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Hardware Communication Refinement in Digital Signal Processing, Modelling Issues

In this paper we present the different modelling problems which a Digital Signal Processing (DSP) application designer has to tackle while refining an abstract specification relying on coarse grain data (e.g. matrices) toward a hardware implementation model relying on fine grain data (e.g. scalar). To address this problematic, we propose a modelling framework which can be used to refine an algorithm specified with coarse grain interfaces to a form which allow, from the functionnality point of view, to model all its fine grain hardware implmentation.

Introduction

The classical approach for designing complex DSP applications is based on a top-down refinement flow where an initial abstract specification of the application is progressively and hierarchically decomposed into interacting subsystems. There are many paths leading from the specification of a system to its implementation. To mark it out, some researchers have established graphical taxonomies which can help the designers to analyse their designs or to define the path which best suits their needs. The Y chart model due to Gajski [Gaj87] classifies the abstractions of a system on structural, behavioural and geometrical axes. Nevertheless, it lacks a representation of time and data abstractions. This is the reason why Ecker et al. introduce the Design Cube [START_REF] Ecker | The design cube: a new model for vhdl designflow representation[END_REF], where a design flow can be categorized according to the three following axes: timing, values, view. Seven years later, Jantsch et al. introduced the Rugby Model [START_REF] Jantsch | The rugby model: a conceptual frame for the study of modelling, analysis and synthesis concepts of electronic systems[END_REF]: they extend the notions of timing, values, view and add a fourth dimension, communication, to be able to classify modern hardware software design flows. The idea of the Design Cube has also been updated by Thabet et al. [START_REF] Thabet | A methodology for timing and structural communication refinement in dsp systems[END_REF] with the aim at defining a communication refinement flow which includes data type refinements. This dimension is especially important in the context of hardware refinement. Actually, DSP application specifications often rely on abstract data types (e.g. matrix) whereas their hardware implementations work on scalar arithmetic operators in a parallel way. It results in a wide variety of implementation alternatives, each of them characterized by temporal performances (latency, throughput) and area costs (computation unit, memory unit). To compare these implementations or to optimize the system during its refinement, it is interesting to have fine grain transactional models. For example, Filo et al. [START_REF] Filo | Interface optimization for concurrent systems under timing constraint[END_REF], Coussy et al. [START_REF] Coussy | Communication and timing constraints analysis for ip design and integration[END_REF] demonstrate in the High Level Synthesis (HLS) context that the adaptation of the fine grain communication patterns between the different components of a system can reduce the latency and the memory costs. In this particular context, it would be interesting to introduce the analysis of the fine grain communication patterns before the HLS process.

The paper is organized as follows. Section 2 presents the domain of application and the hardware implementations we address with our modelling framework. Section 3 presents the modelling framework. Section 4 gives some examples of application. At last we conclude in section 5.

Problem formulation

Application specification and definitions

In the context of this paper, we focus on DSP applications which can be specified as Synchronous Data Flow (SDF) programs [START_REF] Lee | Synchronous data flow[END_REF]. These programs consist of directed graphs where each node represents an actor and each arc a signal path. The number of data samples produced or consumed by each node on each invocation is known a priori. An actor is specified by an algorithm and input and output interfaces. In this paper, we consider that the interfaces are composed of communication ports each of them corresponding to a data token of the firing rules, i.e. as soon as all the input ports received one data token, the algorithm is fired and then all the output ports produce one data token. For example, a coarse grain matrix product function is composed of an input interface which has two ports to receive the operand matrices and of an output interface which has one input port where the result matrix is produced. Each port of the interfaces receives a particular data type. We classify the data types in two categories. Firstly the fine grain data which are operands or result of an operator used for the hardware implementation of an algorithm. In the context of this paper, a fine grain data is a scalar. Secondly the coarse grain data which are conceptual clusterings of fine grain data. Matrices, vectors, are common coarse grain data used to specify DSP applications. Therefore an interface is either a fine grain interface if all its ports exchanged fine grain data or a coarse grain interface if at least one port exchanges a coarse grain data.

The SDF specifications introduce regular and iterative behaviours. These characteristics allow to define the algorithmic iteration concept. An algorithmic iteration is composed of the set of the input values and the set of resulting output values obtained by the algorithm firing. An algorithmic iteration is identified by an iteration number which is incremented by one each firing. Let us consider the algorithm f . Let IN i = in i 1 , in i 2 , . . . , in i m be the set of the values on the input interface of the algorithm f at the iteration i. Let OU T i = out i 1 , out i 2 , . . . , out i n be the set of the values on the output interface of the algorithm f at the iteration i, obtained by the relation

OU T i = f (IN i ). The algorithmic iteration number i of f is the cou- ple (IN i , OU T i ).
An algorithmic iteration is a logical organization of the data productions and consumptions.

Hardware implementation

According to the implementation of the algorithm, from the time line point of view, the execution of the algorithm can have different algorithmic iteration organisation schemes. Figure 1 Cases (a) and (b) can present input output overlapping , that is to say that given an iteration, some outputs can be produced before all the inputs arrived. Functionality From the functional point of view, modelling the behaviours of patterns from (a) to (b) is non trivial. Indeed, the hardware implementation can lead to input output overlapping. For example, a matrix product algorithm implementation can produce fine grain outputs as soon as the corresponding left hand side operand row and right and side operand column are available. In such cases, it is not possible to use the original coarse grain algorithm specification to compute the outputs according to the inputs. Unlike the previous schemes, from the functional point of view, the others patterns are trivial to model, indeed the outputs of a given iteration are produced when all the corresponding inputs have already been received. Thus it is possible to use the original coarse grain synchronized algorithm to compute the outputs.
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Pipeline An implementation is pipelined if at a given instant, there is an overlapping between the inputs of one iteration and the outputs of another iteration. To model this effect, i.e. cases from (b) to (d), an iteration memory effect has to be introduced.

In the rest of this paper, cases (a), (b), (c) and (d) refer to the corresponding figures on figure 1. The next section proposes a modelling framework which can be used to model cases from (a) to (d).

Modelling

To model all input output overlapping potential combinations of a given algorithm, i.e. all partial orders of the algorithm, we introduce an iteration object which has fine grain input and output interfaces. To model intermediate cases between coarse grain and fine grain interfaces, it is possible to add data grain wrappers to a fine grain interface, e.g. a vector to scalar wrapper for the inputs or scalar to vector wrapper for the outputs. An iteration_list object is also introduced to manage the iteration objects, e.g. to manage the pipeline and to handle the inter-iterations dependencies. Before presenting these two objects, we present in the following sub-section 3.1 the algorithm model we use in these objects and in subsection 3.2 we present a method which can be used to extract the sets F o and F a introduced in subsection 3.1.

The algorithm model

In this paper we focus on DSP algorithms. These ones can have an inter-iterations memory effect, that is to say the algorithm can use past information to compute the current one. This is the consequence of the z -1 operators. We introduce the possibility to model this memory effect with fine grain variables which we call ageing variables. Consider the algorithm f . Let

IN i = {in i 1 , in i 2 , .
. . , in i m } be the set of the values of the fine grain inputs of the algorithm f at the iteration i. Let OU T i = {out i 1 , out i 2 , . . . , out i n } be the set of the values of the fine grain outputs of the algorithm f at the iteration i.

Let A i = {a i 1 , a i 2 , .
. . , a i k } be the set of the values of the ageing variables of the algorithm f at the iteration i.

From the functional point of view we have

(OU T i , A i+1 ) = f (IN i , A i )
However, this definition can not be applied in cases with input output overlapping. Indeed in such cases it is necessary to compute at least one subset of OU T i in function of a subset of A i and IN i . To address such cases we define the two following algorithms sets: Let F a = {f a,1 , f a,2 , . . . , f a,k } be the set of the algorithms which compute respectively

{a i 1 , a i 2 , . . . , a i k }∀i. Let F o = {f o,1 , f o,2 , . . . , f o,n
} be the set of the algorithms which compute respectively {out i 1 , out i 2 , . . . , out i n }∀i. The problems are:

(1) to find the smallest possible start spaces of these algorithms which constitute the smallest possible synchronisation grain,

(2) to find their expressions.

How to extract F o and F a ?

To solve the first problem, the initial algorithm has to be analysed to determine the fine grain input output dependencies. To solve the second one it is possible to envisage a transformation of the initial algorithm specification or even to keep it untransformed for algorithms which have no inter iteration dependencies. In theses later cases the algorithm is duplicated for each element of F o and F a . Nevertheless we use a method which formally solve theses two problems for algorithms which can be represented as a Fine Grain Signal Flow Graph (FGSFG). A Signal Flow Graph (SFG) is a polar oriented acyclic graph SF G(V, E) where: -V = {v 0 , . . . , v n } is the set of the operation nodes, v 0 is the source node, v n is the sink node. The operations can be arithmetic, data, logic or delay.

-E = {e ij } is the set of edges which represents the dependencies between the operation nodes v i and v j such that the operation v j can start iff the operation v i is completed. 

The iteration object

The figure 3 presents the iteration object. This object manages the sets IN i , OU T i , A i , A i+1 and applies the function f or the functions of F a or F o for the input output overlapping cases. The two following paragraphs present its attributes and methods.

Attributes

-m_dep The dependencies matrix, m_dep, is composed of booleans which represent (1) the dependencies of the outputs of the current algorithmic iteration according to the inputs and the ageing variables of the current algorithmic iteration (2) the dependencies of the of ageing variables of the next algorithmic iteration according to the inputs and the ageing variables of the current algorithmic iteration. True expresses a dependency, false a non dependency.

m_dep i = out i 1 . . . out i n a i+1 1 . . .
-v_in_val, v_out_val The input presences vector, v_in_pre, is composed of booleans which represent the presences of the inputs and the ageing variables for the current algorithmic iteration. If true the corresponding input or ageing variable is available in the current algorithmic iteration. That is to say the corresponding value in v_in_pre is valid. The output presences vector, v_out_pre, is composed of boolean which indicate if the corresponding output value in v_out_val is valid.

-v_out_con

out i 1 . . . out i n a i+1 1 . . . a i+1 k v_out_con i = bool . . . bool bool . . . bool
The output consumption vector v_out_con is composed of booleans which indicates which values of v_out_val have been consumed.

Methods

bool refresh () This method computes the the output and ageing variables. Its algorithm can be summarized as follow: for each column of m_dep, if the corresponding output or ageing variable is not computed and v_in_pre equals the column of m_dep, compute it with the expression of f o or f a for input output overlapping cases or f for the others cases, put the result in v_out_val and set the corresponding boolean to true in v_out_pre. 

The iteration list object

The figure 4 presents the iteration object. This object is the user interface of our modelling framework. It instantiates the iteration and manages the inter iterations dependencies. The two following paragraphs present its attributes and methods. 

Conclusion

The iteration and iteration_list objects make possible to model cases from (a) to (d), even the input output overlapping cases. However, these objects lack of a model of time. Thus, we use them in conjunction with Cofluent Studio [cfd]. The next section presents some results of this cooperation.

Examples

To illustrate the dependencies matrix and the fine grain synchronized algorithmic functions of F a and F o , the two following sub sections present these concepts applied to pedagogical, but interesting, examples: a FIR filter and a matrix product. The third sub section presents the iteration and iteration_list usage in Cofluent Studio [cfd] an Electronic System Level (ESL) design tool.

FIR Filter example

A N taps FIR filter has one input x n , one output y n and N coefficients h i . It has a N-1 memory effect. Its algorithmic expression is:

y n = N -1 i=0 h i x n-i
where x n-i is the value of the input i algorithmic iterations before. Let consider the case of a four taps FIR filter. The obtained dependencies matrix is:

m_dep i = y i n x i+1 n-1 x i+1 n-2 x i+1 n-3 x i n true true f alse f alse x i n-1 true f alse true f alse x i n-2
true f alse f alse true

x i n-3 true f alse f alse f alse
The obtained F o set is:

y i n = h 0 x i n + h 1 x i n-1 + h 2 x i n-2 + h 3 x i n-3
The obtained F a set is:

   x i+1 n-1 = x i n x i+1 n-2 = x i n-1 x i+1 n-3 = x i n-2
From the analysis of M i d we can conclude (1) that the FIR filter computation core is able to compute the output y i n as soon as x i n , x i n-1 , x i n-2 , x i n-3 are available (2) that the ageing variables x i n-1 , x i n-2 , x i n-3 are available as soon as M i-1 d is computed that is to say as soon as x i-1 n arrives, and so on. The reader can point out the initialization problem: to have a working computation core, the ageing variables have an initial value in v_in_val 0 and their corresponding boolean in the presences vector v_in_pre 0 are set to true.

Dependencies matrix and fine grain input algorithmic expressions

The matrix product is an interesting example since its implementations have a potential fine grain input output overlapping. Moreover, a lot of DSP transforms can be written as a matrix product. Let us consider a 2x2 C=A.B matrix product. The obtained dependencies matrix is: The obtained F a set is empty. The obtained

F o set is:    c i 11 = a i 11 b i 11 + a i 12 b i 21 c i 12 = a i 11 b i 12 + a i 12 b i 22 c i 21 = a i 21 b i 11 + a i 22 b i 21 c i 22 = a i 21 b i 12 + a i 22 b i 22
The analysis of the dependencies matrix and the set F o shows that the computations of c i 11 , c i 12 , c i 21 , c i 22 are now synchronized on rows of the matrix A and columns of the matrix B, for example c 11 can be produced as soon as the first row of A and the first column of B are available. These results are well known in the case of the matrix product; nevertheless this information is of major interest in a system design refinement process.

Model introduced in an ESL design tool

In this sub-section we present how the iteration and iteration_list objects can be used in a ESL design flow. This example relies on Cofluent Studio [cfd]. This tool aims at bridging the gap between specifications and implementation.

It allows designers to model and simulate the behaviour and time properties of electronic systems applications and prepare efficiently for their implementation. Cofluent Studio allows us to add a timed behavior to our modelling framework. To improve the readability of the time line presented below, we choose an example with a coarse grain input interface but with a smaller grain than the original input interface. Let consider the following particular refinement of a NxM matrix product C=A.B, -it has two input ports: a1_to_pm_refinement, a2_to_pm_refinement, which carry vectors of size M. On the first one it receives the rows of the left hand side operand, on the second one it receives the columns of the right hand side operand.

it has two output ports: pm_refinement_01_to_c, pm_refinement_02_to_c, which carry scalars. On the first one it produces the scalars of the result matrix which have an even row index, starting by the first column, on the second one, it produces the scalars of the result matrix which have an odd row index, starting by the first column. Let r i , i = 0..N -1 be the rows of the left hand side operand, let c i , i = 0..N -1 be the columns of the right hand side operand, let s ij , i = 0..N -1, j = 0..N -1 be the scalar results of the matrix product. The following sub-sub-sections present different possible refinements of the original matrix product which obey to the structural and semantic specification given above. The first one presents a non input output overlapping case, whereas the second presents two input output overlapping cases.

coarse grain synchronized refinement

The coarse grain synchronized refinement consists in refining the communication interfaces without refining the original coarse grain synchronized algorithm. It refers to cases from (a) to (d) except the input output overlapping cases. Figure 5 Reactive model A reactive model is not scheduled and only satisfies the structural and semantic specifications. It can be inserted in a system in a top down approach to extract timing constraints [START_REF] Coussy | Communication and timing constraints analysis for ip design and integration[END_REF] of non scheduled components, e.g. by monitoring the input output events. In this example, if we emit the following sequence r 0 , c 0 , r 1 , c 1 , r 2 , c 2 to this model we observe an input output overlapping, c.f. figure 6.

Fully scheduled model A fully scheduled model can be inserted in a system to model a 

Conclusions and Work in progress

In this paper we propose a modelling framework which can be used by a designer in a top-down refinement methodology to progressively introduce implementation details and to explore different hardware implementation alternatives, from the interfaces point of view. It can also be used in a bottom up approach to model the behaviours at the interfaces of existing hardware implementations.

We are now working on a fine grain input output constraints driven hardware implementation methodology with the Cofluent Studio tool used in conjunction with our modelling framework, in the context of software-radio applications. 

  presents the four usual ones. A box represents the time window in which the inputs or outputs are produced.

  (a) refers to the case where the outputs production time window of a given iteration coincide with its inputs consumption time window, (c) refers to the case where the output time window of a given iteration is shifted one iteration period to the corresponding input time window, (b) is the intermediate case between (a) and (c), (d) refers to the case where the output time window of a given iteration is shifted at least one iteration period to the corresponding input time window.
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 1 Figure 1: algorithmic iteration from timeline point of view These four schemes are classical behaviours of hardware DSP algorithm implementations. Two difficulties appear to model these behaviours.
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  Figure 3: iteration object

k 1 . . . out i n a i+1 1 .

 11 v_out_val i = f gdt . . . f gdt f gdt . . . f gdt The input values vector, v_in_val, contains the values of the inputs and the ageing variables of the current algorithmic iteration. The output values vector, v_out_val, contains the values of the outputs of the current algorithmic iteration. The data types of theses values are fine grain data types, integer float for example, referred as f gdt on the figure. bool . . . bool bool . . . bool out i . . a i+1 k v_out_pre i = bool . . . bool bool . . . bool

  presents a time line we obtained with Cofluent Studio [cfd] of a such possible refinement for N=3, M=5 without pipeline. The iteration and iteration_list objects are used to do the fine grain data refinement and even if this timeline does not show it, are useful to model the pipeline.
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 5 Figure 5: coarse grain synchronized refinement
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 6 Figure 6: time line refined matrix product, reactive
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 7 Figure 7: time line refined matrix product, fully scheduled
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  Digital Signal Processing SDF Synchronous Data Flow HLS High Level Synthesis DFG Data Flow Graph SFG Signal Flow Graph FGSFG Fine Grain Signal Flow Graph ESL Electronic System Level

  The interfaces of the SFG are: -the input nodes v i ∈ IN SF G ⊂ V which represent data produced toward the SFG -the output nodes v i ∈ O SF G ⊂ V which represent data produced by the SFG. The ageing variable nodes, v i ∈ A SF G ⊂ V are the data operations nodes which have for unique predecessor a delay operation node. A SFG and a Data Flow Graph (DFG) differ from the delay operation which is used in a SFG to model inter algorithmic iteration dependencies. A FGSFG is an SFG where all the operation nodes are fine grain operators. To generate the algorithmic expressions and to extract the dependencies of each v i ∈ O F GSF G and v i ∈ A F GSF G , we use an object oriented model of the FGSFG and do a recursive call of a polymorphic code generation method, i.e. which is specific to each kind of operation nodes, e.g. adder, multiplier, delay. This method is called on each node v i ∈ O F GSF G and each node v i ∈ A F GSF G of the FGSFG. The recursion tree stops on delay operations, input operations, and constant data nodes. Figure2presents the code generation method of an adder operator. We use GAUT's [gau] FGSFG generator, based on GCC[gcc], to extract a FGSFG from an algorithm.

	String get_expression(NodeList nL) {
	String s ="";	
	// for each predecessor of the current node
	foreach node n of pred(this)
	s += n.get_expression(nL);
	if n is not the last element of pred
	s+= "+"	
	end if	
	end foreach	
	return( s );	
	}	
	Figure 2: adder get expression algorithm
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