
HAL Id: hal-00332059
https://hal.science/hal-00332059v1

Preprint submitted on 20 Oct 2008 (v1), last revised 17 Oct 2010 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Excited Brownian Motions
Olivier Raimond, Bruno Schapira

To cite this version:

Olivier Raimond, Bruno Schapira. Excited Brownian Motions. 2008. �hal-00332059v1�

https://hal.science/hal-00332059v1
https://hal.archives-ouvertes.fr


EXCITED BROWNIAN MOTIONS

OLIVIER RAIMOND AND BRUNO SCHAPIRA

Abstract. We introduce and study a natural continuous time version of ex-
cited random walks. In the case of nonnegative drift, we obtain a necessary
and sufficient condition for recurrence. This result is analogous to Zerner’s
result [Zer1] for excited (or cookie) random walks. We use similar arguments.

1. Introduction

Random processes that interact with their past trajectory have been studied a
lot these past years. Reinforced random walks were introduced by Coppersmith
and Diaconis, and then studied by Pemantle, Davis and many other authors (see
the recent survey [Pem]). Some examples of time and space-continuous processes
defined by a stochastic differential equation have also been studied. For example the
self-interacting (or attracting) diffusions studied by Benäım, Ledoux and Raimond
(see [BLR, BR2, BR3]) and also by Cranston, Le Jan, Herrmann, Kurtzmann and
Roynette (see [CLJ, HR, Ku]), are processes defined by a stochastic differential
equation for which the drift term is a function of the present position and of the
occupation measure of the past process. Another example which is not solution of
a stochastic differential equation was studied by Tóth and Werner [TW].

Carmona, Petit and Yor [CPY], Davis [D2], and Perman and Werner [PW] (see
also other references therein) studied what they called a perturbed Brownian mo-
tion, which is the real valued process X defined by

Xt = Bt + α sup
s≤t

Xs + β inf
s≤t

Xs,

where B is a Brownian motion. This process can be viewed has a weak limit of
once edge-reinforced random walks on Z (see in particular [D1, D2, W]).

More recently, excited (or cookie) random walks were introduced by Benjamini
and Wilson [BW], and then further studied first on Z

d [BaS1, BaS2, KZer, Zer1,
Zer2], but also on trees [BaS3, V]. In this class of walks, the transition probabilities
depend on the number of times the walk has visited the present site. In particular
Kosygina and Zerner [KZer] showed that on Z and if pi is the probability to go
from x to x+ 1 after the i-th visit of x, then the walk is a.s. recurrent if, and only
if,

∑

i

(2pi − 1) ∈ [−1, 1]

and it is a.s. transient otherwise.
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2 OLIVIER RAIMOND AND BRUNO SCHAPIRA

We present what could be a continuous time version of this. Excited Brownian
motions considered here are defined by the stochastic differential equation

dXt = dBt + ϕ(Xs, L
Xs

s ) ds,

for some bounded measurable ϕ, and where B is a Brownian motion and Lxs is the
local time in x at time s of X . We prove here a similar result to the one of Zerner
[Zer1] for excited random walks: when ϕ(x, l) is a nonnegative function constant
in x, recurrence is equivalent to

∫ ∞

0

ϕ(0, l) dl ≤ 1.

In particular when ϕ(x, l) = b1{l≤L}, recurrence is equivalent to bL ∈ [−1, 1]. This
last case corresponds to the case the drift is b when the local time is less than L
and 0 after. This is similar with the excited random walk with M cookies per sites:
when a cookie (or more) is present at site x there is a probability p to go from x
to x+ 1 (and after this visit the cookie is eaten), and when there is no cookie this
probability is 1/2, in which case recurrence is equivalent to (2p− 1)M ∈ [−1, 1].

The paper is organized as follows. In the next section we define excited Brownian
motions and give some elementary properties. In section 3 we describe the law of
the excursions of our process above or below some level. In section 4 we study
the property of recurrence and prove a general 0-1 law. In section 5 we study the
particular case of nonnegative ϕ and obtain a necessary and sufficient criterion for
recurrence or transience. In the last section, we add some remarks for general ϕ and
prove in particular a necessary condition for recurrence. It is natural to believe that
this condition is also sufficient, as it is the case for excited random walks [KZer].
But a proof of this is out of reach with the techniques of the present paper. Our
arguments are similar to the ones of [Zer1].

Acknowledgments: We would like to thank Itai Benjamini for his suggestion to

study the processes introduced in this paper.

2. Definitions and first properties

Denote by (Ω,F ,Qx) the Wiener space, where Qx is the law of a real Brownian
motion started at x. Define Xt(ω) = ω(t) for all t ≥ 0 and (Ft, t ≥ 0) the filtration
associated to X . In the following, Lyt denotes the local time process of X at level
y and at time t.

Let Λ be the set of measurable bounded functions ϕ : R × R
+ → R. The subset

of Λ of nonnegative functions will be denoted by Λ+. We will denote by Λc and Λ+
c

the sets of functions ϕ in Λ (resp. in Λ+) such that ϕ(x, l) is a constant function
of x.

For ϕ ∈ Λ, set

Mϕ
t := exp

(∫ t

0

ϕ(Xs, L
Xs

s ) dXs −
1

2

∫ t

0

ϕ2(Xs, L
Xs

s ) ds

)
.

Then (Mϕ
t , t ≥ 0) is an (Ft, t ≥ 0) martingale. Define P

ϕ
x,t as the probability

measure on (Ω,Ft) having a density Mϕ
t with respect to Qx restricted to Ft. By

consistency, it is possible to construct a (unique) probability measure Pϕx on Ω, such
that Pϕx restricted to Ft is P

ϕ
x,t. By the transformation of drift formula (Girsanov
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Theorem), one proves that under Pϕx ,

Bt = Xt − x−

∫ t

0

ϕ(Xs, L
Xs

s ) ds

is a Brownian motion started at 0.
This proves (the uniqueness follows by a similar argument: start with Pϕx the

law of a solution and then construct P
ϕ
x,t) the following

Proposition 2.1. Let (x, ϕ) ∈ R × Λ. Then there is a unique solution (X,B) to

the equation

(1) Xt = x+Bt +

∫ t

0

ϕ(Xs, L
Xs
s ) ds

with Lyt the local time of X at level y and at time t, and such that B is a Brownian

motion started at 0.

For clarity, we will sometimes write Q for Q0 and P for P
ϕ
0 , if there is no ambiguity

on ϕ. We will use the notation E and Eϕx for the expectations with respect to P

and Pϕx . For other probability measures µ, the expectation of a random variable Z
will simply be denoted by µ(Z).

Let (x, ϕ) ∈ R × Λ. Under Pϕx , for all stopping times T , on the event {T <∞},

the law of (Xt+T , t ≥ 0) given FT is P
ϕT

XT
,(2)

where ϕT ∈ Λ is defined by

ϕT (y, l) = ϕ(y, LyT + l).

Note that (Xt, ϕt) is a Markov process and that (2) is just the strong Markov
property for this process.

We denote by Dt the drift accumulated at time t :

Dt =

∫ t

0

ϕ(Xs, L
Xs

s ) ds.

Lemma 2.2. Set h(x, l) =
∫ l
0
ϕ(x, u) du. The drift term Dt is also equal to
∫

R

h(x, Lxt ) dx.

Proof. This follows from the occupation times formula given in exercise (1.15) in
the chapter VI of Revuz–Yor [RY]. �

In the following, we set for any Borel set A of R,

DA
t =

∫

A

h(x, Lxt ) dx.

We will use also the notation D+
t , D−

t and Dk
t , k ∈ Z, respectively for DR

+

t , DR
−

t

and D
(k,k+1)
t . Note that (this is still a consequence of Exercise (1.15) Chapter VI

in [RY])

DA
t =

∫ t

0

ϕ(Xs, L
Xs
s )1A(Xs) ds.
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Lemma 2.3. Let (ϕn)n≥0 ∈ Λ be a sequence of functions, such that ϕn(x, l) con-

verges toward ϕ(x, l), when n→ +∞, for a.e. x and l, and such that

sup
x,n,u

|ϕn(x, u)| < +∞.

Then Pϕn
x converges weakly on Ω toward Pϕx for all x.

Proof. Let Z be a bounded continuous Ft-measurable random variable. We have to
prove that Eϕn

x (Z) converges towards Eϕx(Z). Since Eϕn
x (Z) and Eϕx(Z) are respec-

tively equal to Qx(ZM
ϕn

t ) and to Qx(ZM
ϕ
t ) it suffices to prove that Mϕn

t converges
in L2 towards Mϕ

t . Using Itô calculus, we prove that

d

dt
Qx[(M

ϕn

t −Mϕ
t )2] ≤ 2Qx[(ϕn − ϕ)2(Xt, L

Xt

t )(Mϕ
t )2] + CQx[(M

ϕn

t −Mϕ
t )2],

for some constant C > 0. By dominated convergence, the first term of the right
hand term converges to 0. We conclude by using Gronwall’s lemma. �

3. Construction with excursions

Define the processes A+ and A− as follows:

A+
t =

∫ t

0

1{Xs>0} ds and A−
t =

∫ t

0

1{Xs<0} ds.

Define the right-continuous inverses of A+ and A− as

κ+(t) = inf{u > 0 | A+
u > t} and κ−(t) = inf{u > 0 | A−

u > t}.

Define the two processes X+ and X− by

X+
t = Xκ+(t) and X−

t = Xκ−(t).

Denote by Q+ and Q− the laws respectively of X+ and X− under Q, and let Q
+
t

and Q
−
t respectively be their restrictions to Ft (then Q

±
t is the law of (X±

s ; s ≤ t)).
It is known that Q+ (resp. Q−) is the law of a Brownian motion reflected above 0
(resp. below 0) and started at 0. The process β, defined by

βt := Xt − L0
t (resp. βt := Xt + L0

t )

(recall that L0 is the local time process in 0 of X) is a Brownian motion under Q+

(resp. under Q−). Denote by Nϕ
t the martingale on (Ω,F ,Q±) defined by

Nϕ
t := exp

(∫ t

0

ϕ(Xs, L
Xs
s ) dβs −

1

2

∫ t

0

ϕ2(Xs, L
Xs
s ) ds

)
.

Let Pϕ,± be the measures whose restrictions P
ϕ,±
t to Ft are defined by

P
ϕ,±
t := Nϕ

t · Q±
t ∀t ≥ 0.

Note that, by using Girsanov Theorem, on the space (Ω,F ,Pϕ,±),

(3) Xt = β±
t ± Lt +

∫ t

0

ϕ(Xs, L
Xs

s )ds,

with β±
t a Brownian motion.

Set P̃ϕ := Pϕ,+ ⊗ Pϕ,− and let (X1, X2) be the canonical process of law P̃ϕ.
Then X1 and X2 are independent and respectively distributed like Pϕ,+ and Pϕ,−.
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Denote by L(1) and L(2) the local time processes in 0 of X1 and X2, and define
their right continuous inverses τ1 and τ2 by

τ is = inf{t | L
(i)
t > s} for i ∈ {1, 2}.

Denote by e1 and e2 their excursion processes out of 0: for s ≤ L
(i)
∞ ,

eis(u) = X i
τ i

s−
+u for all u ∈ (0, τ is − τ is−),

if τ is − τ is− > 0, and eis = 0 otherwise. Let now e be the excursion process obtained
by adding e1 and e2.

Denote by Ξ the measurable transformation that reconstructs a process out of
its excursion process (see [RY] Proposition (2.5) p.482). Note that Ξ is not a one
to one map, it is only surjective (think of processes having an infinite excursion out
of 0, in which case L0

∞ <∞).

Proposition 3.1. The following hold

(i) The law of the process Ξe is P.

(ii)
(
(Ξe)+t , t ≤ L

(2)
∞

)
=
(
X1
t , t ≤ L

(2)
∞

)
.

(iii)
(
(Ξe)−t , t ≤ L

(1)
∞

)
=
(
X2
t , t ≤ L

(1)
∞

)
.

(iv) Denote by L the local time in 0 of Ξe. Then for all t ∈ R
+ ∪ {∞}, Lt =

L
(1)
t ∧ L

(2)
t .

Proof. Assume first that ϕ(x, l) = 0 if x ∈ (−c, c), for some constant c > 0. For
any ǫ ∈ (−c, c), define a process Xǫ as follows: set T ǫ0 = 0 and for n ≥ 1,

Sǫn = inf{t ≥ T ǫn−1 | Xt ∈ {−ǫ, ǫ}},

T ǫn = inf{t ≥ Sǫn | Xt = 0}.

Define also

Aǫ(t) =
∑

n≥1

(T ǫn ∧ t− Sǫn ∧ t),

and let κǫ(t) be the right-continuous inverse of A+
ǫ . Then set

Xǫ
t := Xκǫ(t).

Now observe that during each time-interval (Sǫn, T
ǫ
n), the local time in 0 of X cannot

increase. And for t ∈ (Aǫ(S
ǫ
n), Aǫ(T

ǫ
n)), κ

ǫ(t) = Sǫn+(t−Aǫ(S
ǫ
n)). So by (3), during

the intervals (Aǫ(S
ǫ
n), Aǫ(T

ǫ
n)), if X follows the law of Ξe, then Xǫ is solution of

the SDE

dXǫ
t = dRǫt + ϕ

(
Xǫ
t , L

Xǫ
t

κǫ(t)

)
dt,

where L·
· is the local time of X , and Rǫ is the Brownian motion defined by

Rǫt =

n−1∑

k=1

(BT ǫ
k
−BSǫ

k
) + (Bκǫ(t) −BSǫ

n
)

for t ∈ (Aǫ(S
ǫ
n), Aǫ(T

ǫ
n)).

Denote by Lǫ,·· the local time process of Xǫ. Then

Lxκǫ(t)
= Lǫ,xt ∀t ≥ 0 ∀x 6∈ (−c, c).

Since ϕ(x, l) = 0 when x ∈ (−c, c),

ϕ(x, Lxκǫ(t)
) = ϕ(x, Lǫ,xt ) ∀t ≥ 0 ∀x ∈ R.
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Thus Xǫ satisfies in fact the SDE:

(4) dXǫ
t = dRǫt + ϕ

(
Xǫ
t , L

ǫ,Xǫ
t

t

)
dt,

up to the first time it hits 0. And when it hits 0, it jumps instantaneously to ǫ
or to −ǫ with probability 1/2, independently of its past trajectory. Note that this
determines the law of Xǫ.

But it follows also from (1), that if X has law P, then Xǫ solves as well the SDE
(4) up to the first time it hits 0, and then jump to ǫ or −ǫ with probability 1/2
(since there is no drift in (−c, c)). Since moreover Xǫ converges to X , when ǫ goes
to 0, we conclude that the law of Ξe is P.

To finish the proof of (i), for c > 0, define ϕc by

ϕc(x, l) = ϕ(x, l)1(x /∈ [−c, c]).

By Lemma 2.3 we know that P
ϕc

0 converges toward P
ϕ
0 , when c→ 0. It can be also

seen that Pϕc,+ and Pϕc,− converge respectively towards Pϕ,+ and Pϕ,−. Since Ξe
is a measurable transformation of (X1, X2), we can conclude.

Assertions (ii), (iii) and (iv) are immediate: in the construction of Ξe, one needs

only to know es for s ≤ L∞ = L
(1)
∞ ∧L

(2)
∞ . So (Ξe)+ and (Ξe)− can be respectively

reconstructed with the positive and negative excursions of (es, s ≤ L
(1)
∞ ∧L

(2)
∞ ). �

4. Recurrence, transience and a 0 − 1 law

Let ϕ ∈ Λ. Consider the events Ra := {La∞ = +∞}, a ∈ R. Using conditional
Borel-Cantelli lemma, one can prove that for all x, y, z, and all ϕ ∈ Λ, Pϕx -a.s.,
Ry = Rz. In the following, we will denote by R the event of recurrence (= Ra for
all a).

We will first study the question of recurrence and transience for the processesX1

and X2 separately, where X1 and X2 are independent respectively of law Pϕ,+ and
Pϕ,−. Note that we still have for all x ≥ 0 (resp. x ≤ 0), and all ϕ ∈ Λ, Pϕ,+-a.s.
(resp. Pϕ,−-a.s.), Rx = R0(= R). So in all cases, R is the event {L0

∞ = ∞}.
Fix x ∈ R and denote by ϕx the function in Λ such that for all (y, l) ∈ R × R

+,

ϕx(y, l) = ϕ(x + y, l).

In the following, Pϕ,±x will denote Pϕx,±.

Proposition 4.1. For all x ∈ R and all ϕ ∈ Λ, the following holds

(5) Pϕx(R) = Pϕ,+x (R) × Pϕ,−x (R).

Proof. This is a straightforward application of Proposition 3.1 since

Pϕx(R) = P̃ϕx(L∞ = ∞)

= P̃ϕx(L(1)
∞ = L(2)

∞ = ∞).

and we conclude since L
(1)
∞ and L

(2)
∞ are independent. �

For t > 0 and a ∈ R, set σat = inf{s > 0 |
∫ s
0 1{Xu≥a} du > t}. Then we have

Lemma 4.2. Let a ∈ R, x, y ≤ a and ϕ, ψ ∈ Λ be such that ϕ(z, l) = ψ(z, l) for all

z ≥ a and all l ≥ 0. Then (Xσa
t
− a, t ≥ 0) has the same distribution under Pϕ,+x

and under Pψ,+y . In particular,

P
ϕ,+
x (La∞ = ∞) = P

ψ,+
y (La∞ = ∞).
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Proof. The lemma follows immediately from Proposition 3.1. �

Note that a similar proposition holds for P
ϕ,−
· . A direct consequence of this

lemma is that

Proposition 4.3. For all x ∈ R, Pϕ,±x (R) = Pϕ,±(R).

With this in hands, we can prove the

Proposition 4.4 (Zero-one law). Let ϕ ∈ Λ. Then Pϕ,+(R) and Pϕ,−(R) both

belong to {0, 1}.

Proof. Assume that Pϕ,+(R) > 0. By martingale convergence theorem, Pϕ,+-a.s.

1R = lim
z→+∞

Pϕ,+x (R | FTz
)

= lim
z→+∞

P
ϕTz ,+
z (R)

= Pϕ,+(R),

by application of Lemma 4.2 and Proposition 4.3. Thus Pϕ,+(R) = 1, which proves
the proposition. �

Denote by T the event of transience. Then T = Rc = {L0
∞ < ∞}. Note that

Pϕ,±-a.s., T = {X → ±∞}, and that Pϕx -a.s., T = {X → +∞} ∪ {X → −∞} and

that P̃ϕ-a.s., {Ξe is transient} = {X1 → ∞} ∪ {X2 → −∞}. Then we have the
criterion

Proposition 4.5. Let ϕ ∈ Λ.

(i) Pϕx (R) = 1 for all x if, and only if, Pϕ,+(R) = Pϕ,−(R) = 1.
(ii) Pϕx (R) = 0 for all x if, and only if, Pϕ,+(R) = 0 or Pϕ,−(R) = 0.

Proof. This is a straightforward consequence of Propositions 4.1, 4.3 and 4.4. �

5. Case ϕ ≥ 0

In this section, we will consider functions belonging to Λ+. In this case, it is
obvious that Pϕ,−(R) = 1. Thus the recurrence property only depends on Pϕ,+(R).

Set Ta = inf{t > 0 | Xt = a}.

Lemma 5.1. Let ϕ ∈ Λ+, for which there exists x0 such that for all x ≤ x0 and

all l ≥ 0, ϕ(x, l) = ϕ(x0, l), and where ϕ(x0, l) is non zero function of l. Then, for

all a ≥ x,
Eϕx(DTa

) = a− x.

Proof. Without losing generality, we prove this result for x = 0. Take a > 0. We
have for all n,

0 = E
ϕ
0 (BTa∧n) = E

ϕ
0 (XTa∧n) − E

ϕ
0 (DTa∧n).

By monotone convergence, limn→∞ E
ϕ
0 (DTa∧n) = E

ϕ
0 (DTa

). Thus, if we can prove
that limn→∞ E

ϕ
0 (XTa∧n) = a, the lemma will follow. Since P

ϕ
0 -a.s., XTa

= a and
Ta <∞, this is equivalent to prove that

lim
n→∞

E
ϕ
0

[
Xn1{n<Ta}

]
= 0.

For all n,

min
t<Ta

Xt ≤ Xn1{n<Ta} ≤ a P
ϕ
0 − a.s.
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If one proves that mint<Ta
Xt is integrable, we can conclude by dominated conver-

gence. One has for all c > 0,

E
ϕ
0

[
− min
t<Ta

Xt

]
≤ E

ϕ
0 [DTa

/c]

+
∑

i≥1

i× P
ϕ
0

[
− min
t<Ta

Xt ∈ [i− 1, i], DTa
< ci

]
.

Clearly E
ϕ
0 [DTa

/c] ≤ a/c < +∞. Moreover for all i ≥ 1,

(6) P
ϕ
0

[
− min
t<Ta

Xt ∈ [i− 1, i], DTa
< ci

]
≤ P

ϕ
0 [T−i < Ta, DTa

< ci] .

Now on the event {T−i < Ta},

DTa
≥

i∑

k=1

(∫ −k+1

−k

h(y, LyT−k
) dy

)
1{T−k<∞}.

Set

αk :=

(∫ −k+1

−k

h(y, LyT−k
) dy

)
1{T−k<∞}.

We will prove that there exists a constant α > 0, such that for all integer k greater
than −x0,

E
ϕ
0 [αk+1 | FT−k

] ≥ α1{T−k<+∞}.(7)

By (2) we have

E
ϕ
0 [αk+1 | FT−k

] = E
ϕT

−k

−k [αk+1] 1{T−k<∞}

= E
ψk

0 [α1] 1{T−k<∞}

with ψk(x, l) = ϕ(x0, l) for x < 0 and ψk(x, l) = ϕ(x − k, Lx−kT−k
) for x ≥ 0. Note

that by Proposition 3.1, Ξe will reach level −1 in finite time if, and only if,

L(1)
∞ ≥ L

(2)
T−1

,

where T−1 denotes also the hitting time of −1 for X2. Thus

E
ψk

0 [α1] = Ẽψk

[
F
(
X2
t , t ≤ T−1

)
1
{L

(1)
∞ ≥L

(2)
T
−1

}

]
,

with

F
(
X2
t , t ≤ T−1

)
=

∫ 0

−1

h
(
y, L

(2),y
T−1

)
dy,

where L(2),y is the local time in y ofX2. It is possible to coupleX1 with a Brownian
motion Y + reflected at 0, started at 0, with drift ‖ϕ‖∞, and such that X1

t ≤ Y +
t

for all t ≥ 0. Note that the law of Y + is Pψ,+, where ψ(x, l) = ‖ϕ‖∞ if x ≥ 0 and
ψ(x, l) = ϕ(x0, l) if x < 0. Moreover,

L(1)
∞ ≥ L+

∞,

with L+ the local time in 0 of Y +. These properties imply that

E
ψk

0 [α1] ≥ α := E
ψ
0 [α1] .

It remains to see that α is positive. For any t > 0, it is larger than

E
ψ
0

[
α11{T−1≤t}

]
.
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By using Girsanov’s transform it suffices to prove that for some t > 0,

Q
[
α11{T−1≤t}

]
> 0.

But

Q
[
α11{T−1≤t}

]
=

∫ 0

−1

Q

[
h(y, LyT−1

)1{T−1≤t}

]
dy.

By continuity of h and L it suffices to prove that for some y ∈ (−1, 0) and t > 0,

Q

[
h(y, LyT−1

)1{T−1≤t}

]
> 0.

But this is clear for y = 1/2 for instance, since for any M > 0, Q[L
1/2
T−1

> M ] > 0.

Next (7) shows that the process (Mi, i ≥ 0) defined by

Mi =

i∑

k=1

(αk − α1{T−k<+∞}),

is a sub-martingale with respect to the filtration (FT−i
)i≥1. Moreover on the event

{T−i < Ta}, one has

Mi =

i∑

k=1

(αk − α).

So by taking c = α/2 in (6) one gets

P [T−i < Ta, DTa
< c(i+ 1)] ≤ P[Mi ≤ −αi/2],

for all i ≥ 0. We conclude now that E[−mint<Ta
Xt] is finite by using standard

results on martingales. �

Remark 5.2. As noticed also by Zerner in [Zer1], the condition ϕ(x0, ·) 6= 0 is
necessary (the result being obviously false if ϕ = 0).

Remark 5.3. This lemma can be extended to the case where ϕ is random and
stationary in the sense that for all z, ϕz and ϕ have the same law, where ϕz is
defined by ϕz(x, l) = ϕ(x + z, l).

Lemma 5.4. Let ϕ ∈ Λ+
c . Then

E
ϕ
0 (Dk

∞) ≤ 1,

for all k ≥ 0.

Proof. It is the same proof than for Lemma 11 in Zerner [Zer1]. We reproduce it

here for completeness. Note first that E
ϕ
0 [Dk

∞] = P
ϕ,+
k (D0

∞), which does not depend
on k since ϕ ∈ Λc. For K ≥ 1 and i ≤ K − 1,

DTK
≥ D+

TK
=

K−1∑

j=0

Dj
TK

≥

K−1−i∑

j=0

Dj
TK

≥

K−1−i∑

j=0

Dj
Tj+i

.

Using Lemma 5.1,

K = E
ϕ
0 [DTK

] ≥

K−1−i∑

j=0

E
ϕ
0 [Dj

Tj+i
] ≥ (K − i)Eϕ0 [D0

Ti
].

Letting i→ ∞, we conclude. �
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Lemma 5.5. Let ϕ ∈ Λ+ be such that Pϕ,+(R) = 0. Then

lim
z→∞

E
ϕ
0 (D+

Tz
)/z = 1.

If moreover ϕ ∈ Λ+
c , then

E
ϕ
0 (D0

∞) = 1.

Proof. The proof of the first part follows the proof of Lemma 6 in Zerner [Zer1]. We
write it here for completeness. First, since E0,ϕ(D+

Tz
) = Pϕ,+(DTz

) and Pϕ,+(R)
is a function of (ϕ(x, ·))x≥0, we can assume that ϕ(x, l) = 1 for all x ≤ 0 and all
l ≥ 0. Thus Lemma 5.1 can be applied: E

ϕ
0 (DTz

) = z. So, it suffices to prove that
limz→∞ E

ϕ
0 (D−

Tz
)/z = 0.

For i ≥ 1, let σi = inf{j ≥ Ti | Xj = 0}. We have, for z an integer,

E
ϕ
0 [D−

Tz
] =

z−1∑

i=0

E
ϕ
0 [D−

Ti+1
−D−

Ti
].

Note that

E
ϕ
0 [D−

Ti+1
−D−

Ti
] = E

ϕ
0

[
1{σi<Ti+1}(D

−
Ti+1

−D−
Ti

)
]

= E
ϕ
0

[
1{σi<Ti+1}E

ϕσi

0 (D−
Ti+1

)
]

≤ (i+ 1)Pϕ0 (σi < Ti+1)

using again Lemma 5.1. Thus it remains to prove that

lim
z→∞

1

z

z+1∑

i=1

iPϕ0 (σi < Ti+1) = 0.

Let Yi = P
ϕ
0 [σi < Ti+1 | FTi

]. Since P
ϕ
0 (R) = 0, the conditional Borel-Cantelli

lemma implies that P
ϕ
0 -a.s.,

∑
i Yi < +∞. Since Yi ≤ 1/i (X being greater than a

Brownian motion), for all positive ǫ,

i× P
ϕ
0 (σi < Ti+1) ≤ ǫ+ P

ϕ
0 (Yi ≥ ǫ/i) .

This implies that

1

z

z+1∑

i=1

iPϕ0 (σi < Ti+1) ≤ ǫ+
1

z
E
ϕ
0

[
z+1∑

i=1

1{Yi≥
ǫ
i
}

]
.

But since
∑

i Yi < ∞ a.s., the density of the i ≤ z such that Yi ≤ ǫ/i tends to 0
when z tends to ∞. Thus the preceding sum converges to 0. This concludes the
proof of the first part.

The second part is immediate (see Zerner [Zer1] Theorem 12). Since ϕ ∈ Λ+
c ,

for all K ≥ 0,

E
ϕ
0 [D0

∞] =
1

K

K−1∑

k=0

E
ϕ
0 [Dk

∞] ≥
1

K
E
ϕ
0

[
D+
TK

]
.

We conclude using the first part of the lemma. �

The next result gives a sufficient criterion for recurrence, when we only know
that ϕ ∈ Λ+. For ϕ ∈ Λ+

c , we will obtain a necessary and sufficient condition (see
Theorem 5.10 below).
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Corollary 5.6. Let ϕ ∈ Λ+. For x ∈ R, set δx(ϕ) =
∫∞

0
ϕ(x, u) du. If

lim inf
z→+∞

1

z

∫ z

0

δx(ϕ) dx < 1,

then Pϕ,+(R) = 1.

Proof. Since P-a.s. D+
Tz

≤
∫ z
0 δ

x(ϕ) dx, if lim inf 1
z

∫ z
0 δ

x(ϕ) dx < 1, then

lim inf E
ϕ
0 (D+

Tz
)/z < 1.

We conclude by using Lemma 5.5. �

Lemma 5.7. Let ϕ ∈ Λ+ be such that Pϕ,+(R) = 1. Then

P
ϕ
0 (T−1 = +∞) > 0.

Proof. By using Proposition 3.1,

P
ϕ
0 (T−1 = +∞) = P̃ϕ(L(1)

∞ < L
(2)
T−1

),

where T−1 denotes also the hitting time of −1 for X2. Since X1 and X2 are

independent and since Pϕ,+(R) = 0 implies that P̃ϕ-a.s., L
(1)
∞ < +∞, it suffices to

prove that for any l > 0,

Pϕ,−(L0
T−1

> l) > 0.

Equivalently it suffices to prove that for any l > 0, there exists t > 0 such that

Pϕ,−(L0
T−1

> l and T−1 ≤ t) > 0.

By absolute continuity of P
ϕ,−
|Ft

and Q
−
|Ft

this is equivalent to

Q−(LT−1 > l and T−1 ≤ t) > 0.

But this is well known. Thus the lemma is proved. �

Lemma 5.8. Let ϕ ∈ Λ+ be such that Pϕ,+(R) = 0. Then for any M > 0,

P
ϕ
0 [L0

∞ < M ] > 0.

Proof. We have

P
ϕ
0 [L0

∞ < M ] ≥ P
ϕ
0 [L0

T1
< M and Xt > 0 ∀t > T1]

≥ E
ϕ
0

[
1{L0

T1
<M}P

ϕT1

1 (T0 = ∞)
]
.

But Lemma 5.7 implies that a.s., P
ϕT1

1 (T0 = ∞) > 0. So it remains to prove that
P
ϕ
0 (L0

T1
< M) > 0. Like in the previous lemma, by absolute continuity, it suffices

to prove that

Q(L0
T1
< M) > 0.

But again this is well known. Thus the lemma is proved. �

Remark 5.9. This lemma holds as well for any ϕ ∈ Λ, such that P
ϕ
0 (R) = 0.

Finally we obtain the

Theorem 5.10. Let ϕ ∈ Λ+
c . Then

Pϕ,+(R) = 1 ⇐⇒

∫ ∞

0

ϕ(0, u) du ≤ 1.
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Proof. We prove this for ϕ such that ϕ(x, l) = ϕ(0, l) for all x. By Lemma 5.4,
E
ϕ
0 (D0

∞) ≤ 1. But if Pϕ,+(R) = 1, then P
ϕ
0 -a.s. Lx∞ = +∞, for all x. So, by using

the occupation time formula (see Lemma 2.2) we have E
ϕ
0 (D0

∞) =
∫∞

0 ϕ(0, u) du.
This gives the necessary condition. Reciprocally, if Pϕ,+(R) = 0, we saw in Lemma
5.5 that E

ϕ
0 (D0

∞) = 1. But by Lemma 5.8, we have E
ϕ
0 (D0

∞) = E
ϕ
0 (h(0, L0

∞)) <∫∞

0 ϕ(0, u) du, which gives the sufficient condition and concludes the proof of the
theorem. �

Note that if ϕ ∈ Λ is such that for some a ∈ R, ϕ(x, l) = ϕ(a, l) ≥ 0 for all x ≥ a
and all l ≥ 0, then

P
ϕ,+(R) = 1 ⇐⇒

∫ ∞

0

ϕ(a, u) du ≤ 1.

This can be proved using the fact that Pϕ,+(R) = Pϕa,+(R) which does not depend
on ϕ(x, ·), for x < a.

6. Additional remarks for general ϕ

Our first remark concerns the question of transience. More precisely we could
ask if it would be possible to have P(X → +∞) = 1 − P(X → −∞) ∈ (0, 1). The
answer is yes. For instance take ϕ ∈ Λ such that Pϕ,+(R) = 0, i.e. one has Pϕ,+-a.s.
X → +∞. Then define ψ ∈ Λ by ψ(x, u) = ϕ(x, u) if x ≥ 0 and ψ(x, u) = −ϕ(x, u)
if x < 0. Then by symmetry we have

P
ψ
0 (X → +∞) = P

ψ
0 (X → −∞) = 1/2.

More generally,

P
ϕ
0 (X → +∞) = P̃ϕ(L1

∞ < L2
∞),

and

P
ϕ
0 (X → −∞) = P̃

ϕ(L1
∞ > L2

∞).

So, if L1
∞ and L2

∞ are finite random variables, since they are independent with
support R

+, these two probabilities are positive. Note that the previous section
gives a criterion for these random variables to be finite when ϕ is nonnegative or
nonpositive at infinity.

To summarize: P
ϕ
0 (R) = 1 if there exists a > 0 such that

• ϕ(x, l) ≤ 0 for x ≥ a and ϕ(x, l) ≥ 0 for x ≤ −a or that;
• ϕ(x, l) = ϕ(a, l) ≥ 0 for x ≥ a and ϕ(x, l) ≥ 0 for x ≤ −a, and

∫∞

0
ϕ(a, u)du ≤

1, or that;
• ϕ(x, l) = ϕ(a, l) ≥ 0 for x ≥ a, ϕ(x, l) = ϕ(−a, l) ≤ 0 for x ≤ −a,∫∞

0
ϕ(a, u)du ≤ 1 and

∫∞

0
ϕ(−a, u)du ≥ −1 or that;

• ϕ(x, l) ≤ 0 for x ≤ −a and ϕ(x, l) = ϕ(−a, l) ≤ 0 for x ≤ −a and∫∞

0 ϕ(0, u)du ≥ −1.

Similarly P
ϕ
0 (R) = 0 if there exists a > 0 such that

• ϕ(x, l) = ϕ(a, l) ≥ 0 for x ≥ a with
∫∞

0 ϕ(a, u)du > 1 or that;

• ϕ(x, l) = ϕ(−a, l) ≤ 0 for x ≤ −a with
∫∞

0
ϕ(−a, u)du < −1.

Our second remark gives a general necessary condition for recurrence.

Proposition 6.1. Let ϕ ∈ Λc. If
∫ +∞

0

|ϕ(0, u)| du < +∞,(8)
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then

P
ϕ
0 (R) = 1 =⇒

∫ ∞

0

ϕ(0, u) du ∈ [−1, 1].

Proof. Let

D
(1)
t :=

∫ t

0

ϕ
(
X1
s , L

(1),X(1)
s

s

)
ds =

∫ ∞

0

h(x, L
(1),x
t ) dx,

be the total drift accumulated by X(1) up to time t. By dominated convergence
theorem, that we can apply by using (8), one get for all z ≥ 0,

z = Ẽϕ
[
X1
Tz

]
= Ẽϕ

[
L

(1)
Tz

]
+ Ẽϕ

[
D

(1)
Tz

]
.

So for all z ≥ 0,

Ẽ
ϕ
[
D

(1)
Tz

]
≤ z.

Since ϕ ∈ Λc, this implies

Ẽ
ϕ
[
D(1),0

∞

]
≤ 1,

with evident notation. But if X is recurrent, then X1 is also recurrent and

D(1),0
∞ =

∫ ∞

0

ϕ(0, u) du,

which proves that ∫ ∞

0

ϕ(0, u) du ≤ 1.

The other inequality is obtained similarly by using the recurrence of X2. This
concludes the proof of the proposition. �
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[BR2] Benäım, M., Raimond, O.: Self-interacting diffusions II: convergence in law, Ann.
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