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Abstract

Air pollution is a wide concern for human health and requires the
development of air quality control strategies. In order to achieve this
goal pollution sources have to be accurately identified and quantified.
The case study presented in this paper is part of a scientific project
initiated by the French Ministry of Ecology and Sustainable Develop-
ment. For the following study measurements of chemical composition
data for particles have been conducted on a french urban site. The first
step of the study consists in the identification of the sources profiles
which is achieved through Principal Component Analysis completed by
a rotation technique. Then the apportionment of the sources is evalu-
ated with a receptor modeling using Positive Matrix Factorization as
estimation method. Finally the joint use of these two statistical meth-
ods enables to characterize and apportion five different sources of fine
particulate emission.
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1 Introduction

Particulate pollution, also known as particulate matter or PM, comes from

various sources such as factory and utility smokestacks, vehicle exhaust,

wood burning, mining, construction activity or agriculture. This air pollu-

tion is a complex mixture of extremely small particles and liquid droplets

suspended in the air we breathe. High concentrations of particles have been

found to present a serious danger to human health. Particles of special

concern to the protection of lung health are those known as fine particles

(PM2.5), less than 2.5 microns in diameter. Development of PM2.5 control

strategies is then a wide preoccupation of environmental protection agen-

cies. Since strategies to improve ambient air quality involve the reduction

of emissions from primary sources, it is important to be able to identify and

apportion the contributions of these sources.

Receptor modeling, using measurements of chemical composition data

for particles on a sample site, is often a reliable way to provide information

regarding source characteristics [1]. Some multivariate receptor models are

based on the analysis of the correlations between measured concentrations

of chemical species, assuming that highly correlated compounds come from

the same source. One commonly used multivariate receptor model is Princi-

pal Component Analysis (PCA) [3], successfully applied to identify sources

in several studies. However PCA is not a convenient tool for quantifying

sources contributions. Therefore specific methods such as Positive Matrix

Factorization (PMF) [5], have been specifically developed in order to address

this problem.

The case study presented in this paper is a statistical part of the scientific
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program PRIMEQUAL1, initiated by the MEDD2 and the ADEME3, about

atmospheric pollution and its impact. We propose and apply a methodology

for determining particulate emission sources and their concentrations at the

urban site of Anglet located in the south west of France. The following three

step process has been implemented:

1. PM2.5 were collected with sequential fine particle samplers on the re-

ceptor site and the chemical composition of each sampler was measured

with PIXE (Particle Induced X-ray Emission) method. After several

pre-treatments a data matrix of chemical compounds concentrations

in each sampler was selected.

2. PCA was applied to this data matrix and the standardized principal

components were rotated, in order to identify possible sources.

3. PMF was applied to the same data matrix and the results were normal-

ized in order to find components with physical interpretations (con-

centration of each source in each particle sampler).

Steps 2 and 3 are independent but results of step 2 will be used to validate

results of step 3.

2 Data

The air pollution receptor modeling (n, p) data matrix consists of the mea-

surements of p chemical species in n particle samplers. In this application,

n = 61 samplers of PM2.5 were collected with sequential fine particle sam-

plers by AIRAQ4 in the french urban site of Anglet, every twelve hours,

1Projet de Recherche Interorganisme pour une MEilleure QUalité de l’Air à l’échelle
Locale

2French ministry of Ecology and Sustainable Development
3French Environment and Energy Management Agency
4Réseau de surveillance de la qualité de l’air en Aquitaine
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in December 2005. There are two samples per 24 hours: one for the day

(7AM:7PM) and one for the night (7AM:7PM). The mass and volume, rep-

resented by the concentration C in ng/m3, of each particle sampler were

measured with the PIXE method by ARCANE-CENBG5, as well as the

concentrations of p = 15 chemical elements (Al, Si, P , S, Cl, K, Ca, T i,

Mn, Fe, Ni, Cu, Zn, Br, Pb). Table 1 gives a subset of the data in their

initial form.

Date C Al Si . . . K Ca . . . Br Pb
23-11-05 day 7300 92 75 . . . 163 35 . . . 7 10

23-11-05 night 9600 135 90 . . . 211 23 . . . 7 77

24-11-05 day 11000 175 137 . . . 241 69 . . . 8 19

24-11-05 night 5300 36 31 . . . 94 44 . . . 9 7

.

.

.
.
.
.

.
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.
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24-12-05 day 21000 < 2 < 1 . . . 266 < 1 . . . 7 18

24-12-05 night 18100 18 < 1 . . . 307 < 1 . . . 7 19

25-12-05 day 23300 37 22 . . . 311 12 . . . 7 14

25-12-05 night 36100 < 2 < 1 . . . 277 < 1 . . . 10 19

Table 1: Subset of the original data table

FirstNi and T i elements which were frequently present in concentrations

below the detection limits (BDL) were excluded and only 13 elements were

selected. Then the few BDL data remaining in this selected data set were

replaced by values corresponding to one-half of the appropriate analytical

detection limit. Al, Si, S and Fe elements were respectively replaced by the

compounds Al2O3, Si02, S04, Fe203. Then the remaining concentration,

called Corg, which was not measured with the previous compounds, was

calculated for each particle sampler:

Corg = C−(Al203+Si02+P+S04+Fe203+Cl+K+Ca+Mn+Cu+Zn+Br+Pb).

Finally the (n, p) concentration matrix X = (xij) used in the receptor model

5Atelier Régional de Caractérisation par Analyse Nucléaire Elémentaire - Centre
d’Etudes Nucléaires de Bordeaux Gradignan
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has n = 61 rows and p = 14 columns (Al203, Si02, P , S04, Cl, K, Ca, Mn,

Fe203, Cu, Zn, Br, Pb, Corg). The coefficient xij is the concentration of

the jth chemical compound in the ith sampler. One can observe that Corg

represents the largest concentration in the particle samplers and then the

largest part (almost all) of PM2.5. The discovery of its origin is a key point

in the results.

3 Sources identification

In order to identify the sources of fine particulate emission we applied PCA

to the concentration matrix X and completed it by an orthogonal rotation

of the standardized principal components. Then we have associated groups

of correlated chemical compounds to air pollution sources.

First we will give a short theoretical reminder of Factor Analysis with

PCA estimation method. Then we will interpret the corresponding results

on the air pollution data.

3.1 Factor Analysis with PCA estimation method

Notations. We consider a (n, p) numerical data matrix X where n objects

are described on p < n variables x1, . . . , xp. We will note xj a column of X.

Let X̃ = (x̃ij)n,p be the standardized data matrix with x̃ij =
xij−x̄j

sj
where

x̄j and sj are respectively the empirical mean and the standard deviation of

xj .

Let R = X̃′MX̃ be the empirical correlation matrix of x1, . . . , xp, where

M = 1
mIn with m = n or n− 1 depending on the choice of the denominator

of sj . The correlation matrix can also be written R = Z′Z with Z = M1/2X̃.

Let us denote by r ≤ p the rank of Z and consider the Singular Value
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Decomposition (SVD) of Z:

Z = UΛ1/2V′ (1)

where:

• Λ is the (r, r) diagonal matrix of the r nonnull eigenvalues λk, k =

1, ..., r, of the matrix Z′Z (or ZZ′), ordered from largest to smallest;

• U is the (n, r) orthonormal matrix of the r eigenvectors uk, k = 1, ..., r

of ZZ′ associated with the first r eigenvalues;

• V is the (p, r) orthonormal matrix of the r eigenvectors vk, k = 1, ..., r

of Z′Z = R associated with the first r eigenvalues.

From the SVD of Z we deduce the following decomposition of X̃:

X̃ = M−1/2UΛ1/2V′. (2)

Factor Analysis model. The basic idea underlying Factor Analysis (us-

ing correlation matrix) is that the p observed standardized variables x̃1, ..., x̃p

can be expressed, to the exception of an error term, as linear functions of

q < p unobserved variables or common factors f1, ..., fq. The observed stan-

dardized matrix X̃ being given, factor analysis model can be expressed in

its simplified form as:

X̃ = FA′ +E, (3)

where F is the (n, q) matrix of unobserved values of the factors and A is

the (p, q) matrix of unknown loadings providing the information relating the

factors fk to the original variables x1, . . . , xp. The (n, p) matrix E is the rest

of the approximation of X̃ with ˆ̃
X = FA′.

Several approaches were developed to estimate the model (principal fac-

tor, maximum likelihood ...) but PCA is often used in practice.
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PCA. In PCA, when q = r, equation (2) is written:

X̃ = ΨV′ (4)

where Ψ = M−1/2UΛ1/2 is the principal component scores matrix. The

columns of Ψ are the r principal components ψk = (mλk)
1/2uk, k = 1, ..., r.

Since U and V are orthonormal we have ψk = X̃vk and Var(ψk) = λk.

Estimation of the factor model using PCA. When q = r equation

(2) is written:

X̃ = FA′ (5)

where F = M−1/2U is the factor scores matrix and A = VΛ1/2 is the

loadings matrix. The columns fk = m1/2uk of the matrix F are realizations

of the r factors fk, k = 1, ..., r. The coefficient ajk of the matrixA is equal to

the empirical correlation between xj and fk. Since U and V are orthonormal

we have fk = λ
−1/2
k X̃vk = λ

−1/2
k ψk for k = 1, ..., r and Var(fk) = 1. Then

fk is also the standardized principal component ψk.

When the user only retains the first q < r eigenvalues of Λ the corre-

sponding approximation of X̃ in (3) is then:

ˆ̃
Xq = FqA

′
q

where Fq and Aq are the matrices F and A reduced to their first q columns.

Fq is then the matrix of the first q standardized principal components.

Rotation of the standardized principal components. Let T be an

orthogonal transformation matrix corresponding to an orthogonal rotation

of the q axes in a p-dimensional space: TT′ = T′T = Iq.
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The orthogonal rotation is applied to the standardized principal compo-

nents:

ˆ̃
Xq = FqT(AqT)′.

The q rotated standardized principal components f̆
q
k are the q columns of

the matrix F̆q = FqT. They have the property of being mutually orthogonal

and of variance equal to 1.

In order to be able to interpret the f̆
q
k ’s (also called rotated factors) let

us remark that the coefficients ăqjk of the matrix Ăq = AqT are equal to the

empirical correlations between the rotated factors f̆ qk and xj .

From a practical point of view the orthogonal transformation matrix T

is defined in order to construct a matrix Ăq such that each variable xj is

clearly correlated to one of the rotated factor f̆
q
k∗ (that is ăqjk∗ close to 1)

and not to the other rotated factors (that is ăqjk close to 0 for k 6= k∗). The

most popular rotation technique is varimax which seeks rotated loadings

maximizing the variance of the squared loadings in each column of Ăq.

3.2 Results

We applied the factor procedure of SAS to the data matrix X intro-

duced in section 2. The following options were used: method=prin, ro-

tate=varimax and nfactors=5. The number q = 5 of factors was chosen

both because it allows to explain 90,93% of the total variance and because

decompositions in a larger number of factors did not give satisfactory in-

terpretations. Table 2 gives the matrix Ă5 of the loadings after rotation.

This matrix can be used to associate, when possible, sources with the

rotated factors. Indeed we observe for each factor the strongly correlated

coumpounds. For instance Zn and Pb are strongly correlated to f̆53 . Be-
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Table 2: Correlations between the chemical compounds and the rotated
factors

f̆5
1

f̆5
2

f̆5
3

f̆5
4

f̆5
5

Al2O3 0.981 0.087 -0.042 0.070 -0.038

SiO2 0.979 0.012 -0.055 0.104 -0.074

P 0.972 0.090 -0.017 0.071 -0.092

SO4 -0.028 0.765 0.247 0.180 -0.345

Cl -0.153 -0.274 -0.136 -0.181 0.879

K 0.597 0.716 0.111 0.233 0.031

Ca 0.608 0.091 -0.113 0.560 0.272

Mn -0.279 0.119 0.604 0.582 -0.238

Fe2O3 0.198 0.282 0.289 0.848 -0.112

Cu 0.213 0.359 0.161 0.816 -0.149

Zn -0.029 0.053 0.977 0.129 -0.044

Br 0.490 0.615 0.097 0.281 0.392

Pb 0.004 0.163 0.969 0.126 -0.054

Corg -0.018 0.893 0.021 0.222 -0.160

Table 3: Factor-source associations

Factor 1 Soil dust

Factor 2 Combustion

Factor 3 Industry

Factor 4 Vehicle

Factor 5 Sea

cause Zn and Pb are known to have industrial origin this rotated factor is

associated to the industrial pollution source. The same way, the element

Cl is strongly correlated to f̆55 which is then associated with sea salt pollu-

tion. Possible associations between the five rotated factors and five pollution

sources are given in Table 3.

In order to confirm these associations we have confronted the rotated

factors f̆5k with external parameters such as meteorological data (tempera-

tures and wind directions) and the periodicity night/day of the sampling.

The coefficient f̆5
ik represents a “relative” contribution of the source k to

the particle sampler i. Fig. 1(a) gives for instance the evolution of the rel-

ative contribution of the “vehicle” source associated with f̆54 . The night
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samplers have been distinguished from the day ones, enabling to notice that

the contribution of this source is stronger during the day than during the

night. It then confirms that this source corresponds to vehicle pollution.

The same way, Fig. 1(b) gives the evolution of the relative contribution of

the “combustion” source associated with f̆52 . We can notice an increase in

the contribution of this source in the middle of the sampling period, which

corresponds to a decrease in the temperature measured on the sampling site,

see Fig. 1(c). This confirms that this source corresponds to combustion and

heatings pollution.

The identification of the sources using PCA is only the first step of a more

complex process which consists in quantifying the sources. Although it is

essential to identify the sources, the true challenge is to define, in percentage

of total fine dust mass, the quantity of each of these sources.

4 Sources apportionment

In order to apportion the sources of fine particulate emission we have applied

PMF to the concentration matrix X and then normalized the results to find

components with physical interpretation.

4.1 Receptor modeling with PMF estimation method

The basic problem is to estimate, from the data matrix X, the number q of

sources, their compositions and their contributions. To address this problem

we consider the mass balance equation:

xij =

q∑

k=1

gikbjk (6)

where
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(a) Evolution of the Factor 4 associated to cars pollution

(b) Evolution of the Factor 2 associated to heatings pollution

(c) Evolution of temperatures

Figure 1: Evolution of factors 2 (a) and factor 4 (b) and evolution of the
temperatures (c)
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- gik is the concentration in particles from source k in the particle sam-

pler i;

- bjk is the mass fraction (percentage) of species j in source k.

In the receptor modeling vocabulary the bjk’s are the sources compositions

(or sources profiles) and the gik’s are the sources contributions. The product

gikbjk is then the approximation of the concentration in the sampler i in

particles from the jth species coming from the source k. Let mijk be the

mass in the sampler i of species j from source k, and let mik be the mass in

the sampler i from source k. Then bjk =
mijk

mik
is the percentage of species j

emitted by source k when sampler i was collected. Since the mass fraction

bjk is independent from i the sources profiles are assumed to be constant

during the sampling period.

In matrix form equation (6) can be written:

X = GB′ (7)

where G is a (n, q) matrix of sources contributions and B is a (p, q) matrix

of sources compositions. Approximations of G and B are obtained from the

data matrix X and a previously selected number q of sources by applying

the two following steps:

• PMF step. The matrix X is factorized in a product HC′ of rank q

under constraints of positivity of the coefficients. This condition is

required by physical reality of non negativity of sources compositions

and contributions: gik ≥ 0 and bjk ≥ 0.

• Scaling step. The columns of the approximations Ĥ and Ĉ obtained

in the previous step are scaled in order to get the approximations Ĝ

12



and B̂. The scaling coefficients are defined to fulfill other physical

constraints of the sources compositions and contributions.

Let us assume now that there are at least as many species as sources.

PMF step. Given a matrixX and a previously selected rank q ≤ p the aim

of PMF (or Non Negative Matrix Factorization) is to approximate X by a

product of two matricesHC′ (withH of dimension (n, q) andC of dimension

(p, q)) subject to hik ≥ 0 and cjk ≥ 0. Matrices H and C are obtained

by minimization of a least squares function Q(H,C) under constraints of

positivity.

When the constraints of positivity are ignored the ordinary SVD of X,

that is X = UΛ1/2V′ with U′U = Ir and V′V = Ir, provides a sequence of

approximations HC′ of rank q = 1, . . . , r which minimizes the square of the

euclidean norm of the residual matrix L = X−HC′:

Q1(H,C) =
n∑

i=1

p∑

j=1

l2ij =
n∑

i=1

p∑

j=1

(xij −

q∑

k=1

hikcjk)
2. (8)

In (8) the rows and the columns of X have the same weight. Let us denote

now ωi the weight of the ith row and φj the weight of the jth column

of X. Let Ω and Φ be two diagonal matrices respectively with elements

ωi, i = 1, . . . , n and φj , j = 1, . . . , p. The generalized SVD of X, that is

X = UΛ1/2V′ with U′ΩU = Ir and V′ΦV = Ir, provides a sequence of

approximations HC′ which minimizes:

Q2(H,C) =

n∑

i=1

p∑

j=1

ωiφj(xij −

q∑

k=1

hikcjk)
2. (9)

Note that this generalized SVD of X is obtained by finding the ordinary

SVD of Ω1/2XΦ1/2.
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A third type of approximation of X is defined by minimizing:

Q3(H,C) =

n∑

i=1

p∑

j=1

wij(xij −

q∑

k=1

hikcjk)
2 (10)

but this approximation can not be obtained by SVD unless the wij ’s can be

written as products wij = ωiφj . Gabriel and Zamir (1979) suggest a number

of ways in which special cases of this weighted least squares analysis may be

used.

The PMF algorithm developed by Paatero and Tapper (1994) in the con-

text of receptor modeling minimizes (10) with wij = 1/σ2
ij . The coefficient

σij is a measure of uncertainty of the observation xij . Given the σij ’s this

method searches H and C minimizing:

Q4(H,C) =

n∑

i=1

p∑

j=1

(
xij −

∑q
k=1 hikcjk
σij

)2

(11)

subject to hik ≥ 0 and cjk ≥ 0.

Polissar et al. (1998) propose several definitions for calculating the σij ’s

from a matrix X of chemical species concentrations. The one used in the

PMF program of the US Environment Protection Agency6 is the following:

σij =

{
2LD if xij ≤ LD,√

(θjxij)2 + LD2 if xij > LD,
(12)

where LD is the limit of detection for the jth species and θj is a percentage

of uncertainty associated with the jth species. One can note the subjectivity

of this definition which changes from an article to another using this PMF

method for sources apportionment.

In this case study we have made a different choice for the σij ’s. Indeed,

dealing with variables measured on very different scales is a problem when

approximating X globally on all the variables. Minimizing the unweighed

6E.P.A. PMF 1.1 Users’s guide, http://www.epa.gov/heasd/products/pmf/pmf.htm
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quadratic error Q1 in (8) gives better approximations for the columns of X

corresponding to variables with large dispersion. Hence we have chosen to

use Q4 with σij = sj , the empirical standard deviation of the jth variable.

Scaling step. Let X̂ = ĤĈ′ be the product calculated by PMF. Since

x̂ij =
∑q

k=1 ĥik ĉjk =
∑q

k=1 ĥik
βk

βk
ĉjk the matrix X̂ can be written:

X̂ = H̆C̆′ (13)

with h̆ik = ĥikβk and c̆jk =
ĉjk
βk

.

The aim of scaling is then to define the scaling constants βk, k = 1, . . . , q

such that H̆ and C̆ verify the physical conditions of the matrices G and B

of the mass balance equation (6). We are going to use the two following

conditions.

- Let γi be the concentration in the ith sampler:

γi =

q∑

k=1

gik. (14)

In other words the sum of the concentrations of the sources adds up

to the total concentration of the samplers.

- If the sum of the concentrations of the observed species adds up to

(resp. is lower than) the total concentration of the samplers, then the

sum of all species in each source profile is equal to (resp. lower than)

unity: { ∑p
j=1 bjk = 1 if

∑p
j=1 xij = γi,∑p

j=1 bjk < 1 otherwise.
(15)

First we consider the case where ∀i,
∑p

j=1 xij = γi. From the physical

constraints (15) the scaling coefficients βk can be calculated in two different

ways.
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- Directly from X̂ = ĤĈ′ we get

γi =

p∑

j=1

xij =

p∑

j=1

(
q∑

k=1

ĥik ĉjk + l̂ij

)
=

q∑

k=1

ĥik




p∑

j=1

ĉjk


+

p∑

j=1

l̂ij ,

we can set

β̂k =

p∑

j=1

ĉjk. (16)

Then we have the following approximations Ĝ and B̂ of G and B:

b̂jk =
ĉjk∑p
j=1

ĉjk
which satisfies constraint (15), and ĝik = ĥik(

∑p
j=1 ĉjk)

which satisfies constraint (14) with an error sum of squares equal to
∑n

i=1(
∑p

j=1 l̂ij)
2.

- Considering the linear approximation of γi

γi =

q∑

k=1

βkĥik + ei (17)

we search β = (β1, ..., βq)
′ minimizing the error sum of squares:

n∑

i=1

e2i =
n∑

i=1

(γi −

q∑

k=1

βkĥik)
2.

A wellknown solution to this minimization problem is:

ˆ̂
β = (Ĥ′Ĥ)−1Ĥγ (18)

with γ = (γ1, . . . , γn)
′. The corresponding approximations

̂̂
G and

̂̂
B

are such that
ˆ̂
bjk =

ĉjk
ˆ̂
βk

does not satisfy constraint (15), and ˆ̂gik =

ĥik
ˆ̂
βk satisfies constraint (14) with an error sum of squares equal to

∑n
i=1(êij)

2 with êij = γi −
∑q

k=1

ˆ̂
βkĥik.

Since
∑n

i=1(êij)
2 is the minimum error sum of squares we have:

n∑

i=1

(êij)
2 ≤

n∑

i=1

(

p∑

j=1

l̂ij)
2. (19)
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Obviously, in case of equality in (19), we get β̂ =
ˆ̂
β which means that we

have simultaneously the sum of all species in each source profile which is

unity and the sum of the concentrations of the sources best fitting (for the

least sum of squares error) the total concentration of the samples.

Comparing
∑n

i=1(êij)
2 with

∑n
i=1(

∑p
j=1 l̂ij)

2 or equivalently comparing

β̂ with
ˆ̂
β provides a confirmation that the information given by the columns

of Ĥ are coherent with the physical model we try to approximate. It is

hence a first good way to validate the results.

If we consider now the case where
∑p

j=1 xij < γi the scaling coefficients

can not be directly calculated from X̂ = ĤĈ′ since
∑p

j=1 bjk < 1. They are

then evaluated with (18).

A second way to validate the results is based on the regression of γi

either on ˆ̂γi =
∑q

k=1

ˆ̂
βkĥik or γ̂i =

∑q
k=1 β̂kĥik, depending on the choice of

the scaling coefficients.

4.2 The results

We have applied the PMF algorithm to the concentration matrix X with

q = 5 sources. The choice of the number of sources rises from the PCA

results. The introduction of Corg yields
∑p

j=1 xij = γi, then the scaling

coefficients β̂k have been calculated from (16).

We thus have the following numerical results:

- the (61, 5) matrix Ĝ of the approximated concentrations of the 5

sources in the 61 samples,

- the (14, 5) matrix B̂ of the approximated compositions (profiles) of

the 5 sources on the 14 compounds.
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Quality of the model approximation. Since we are in the case where

∀i,
∑p

j=1 xij = γi we can evaluate the quality of the approximation of X by

ĜB̂′ using the two methods mentioned above. We can compare the scaling

coefficients β̂k and
ˆ̂
βk. Table 4 clearly shows that the β̂k’s are close to the

ˆ̂
βk’s. Moreover figure 2 also shows a good fitting of the γi’s by the γ̂i’s.

Table 4: The scaling coefficients

β̂k
ˆ̂
βk

k = 1 147.1 158.6

k = 2 91.5 89.6

k = 3 73.5 76.8

k = 4 251.9 251.9

k = 5 51.1 73.2

Figure 2: Adjustment of γ by γ̂.

Sources identification. In practice the knowledge of Ĝ and B̂ does not

give direct indications on the nature of the sources. To try to discover the

nature of the five sources we want to calculate their relative contribution to

each of the 14 chemical compounds. In order to do that we need to work

with the masses instead of the concentrations. Then we calculate, from Ĝ,
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the approximation of the total mass of particulate emitted from source k

in the 61 samplers. This mass is multiplied by b̂jk hence resulting in the

percentages reported in Table 5.

Table 5: Relative contributions of the sources to the chemical compounds

k = 1 k = 2 k = 3 k = 4 k = 5

Al2O3 100.0 0.0 0.0 0.0 0.0

Si02 100.0 0.0 0.0 0.0 0.0

P 81.5 0.5 3.9 8.2 6.0

SO4 4.5 9.5 10.7 67.9 7.5

Cl 0.0 0.0 0.0 0.0 100.0

K 38.8 0.0 4.4 56.7 0.2

Ca 42.0 39.6 0.0 0.0 18.4

Mn 0.0 54.9 33.1 8.5 3.5

Fe2O3 19.0 59.2 14.4 7.4 0.0

Cu 18.5 56.8 9.1 15.6 0.0

Zn 9.0 0.5 87.5 0.0 3.1

Br 19.4 12.1 5.7 33.4 29.4

Pb 10.7 0.0 81.4 7.9 0.0

Corg 0.0 8.0 0.0 92.0 0.0

Table 5 is used to identify the nature of the sources. For instance Al203

and SiO2 are emitted exclusively by source 1. Because Al203 and SiO2

are known to have natural origin this source is associated to the soil dust

pollution source. We proceed the same way for the other sources. We deduce

possible identifications of the five pollution sources, see Table 6.

Table 6: Receptor model sources identification

k = 1 Soil dust

k = 2 Vehicles

k = 3 Industry

k = 4 Combustion

k = 5 Sea

One can notice that the sources identified in Table 6 are the same than

those found with PCA in Table 3. To verify the coherence of these sources

identifications we have calculated, in Table 7, the correlations between the
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factors (the columns of F̆5) and the sources obtained by receptor modeling

(the columns of Ĝ). We observe that the factors match well with the receptor

model sources.

Table 7: Correlations between the sources of the receptor model and the
factors of PCA after rotation

Source 1 Source 2 Source 3 Source 4 Source 5

Factor 1 0.98 -0.18 -0.11 -0.02 -0.18

Factor 2 0.11 0.12 0.06 0.95 -0.30

Factor 3 -0.05 -0.09 0.98 0.02 -0.15

Factor 4 0.12 0.96 0.10 0.11 -0.22

Factor 5 -0.02 -0.13 -0.10 -0.27 0.88

Sources descriptions. The matrix B̂ of the sources profiles is reported in

Table 8. We notice that, according to these profiles, Corg, which represents

almost the total concentration in PM2.5, is only emitted by the Vehicle and

Combustion sources.

Table 8: The sources profiles

Soil dust Vehicles Industry Combustion Sea

Al2O3 41.6 0.0 0.0 0.0 0.0

Si02 18.5 0.0 0.0 0.0 0.0

P 6.2 0.0 0.7 0.0 0.6

SO4 10.1 15.3 59.6 12.2 22.6

Cl 0.0 0.0 0.0 0.0 74.5

K 12.9 0.0 3.6 1.5 0.1

Ca 2.4 1.6 0.0 0.0 1.4

Mn 0.0 0.2 0.3 0.0 0.0

Fe2O3 6.7 15.0 12.7 0.2 0.0

Cu 0.3 0.7 0.4 0.0 0.0

Zn 0.7 0.0 16.3 0.0 0.3

Br 0.2 0.1 0.2 0.0 0.5

Pb 0.3 0.0 6.2 0.0 0.0

Corg 0.0 67.1 0.0 85.9 0.0
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Sources apportionments. From matrix Ĝ of the source contributions we

can deduce some interesting comments. First we can focus on the relative

contribution of each source in each particle sampler. For instance Figure

3 represents the relative contributions of the Combustion source in the 61

particle samplers. We can notice the increase in the percentage of this

source in the second period of sampling, corresponding to a decrease in the

temperature (see Fig. 1(c)).

Figure 3: Relative contribution of the source Combustion to the samples.

We can also focus on the contribution of the sources to the PM2.5 dust

contamination during the sampling period. Figure 4 shows the predomi-

nance of the Combustion source during this winter sampling period.

Figure 4: Global sources contributions to the PM2.5 dust contamination.
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5 Conclusion

We propose in this case study a methodology for identifying and apportion-

ning air pollution sources in a French urban site. The first step consists

in Factor Analysis followed by a rotation technique and enables to identify

the profiles of five principal sources: soil dust, vehicles, industry, combus-

tion and sea. Then a receptor modeling approach, based on Positive Matrix

Factorization, is used to evaluate their contributions to the fine particles

dust contamination. Thus we highlight, during winter, the predominance of

combustion source over dust pollution. The interest of the approach lies in

the fact that we do not use prior knowledge on the sources (number, nature,

profiles), which means that this work can be applied to more complex sam-

pling site. Finally this methodology is not specific to pollution and can be

used for other sources detection problems.
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