5oby,
Chy = a51bis + asybh,

The analysis of the dependencies matrix and the set
F, shows that the computations of ci, cl,,ch;, chy
are now synchronized on rows of the matrix A and
columns of the matrix B, for example ¢1; can be
produced as soon as the first row of A and the first
column of B are available. These results are well
known in the case of the matrix product; neverthe-
less this information is of major interest in a system
design refinement process.

4.3 Model introduced in an ESL de-
sign tool

In this sub-section we present how the iteration
and iteration_list objects can be used in a[ESI]

design flow. This example relies on Cofluent Studio
[cfd]. This tool aims at bridging the gap between
specifications and implementation. It allows
designers to model and simulate the behaviour and
time properties of electronic systems applications
and prepare efficiently for their implementation.
Cofluent Studio allows us to add a timed behavior
to our modelling framework.

To improve the readability of the time line pre-
sented below, we choose an example with a coarse
grain input interface but with a smaller grain
than the original input interface. Let consider the
following particular refinement of a NxM matrix
product C=A.B,

- it has two input ports: al_to_pm_refinement,
a2_to_pm_refinement, which carry vectors of size
M. On the first one it receives the rows of the left
hand side operand, on the second one it receives
the columns of the right hand side operand.
- it has two output
pm_refinement_01_to_c,
pn_refinement_02_to_c, which carry scalars.
On the first one it produces the scalars of the re-
sult matrix which have an even row index, starting
by the first column, on the second one, it produces
the scalars of the result matrix which have an odd
row index, starting by the first column.

Let r;,1 0..N — 1 be the rows of the left
hand side operand, let ¢;;i = 0..N — 1 be the
columns of the right hand side operand, let
84,1 = 0.N — 1,7 = 0..N — 1 be the scalar results
of the matrix product.

The following sub-sub-sections present different
possible refinements of the original matrix product
which obey to the structural and semantic specifi-
cation given above. The first one presents a non
input output overlapping case, whereas the second
presents two input output overlapping cases.

ports:

4.3.1 coarse grain synchronized refinement

The coarse grain synchronized refinement consists
in refining the communication interfaces without re-
fining the original coarse grain synchronized algo-
rithm. It refers to cases from (a) to (d) except the
input output overlapping cases. Figure [5|presents a
time line we obtained with Cofluent Studio [cfd] of
a such possible refinement for N=3, M=5 without
pipeline. The iteration and iteration_list ob-
jects are used to do the fine grain data refinement
and even if this timeline does not show it, are useful
to model the pipeline.

r‘*w

c0clc2

1]

e [e w5 e[

T T T T T § T 0 OB
P

H ﬁo

Figure 5: coarse grain synchronized refinement

4.3.2 fine grain synchronized refinement

This sub-section present two examples of input out-
put overlapping cases. In these cases, the refresh
method of the iteration object use the algorith-
mic expressions of F, and F,.

c0 c1 c2

[| L 4

T T e
PRI 5

150,501,521 02,522

i“ 516[s11l

[t

-
|

=0

i =
i PR oEE

e [e ow [s ea [

Figure 6: time line refined matrix product, reactive

Reactive model A reactive model is not sched-
uled and only satisfies the structural and seman-
tic specifications. It can be inserted in a system
in a top down approach to extract timing con-
straints [CBMO03] of non scheduled components,
e.g. by monitoring the input output events. In
this example, if we emit the following sequence
70, Co,T1,C1, T2, Co to this model we observe an input
output overlapping, c.f. figure [6]

Fully scheduled model A fully scheduled
model can be inserted in a system to model a

PO i

' yr0 M r2

0
Tine T for] vk T e T

CTLSOOﬂ 55011“52 ‘ESSZ 0&522 t
lisii
l

Figure 7: time line refined matrix product, fully
scheduled

scheduled hardware implementation of an algo-
rithm, it imposes timing constraints [CBMO03] to
the rest of the system. Its timing behaviour is
fully deterministic and can be specified with Gantt
diagrams. Figure [7] presents the time line of the
matrix product refinement specified by the Gantt
diagram of the following table.

time (us) | 100 | 200 | 250 | 300 | 400 | 430 | 460

DFG Data Flow Graph

| SFG Signal Flow Graph

FGSFG Fine Grain Signal Flow Graph

ESL Electronic System Level

References

[CBMO03] Philippe Coussy, Adel Baganne, and
Eric Martin. Communication and tim-
ing constraints analysis for ip design
and integration. In VLSI-SOC, pages

38-43, 2003.

[cfd] Cofluent design, cofluent studio

http://www.cofluentdesign.com.

[EH92) W. Ecker and M. Hofmeister. The de-
sign cube: a new model for vhdl design-
flow representation. In EFURO-DAC

92, 1992.

[FKCM93] D. Filo, D.C. Ku, C.N. Coelho, and
G. De Micheli. Interface optimization
for concurrent systems under timing
constraint. In IEEE Transactions on

VLSI Systems, 1993.

event ‘ r0 ‘ c0 ‘ s00 ‘ cl ‘ rl ‘ s10 ‘ sl1
490 | 540 | 590 | 620 | 650 | 680 | 730 | 780
r2 ‘ s20 ‘ c2 ‘ s01 ‘ s12 ‘ s21 ‘ s02 ‘ s22

5 Conclusions and Work in

progress

In this paper we propose a modelling framework
which can be used by a designer in a top-down
refinement methodology to progressively introduce
implementation details and to explore different
hardware implementation alternatives, from the in-
terfaces point of view. It can also be used in a bot-
tom up approach to model the behaviours at the
interfaces of existing hardware implementations.
We are now working on a fine grain input out-
put constraints driven hardware implementation
methodology with the Cofluent Studio tool used in
conjunction with our modelling framework, in the
context of software-radio applications.

6 Acronyms
DSP Digital Signal Processing

SDF Synchronous Data Flow

HLS High Level Synthesis

D.D. Gajski. The structure of a sili-
con compiler. In Proceedings of IEEE
1CCD, 1987.

[Gaj87]

Lester, ubs cnrs 2734,
http://web.univ-ubs.fr/gaut/.

[gau] gaut

Gnu compiler collection,

http://gce.gnu.org/.

Axel Jantsch, Shashi
Ahmed Hemanimumi. The rugby
model: a conceptual frame for the
study of modelling, analysis and syn-

thesis concepts of electronic systems. In
DATE 799, 1999.

[gec]

[JKH99] Kumar, and

[LM87] E.A. Lee and D.G. Messerschmitt. Syn-
chronous data flow. In Proceedings of

the IEEE, 1987.

[TGCMO04] F. Thabet, J.B. Le Goff, P. Coussy, and
E. Martin. A methodology for timing
and structural communication refine-
ment in dsp systems. In International
Conference on Microelectronics (ICM),

2004.

	Introduction
	Problem formulation
	Application specification and definitions
	Hardware implementation

	Modelling
	The algorithm model
	How to extract Fo and Fa?
	The iteration object
	Attributes
	Methods

	The iteration list object
	Attributes
	Methods

	Conclusion

	Examples
	FIR Filter example
	Dependencies matrix and fine grain input algorithmic expressions
	Model introduced in an ESL design tool
	coarse grain synchronized refinement
	fine grain synchronized refinement

	Conclusions and Work in progress
	Acronyms

