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Hypocoercivity for kinetic equations with linear relaxation terms

This note is devoted to a simple method for proving the hypocoercivity associated to a kinetic equation involving a linear time relaxation operator. It is based on the construction of an adapted Lyapunov functional satisfying a Gronwall-type inequality. The method clearly distinguishes the coercivity at microscopic level, which directly arises from the properties of the relaxation operator, and a spectral gap inequality at the macroscopic level for the spatial density, which is connected to the diffusion limit. It improves on previously known results. Our approach is illustrated by the linear BGK model and a relaxation operator which corresponds at macroscopic level to the linearized fast diffusion.

Résumé Hypocoercivité pour des équations cinétiques avec termes de relaxation linéaires

Cette note est consacrée à une méthode simple pour démontrer l'hypocoercivité associée à une équation cinétique contenant un opérateur de relaxation linéaire ; il s'agit de construire une fonctionnelle de Lyapunov adaptée vérifiant une inégalité de type Gronwall. La méthode distingue clairement la coercivité au niveau microscopique, qui provient directement des propriétés de l'opérateur de relaxation, et une inégalité de trou spectral pour la densité spatiale, qui est reliée à la limite de diffusion. Elle améliore les résultats antérieurs. Notre approche est illustrée par le modèle de BGK linéaire et par un opérateur de relaxation qui correspond, au niveau macroscopique, à la diffusion rapide linéarisée.

Version française abrégée

Cette note est une contribution à la théorie de l 'hypocoercivité, voir [10,11,8], dont le but est d'estimer des taux exponentiels de retour à un équilibre global pour des équations cinétiques dans lesquelles le terme de collision ne contrôle que le retour à un équilibre local. Cette question a été partiellement résolue pour l'équation, hypoelliptique, de Vlasov-Fokker-Planck par F. Hérau and F. Nier dans [6], puis par C.

dans [11], et pour le modèle de BGK linéaire, non hypoelliptique, dans [START_REF] Hérau | Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation[END_REF] par F. Hérau. En introduisant de nouveaux opérateurs, nous améliorons et nous simplifions les résultats antérieurs, tout en mettant en évidence la relaxation à l'échelle microscopique due au terme de collision, ici un opérateur de relaxation linéaire, et la relaxation à l'échelle macroscopique, qui vient d'une propriété de trou spectral (voir [START_REF] Blanchet | Hardy-Poincaré inequalities and applications to nonlinear diffusions[END_REF]) d'un opérateur lié à la limite de diffusion (voir [START_REF] Dolbeault | Non linear diffusions as limit of kinetic equations with relaxation collision kernels[END_REF]) et portant sur les densités spatiales uniquement. Soit V un potentiel extérieur sur R d , d ≥ 1. Considérons l'équation cinétique

∂ t f + T f = L f , f = f (t, x, v) , x ∈ R d , v ∈ R d , (1) 
où T := v • ∇ x -∇ x V • ∇ v est un opérateur de transport et où l'opérateur de relaxation linéaire L est défini par 

L f = Π f -f , Π f := ρ ρ F F (x, v) , F (x, v) > 0, ρ = ρ(f ) := R d f dv et ρ F = ρ(F ) . Sur R d × R d ∋ (x, v), on notera dµ(x, v) = F (x, v) -
F (x, v) := M (v) e -V (x) avec M (v) := (2π) -d/2 e -|v| 2 /2 . Théorème 1 Supposons que V ∈ W 2,∞ loc (R d ), d ≥ 1, est tel que : 1) R d e -V dx = 1, 2) il existe une constante Λ > 0 telle que R d |u| 2 e -V dx ≤ Λ R d |∇ x u| 2 e -V dx pour tout u ∈ H 1 (e -V dx) vérifiant R d u e -V dx = 0, 3) il existe des constantes c 0 > 0, c 1 > 0 et θ ∈ (0, 1) telles que ∆V ≤ θ 2 |∇ x V (x)| 2 + c 0 et |∇ 2 x V (x)| ≤ c 1 (1 + |∇ x V (x)|) ∀ x ∈ R d , 4) R d |∇ x V | 2 e -V dx < ∞.
Pour tout η > 0, il existe une constante positive λ = λ(η), explicite, pour laquelle toute solution de (1) dans L 2 (dµ) vérifie :

∀ t ≥ 0 , f (t) -F 2 ≤ (1 + η) f 0 -F 2 e -λt .
Le deuxième cas d'application correspond à un modèle relié à l'équation de diffusion rapide avec terme de dérive, linéarisée autour de profils stationnaires de type Barenblatt. On supposera que 

F (x, v) := ω 1 2 |v| 2 + V (x) -(k+1) , V (x) = 1 + |x| 2 β pour simplifier la présentation. Ici, ρ F = ω 0 V d/2-k-
∀ t ≥ 0 , f (t) -F 2 ≤ C f 0 -F 2 e -λt .
Sur L 2 (dµ), à l'aide de l'opérateur de projection Π, on définit les opérateurs bf

:= Π (v f ), af := b (T f ), â f := -Π (∇ x f ), A := (1 + â • a Π) -1 â • b et la fonctionnelle H(f ) := 1 2 f 2 + ε A f, f .
Si f est une solution de l' Éq. [START_REF] Blanchet | Hardy-Poincaré inequalities and applications to nonlinear diffusions[END_REF], alors

D(f -F ) := d dt H(f -F ) est donné par D(f ) := f, L f -ε A T Π f, f -ε A T (1 -Π) f, f + ε T A f, f + ε L f, (A + A * ) f .
Pour simplifier les notations, on remplace f par f -F de sorte que R d f dx dv = 0. La preuve des Théorèmes 1 et 2 consiste alors à montrer que D(f ) + λ H(f ) ≥ 0. Elle repose principalement sur deux estimations. D'une part, par l'inégalité de trou spectral, le terme

-ε A T Π f, f ≤ -ε Λ 1 + Λ Π f 2
contrôle les termes macroscopiques à l'ordre ε, c'est-à-dire proportionnels à Π f 2 . D'autre part, on remarque que

2 A f 2 + T A f 2 ≤ (1 -Π) f 2 . Le terme f, L f = -(1 -Π) f 2 permet
alors de contrôler tous les autres termes, et en particulier

(A T (1 -Π))f 2 que l'on évalue en considérant l'opérateur dual : si (A T (1 -Π)) * f = (â • a (1 -Π)) * g avec g = (1 + â • a Π) -1 f , alors u := ρ(g)/ρ F est donnée comme solution de l'équation ρ(f ) = ρ F u - 1 d ∇ x (m F ∇ x u) (2) avec m F (x) := R d |v| 2 F (x, v) dv, et il suffit alors d'évaluer (A T (1 -Π)) * f 2 grâce à (3)
. Ceci revient essentiellement à établir une estimation H 2 pour la solution de [START_REF] Dolbeault | Non linear diffusions as limit of kinetic equations with relaxation collision kernels[END_REF]. Dans le cas Maxwellien, il faut d'abord établir une inégalité de Poincaré améliorée : il existe une constante κ > 0 telle que, pour tout

u ∈ H 1 (e -V dx) vérifiant R d u e -V dx = 0, κ R d |∇ x V | 2 |u| 2 dx ≤ ∇ x u 2 0 , d'où l'on déduit d'abord que R d |∇ x V | 2 |∇ x u| 2 e -V dx est borné par f 2 , puis que ∇ 2
x u 2 0 est aussi contrôlé par f 2 . Dans le cas de la diffusion rapide, il suffit de multiplier (2) par V 1-1/β u et par V ∆u, puis d'effectuer quelques intégrations par parties, pour contrôler en définitive (A T (1 -Π)) * f 2 par f 2 , ce qui permet de conclure.

Introduction

A fundamental question which goes back to the early days of kinetic theory is to estimate the rate of relaxation of the solutions towards a global equilibrium. This is not an easy issue since the collision term responsible for the relaxation acts, in most of the cases, only on the velocity space. Rates of convergence have been investigated in many papers for the so-called homogeneous kinetic equations, but understanding how the transport operator interacts with collisions to produce a global relaxation is a different and much more recent story. The point is to understand how the spatial density evolves towards a density corresponding to a distribution function which is simultaneously in the kernels of the collision and transport operators, a property of the stationary solutions of many kinetic equations. There is an obvious link with diffusion or hydrodynamic limits. A key feature of our approach is that it clearly distinguishes the mechanisms of relaxation at microscopic level (convergence towards a local equilibrium, in velocity space) and macroscopic level (convergence of the spatial density to a steady state), where the rate is given by a spectral gap which has to do with the underlying diffusion equation for the spatial density. See [START_REF] Dolbeault | Hypocoercivity and stability for a class of kinetic models with mass conservation and a confining potential[END_REF] for more details.

First non constructive results were obtained by Ukai et al., see for instance [START_REF] Ukai | On the existence of global solutions of mixed problem for non-linear Boltzmann equation[END_REF]. Constructive methods inspired from hypoelliptic theory (see e.g. [START_REF] Hörmander | Hypoelliptic second order differential equations[END_REF]) were then brought into the field of kinetic theory by F.

Hérau and F. Nier, see for instance [START_REF] Hérau | Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a highdegree potential[END_REF] in case of the Vlasov-Fokker-Planck equation. In a recent paper, [START_REF] Hérau | Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation[END_REF], F. Hérau studied with such tools the case of an operator of zeroth order in the derivatives, which is known in the kinetic literature as the linear Boltzmann relaxation operator. Our approach is done in the spirit of [START_REF] Hérau | Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation[END_REF] but in a simplified framework for which the order of the operator plays no role. Moreover, explicit estimates on the relaxation rate easily follow, weaker assumption on the external potential than in [START_REF] Hérau | Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation[END_REF] are needed and the method applies to more general relaxation operators of which we shall give an example. This example is based on kinetic equations which have been studied in [START_REF] Dolbeault | Non linear diffusions as limit of kinetic equations with relaxation collision kernels[END_REF] and give equations of fast diffusion in the diffusion limit.

The hypoelliptic theory is mainly focused on the regularization properties of the evolution operator, but in some cases the hypoelliptic estimates also imply a result of relaxation to equilibrium. However both questions are independent and have to be distinguished. In the hypocoercivity approach, the purpose is centered on the asymptotic behavior and the quantification of the relaxation rates. More precisely our goal is to construct a Lyapunov functional, or generalized entropy, and establish an inequality relating the entropy and its time derivative along the flow defined by the evolution equation. To establish the inequality is then equivalent to prove an exponential rate. Such an approach has systematically been tackled by C. Villani, see [START_REF] Villani | Hypocoercive diffusion operators, Boll. Unione Mat[END_REF]11], and has been successfully applied to various models, see for instance [START_REF] Mouhot | Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus[END_REF]. It is also related to recent works on non-linear Boltzmann and Landau equations, see e.g. [START_REF] Guo | The Landau equation in a periodic box[END_REF]. In this note, we develop a new approach based on operators with less algebraic properties than the ones of the hypoelliptic theory, but which are better adapted to the micro-macro decomposition of the distribution function and give a much simpler insight of the mechanisms responsible of the relaxation at both levels. We illustrate our approach on two examples: the linear BGK and the linearized fast diffusion models. We refer the interested reader to a forthcoming paper, [START_REF] Dolbeault | Hypocoercivity and stability for a class of kinetic models with mass conservation and a confining potential[END_REF], in which the theory will be developed at a more general and abstract level.

Main results

Let V be a given external potential on R d , d ≥ 1, and consider the kinetic equation

∂ t f + T f = L f , f = f (t, x, v) , x ∈ R d , v ∈ R d , (1) 
where

T := v • ∇ x -∇ x V • ∇ v
is a transport operator, and the linear relaxation operator L is defined by

L f = Π f -f , Π f := ρ ρ F F (x, v) , ρ = ρ(f ) := R d f dv and ρ F = ρ(F )
for some function F (x, v) > 0 which only depends on |v| 2 /2 + V (x). On R d × R d ∋ (x, v), we consider the measure dµ(x, v) = F (x, v) -1 dx dv where F is a positive probability measure. Unless it is explicitly specified, the scalar product and the norm are the ones of L 2 (dµ): f, g = R d ×R d f g dµ and f 2 = f, f . Throughout this paper, Eq. ( 1) is supplemented with a nonnegative initial datum

f 0 ∈ L 2 (dµ) such that R d ×R d f 0 dx dv = 1.
We shall assume that a unique solution globally exists. This is granted under additional technical assumptions, see for instance [START_REF] Dolbeault | Non linear diffusions as limit of kinetic equations with relaxation collision kernels[END_REF]. The goal of this note is to state hypocoercivity results in the two following cases.

Maxwellian case

We assume that

F (x, v) := M (v) e -V (x) with M (v) := (2π) -d/2 e -|v| 2 /2 , where V (x) = C k (1 + |x| 2 ) k/2
for k > 1 and C k is appropriately chosen or, more generally, satisfies the following assumptions:

(H1) Regularity: V ∈ W 2,∞ loc (R d ). (H2) Normalization: R d e -V dx = 1. (H3) Spectral gap condition: there exists a positive constant Λ such that R d |u| 2 e -V dx ≤ Λ R d |∇ x u| 2 e -V dx
for any u ∈ H 1 (e -V dx) such that R d u e -V dx = 0. (H4) Pointwise condition 1: there exists c 0 > 0 and θ ∈ (0, 1) such that ∆V ≤

θ 2 |∇ x V (x)| 2 + c 0 ∀ x ∈ R d . (H5) Pointwise condition 2: there exists c 1 > 0 such that |∇ 2 x V (x)| ≤ c 1 (1 + |∇ x V (x)|) ∀ x ∈ R d . (H6) Growth condition: R d |∇ x V | 2 e -V dx < ∞.
Theorem 2.1 For any η > 0, there exists an explicit, positive constant λ = λ(η) such that, under the above assumptions, the solution of (1) satisfies:

∀ t ≥ 0 , f (t) -F 2 ≤ (1 + η) f 0 -F 2 e -λt .

Fast diffusion case

For some β > 0 to be specified later, we assume that

F (x, v) := ω 1 2 |v| 2 + V (x) -(k+1) , V (x) = 1 + |x| 2 β
where ω is a normalization constant chosen such that R d ×R d F dx dv = 1 and ρ F = ω 0 V d/2-k-1 for some ω 0 > 0. More general choices for V and corresponding assumptions can be found in [START_REF] Dolbeault | Hypocoercivity and stability for a class of kinetic models with mass conservation and a confining potential[END_REF].

Theorem 2.2 Let d ≥ 1, k > d/2 + 1.
There exists a constant β 0 > 1 such that, for any β ∈ (min{1, (d -4)/(2kd -2)}, β 0 ), there are two positive, explicit constants C and λ for which the solution of ( 1) satisfies:

∀ t ≥ 0 , f (t) -F 2 ≤ C f 0 -F 2 e -λt .

A Lyapunov functional

On L 2 (dµ), Π is the orthogonal projection onto the space of local equilibria. Let us define bf := Π (v f ) , af := b (T f ) , â f := -Π (∇ x f ) and

A := (1 + â • a Π) -1 â • b .
In the definition of A, we take the product coordinate by coordinate. These operators can be rewritten as

b f = F ρ F R d v f dv , a f = F ρ F   ∇ x • R d v ⊗ v f dv + ρ(f ) ∇ x V   , and â f = - F ρ F ∇ x ρ(f ) .
Let us also note that

A T = (1+â•a Π) -1 â•a and a Π f = F ρF mF d ∇ x ρ(f ) ρF where m F := R d |v| 2 F (•, v) dv = d R d |v i | 2 F (•, v) dv for any i = 1, 2. . . d. Define the functional H(f ) := 1 2 f 2 + ε A f, f .
The operator T is skew-symmetric on L 2 (dµ). If f is a solution of Eq. ( 1), then

d dt H(f -F ) = D(f -F ) with D(f ) := f, L f -ε A T Π f, f -ε A T (1 -Π) f, f + ε T A f, f + ε L f, (A + A * ) f .
The proof of Theorems 2.1 and 2.2 entirely relies on the following estimate with η = 2 ε/(1ε).

Proposition 3 Under the assumptions of Theorem 2.1 or 2.2, for any ε > 0 small enough, there exists an explicit constant λ = λ(ε) > 0 such that D(f -F ) + λ H(f -F ) ≤ 0 and lim inf ε→0 λ(ε)/ε > 0.

Proofs of Proposition 3

To simplify the computations, we replace f by f -F . Therefore, from now on we assume that 0 =

R d ×R d f dx dv = f, F . By definition of Π, R d (Π f -f ) dv = 0. We have obviously Lf, f ≤ -(1 - Π) f 2
, and using the identity ε x y ≤ c 2 x 2 + ε 2 2 c y 2 , we get the estimates

-ε A T (1 -Π) f, f = -ε A T (1 -Π) f, Π f ≤ c 2 2 A T (1 -Π) f 2 + ε 2 2 c 2 Π f 2 , ε T A f, f = ε T A f, (1 -Π) f ≤ ε 2 T A f 2 + ε 2 (1 -Π) f 2 , ε (A + A * ) L f, f ≤ ε (1 -Π) f 2 + ε A f 2 ,
for any c 2 > 0. Here we have used the identities A T (1 -Π) = Π A T (1 -Π) and T A = (1 -Π) T A, which are respectively consequences of the fact that the range of A is contained in Π L 2 (dµ) and that

T A f = v F ∇ x (ρ(Af )/ρ F ). We moreover observe that â • a Π f, f = 1 d R d ∇ x ρ(f ) ρF 2 m F dx. Let g = A f , u = ρ(g)/ρ F . An elementary computation shows that -∇ x R d v f dv = ρ F u -1 d ∇ x (m F ∇ x u
), from which one can deduce, after a few steps that we shall omit here, that A f 2 = R d |u| 2 ρ F dx and

T A f 2 = 1 d R d |∇ x u| 2 m F dx are such that 2 A f 2 + T A f 2 ≤ (1 -Π) f 2 .
We have proved that

D(f ) ≤ -1 - 5 2 ε (1 -Π) f 2 -ε A T Π f, f + c 2 2 A T (1 -Π) f 2 + ε 2 2 c 2 Π f 2 .
To complete the proof of Proposition 3, it remains to estimate from above -A T Π f, f and A T (1 -Π) f 2 . As for the second of these two terms, we actually estimate (A T (1 -Π)) * f 2 as follows. Using (A T (1 -Π)) * f = (â • a (1 -Π)) * g with g = (1 + â • a Π) -1 f , we first observe that

ρ(f ) = ρ F u - 1 d ∇ x (m F ∇ x u) (2) 
where u = ρ(g)/ρ F . Let q F := R d |v 1 | 4 F dv, u ij := ∂ 2 u/∂x i ∂x j . After some elementary but tedious computations, we also get

(A T (1 -Π)) * f 2 = 1 3 d i, j=1 R d (2 δ ij + 1) q F - 3 m 2 F d 2 ρ F δ ij u ii u jj + 2 (1 -δ ij ) q F u 2 ij dx (3) 
Case of Theorem 2.1. In the Maxwellian case, various simplifications occur. With ρ F = e -V = 1 d m F = q F , (2) becomes ρ(f ) = u e -V -∇ x e -V ∇ x u (4)

  1 dx dv où F est une mesure de probabilité strictement positive. Norme et produit scalaire seront par défaut ceux de L 2 (dµ). La donnée initiale f 0 ∈ L 2 (dµ) est normalisée par R d ×R d f 0 dx dv = 1, et la solution du problème de Cauchy est unique car T est antisymétrique et L est symétrique négatif.

Le premier cas d'application de notre méthode est le cas d'un équilibre Maxwellien :

  1 , ω et ω 0 sont des constantes de normalisation, positives. Des choix plus généraux de V ainsi que les hypothèses correspondantes seront donnés dans[START_REF] Dolbeault | Hypocoercivity and stability for a class of kinetic models with mass conservation and a confining potential[END_REF].

	Théorème 2 Soit d ≥ 1, k > d/2 + 1. Il existe une constante β 0 > 1 telle que, pour tout β ∈ (min{1, (d-
	4)/(2k -d -2)}, β 0 ), il existe deux constantes strictement positives C et λ, explicites, pour laquelle toute solution de (1) dans L 2 (dµ) vérifie :
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and it follows from (H3) that

On the other hand, from the above computation,

Let u 2 0 := R d |u| 2 e -V dx and W := |∇ x V |. By multiplying (4) by u, we get after an integration by parts that u 2 0 + ∇ x u 2 0 ≤ Π f 2 . By expanding the square in |∇ x (u e -V /2 )| 2 , one can prove using (H3) and (H4) that the following improved Poincaré inequality holds, with κ = (1θ)/(2 (2 + Λ c 0 )):

for any u ∈ H 1 (e -V dx) such that R d u e -V dx = 0. Multiply (4) by W 2 u and integrate by parts. By (H5), we get

On the one hand, by the Cauchy-Schwarz inequality, R d W u e -V dx ≤ W 0 u 0 =: a, and on the other hand,

Notice that W 0 is bounded by (H6). As for the other term of the r.h.s., we can simply write that [START_REF] Hérau | Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a highdegree potential[END_REF], this proves that, for some c 3 > 0,

By multiplying (4) by ∆u and integrating by parts, we get

, we have proved that

With c 2 = a ε, a > 1 2 (1 + 1/Λ) and ε > 0 small enough, λ 1 and λ 2 are positive and the result holds with λ = min{λ 1 , λ 2 }. The explicit expression of c 4 can easily be retraced in the above computations.

Case of Theorem 2.2. In the fast diffusion case, we only sketch the main steps of the proof. For p = 0, 1, 2, let w 2 p := ω 0 V p-q , where q

The proof in the Maxwellian case can be adapted as follows. Eq. ( 2) can be rewritten as

and (H3) is replaced by the Hardy-Poincaré inequality, see [START_REF] Blanchet | Hardy-Poincaré inequalities and applications to nonlinear diffusions[END_REF], u 2 0 ≤ Λ ∇ x u 2 1 for some Λ > 0, under the condition R d u w 2 0 dx = 0. This holds true if β ≥ 1. The fact that A T Π f, f ≥ Λ 1+Λ Π f 2 then follows. We also need the following Hardy-Poincaré inequality

which is responsible for the condition β < β 0 (δ), δ > 0. Observe that (7) multiplied by u gives, after an integration by parts, u 2 0 + (q -1) -1 ∇ x u 2 1 ≤ Π f 2 . By multiplying ( 7) by V α u with α := 1 -1/β or by V ∆u and integrating by parts, we find directly that ∇ 2

x u 2 2 is bounded by Π f 2 . Computations which are quite similar to the ones of the Maxwellian case then allow to conclude. More details will be given in [START_REF] Dolbeault | Hypocoercivity and stability for a class of kinetic models with mass conservation and a confining potential[END_REF].