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ABSTRACT
We propose a network characterization of combinatorial fitness land-
scapes by adapting the notion ofinherent networksproposed for
energy surfaces [5]. We use the well-known family ofNK land-
scapes as an example. In our case the inherent network is the graph
where the vertices are all the local maxima and edges mean basin
adjacency between two maxima. We exhaustively extract suchnet-
works on representative smallNK landscape instances, and show
that they are ‘small-worlds’. However, the maxima graphs are not
random, since their clustering coefficients are much largerthan
those of corresponding random graphs. Furthermore, the degree
distributions are close to exponential instead of Poissonian. We
also describe the nature of the basins of attraction and their rela-
tionship with the local maxima network.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence ]: Problem Solving, Control Methods,
and Search—Heuristic methods; G.2.2 [Discrete Mathematics]:
Graph Theory—Network problems

General Terms
Algorithms, Measurement, Performance

Keywords
Landscape Analysis, Network Analysis, Complex Networks, Local
Optima,NK Landscapes
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1. INTRODUCTION
A fitness landscape of a combinatorial problem can be seen as a

graph whose vertices are the possible configurations. If twocon-
figurations can be transformed into each other by a suitable opera-
tor move, then we can trace an edge between them. The resulting
graph, with an indication of the fitness at each vertex, is a rep-
resentation of the given problem fitness landscape. Doye [5,6]
has recently introduced a useful simplification of the fitness land-
scape graph for the energy landscapes of atomic clusters. The idea
consists in taking as vertices of the graph not all the possible con-
figurations, but only those that correspond to energy minima. For
atomic clusters these are well-known, at least for relatively small
assemblages. Two minima are considered connected, and thusan
edge is traced between them, if the energy barrier separating them
is sufficiently low. In this case there is a transition state,meaning
that the system can jump from one minimum to the other by ther-
mal fluctuations going through a saddle point in the energy hyper-
surface. The values of these activation energies are mostlyknown
experimentally or can be determined by simulation. In this way,
a network can be built which is called the “inherent structure” or
“inherent network” in [5]. We use a modification of this idea for
studying the well-knownNK combinatorial landscapes. In our
case, a vertex of the graph is a local maximum, and there is an edge
between two maxima if they lay on adjacent basins.

In the context of meta-heuristics, it is important to identify the
features of landscapes that would influence the effectiveness of
heuristic search. Such knowledge may be helpful for both predict-
ing the performance and improving the design of meta-heuristics.
Among the features of landscapes known to have a strong influence
on heuristic search, is the number and distribution of localoptima
in the search space. An interesting property of combinatorial land-
scapes, which has been observed in many different studies, is that
on average, local optima are very much closer to the global op-
timum than are randomly chosen points, and closer to each other
than random points would be. In other words, the local optimaare
not randomly distributed, rather they tend to be clustered in a ”cen-
tral massif” (or “big valley” if we are minimising). This globally
convex landscape structure has been observed in theNK family of
landscapes [11], and in many combinatorial optimisation problems,



such as the traveling salesman problem [2], graph bipartitioning
[13], and flowshop scheduling [16].

In this study we seek to provide fundamental new insights into
the structural organization of the local optima in combinatorial land-
scapes, particularly into the connectivity and characteristics of their
basins of attraction, usingNK landscapes as a case study. To
achieve this, we first map the landscape onto a network, and then
analyze the topology of this network for a number of smallNK
landscape instances for which complete networks can be obtained.
Our analysis is inspired, in particular, by the work of Doye [5, 6]
on energy landscapes, and in general, by the field of complex net-
works [14, 20, 21]. The study of complex networks has already
permeated the evolutionary computation field. Specifically, in the
study of scientific collaborations [3, 12], the structure ofa popu-
lation in cellular evolutionary algorithms [9, 10, 15], andthe evo-
lution of networks of cellular automata [19]. However, our study
is the first attempt, to our knowledge, of using network analysis
techniques in connection with the study of fitness landscapes and
problem difficulty in combinatorial optimization.

The next section introduces the study of complex networks, and
describes the main features ofsmall-worldandscale-freenetworks.
Section 3 describes how landscapes are mapped onto networks, and
includes the relevant definitions and algorithms. The empirical net-
work analysis of our selectedNK landscape instances is presented
in Section 4, whilst Section 5 gives our conclusions and ideas for
future work.

2. COMPLEX NETWORKS
The recent interest in the study of networks and networked sys-

tems was influenced by the seminal paper by Watts and Strogatz
[21], who showed that many real-world networks are neither com-
pletely ordered nor completely random, but rather exhibit important
properties of both. Some of these network properties can be quanti-
fied by simple statistics such as the clustering coefficientC, which
is a measure of local density, and the average shortest path length
l, which is a global measure of separation. It has been shown inre-
cent years that many social, biological, and man-made system show
what has been called asmall-worldtopology [21], in which nodes
are highly clustered yet the path length between them is small.

A second important aspect in the study of networks has been
the realization that in many real-world networks, the distribution
of the number of neighbours (the degree distribution) is typically
right-skewed with a ”heavy tail”, meaning that most of the nodes
have less-than-average degree whilst a small fractions of hubs have
a large number of connections. These qualitative description can
be described mathematically by a power-law [1], which has the
asymptotic formp(k) ∼ k−α. This means that the probability of
a randomly chosen point having a degreek decays like a power of
k, where the exponentα (typically in the range[2, 3]) determines
the rate of decay. A distinguishing feature of power-law distribu-
tions is that when plotted on a double logarithmic scale, a power-
law appears as a straight line with negative slopeα. This behav-
ior contrasts with a normal distribution which would curve sharply
on a log-log plot, such that the probability of a node having ade-
gree greater than a certain ”cutoff” value is nearly zero. The mean
would then trivially represent a characteristic scale for the network
degree distribution. Since networks with power-low degreedistri-
bution lack any such cutoff value, at least in theory, they are often
calledscale-freenetworks [20]. Examples of such scale-free net-
works are the world-wide-web, the internet, scientific collaboration
and citation networks, and biochemical networks.

3. LANDSCAPES AS NETWORKS

To model a physical energy landscape as a network, Doye [6]
needed to decide first on a definition both of a state of the system
and how two states were connected. The states and their connec-
tions will then provide the nodes and edges of the network. For sys-
tems with continuous degrees of freedom, the author achieved this
through the ‘inherent structure’ mapping [18]. In this mapping each
point in configuration space is associated with the minimum (or
‘inherent structure’) reached by following a steepest-descent path
from that point. This mapping divides configuration into basins of
attraction surrounding each minimum on the energy landscape.

We use a modification of this idea for theNK family of bi-
nary landscapes, which indeed can be applied to any combinato-
rial landscape. In our case, the vertexes of the graph are thelocal
maxima of the landscape, obtained exhaustively by running abest-
improvement local search algorithm (see Algorithm 1) from every
configuration of the search space. The edges in the network connect
local optima of adjacent basins of attraction. An illustration for a
model 2D landscape can be seen in Figure 1, which is inspired by a
similar figure appearing in [5, 6]. Here, we illustrate a network of
local maxima (instead of local minima). A more formal definition
of our inherent networks is given in Section 3.1. As it was thecase
in the study on physical energy landscapes [6], we do not consider
multiple edges, or weights in the edges. This may be a factor to
consider in future work.

      

Figure 1: A model of a 2D landscape (left), and a contour plot of
the local optima partition of the configuration space into basins
of attraction surrounding maxima and minima (right). A sim-
ple regular network of six local maxima can be observed.

Note that while a physical energy landscape is formally a con-
tinuous landscape, ours are strictly combinatorial, i.e. discrete and
finite. Moreover, the energy landscape of a stable atomic cluster,
crystal or molecule is relatively smooth and easy to search and has
been called a “funnel” landscape [5]. In contrast, inNK land-
scapes one can continuously vary the intrinsic landscape difficulty
by changing the value ofK. As a result, we shall see thatNK
landscapes show a number of different behaviors depending on K
for a givenN , and these different behaviors are reflected on their
inherent networks. Indeed,NK landscapes can be seen as analo-
gous to those of spin-glasses [11, 17]. In contrast to atomiccluster
energy landscapes, spin glass landscapes may show frustration, i.e.
configurations that must respect conflicting constraints, and solving
for the ground state of the system that is, the minimum energycon-
figuration is an NP-hard problem. Similar consequences are caused
by the introduction of epistatic interactions through the increase of
theK value inNK landscapes.

Below we present the relevant formal definitions and algorithms
to obtain our combinatorial analogous of an energy landscape in-
herent network.



3.1 Definitions and Algorithms
Definition : Fitness landscape.

A landscape is a triplet(S, V, f) whereS is a set of potential solu-
tions i.e. a search space,V : S −→ 2S , a neighborhood structure,
is a function that assigns to everys ∈ S a set of neighboursV (s),
andf : S −→ R is a fitness function that can be pictured as the
heightof the corresponding potential solutions.

In our study, the search space is composed by binary strings of
lengthN , therefore its size is2N . The neighborhood is defined by
the minimum possible move on a binary search space, that is, the
1-move or bit-flip operation. In consequence, for any given string
s of lengthN , the neighborhood size is|V (s)| = N . Notice that
in NK landscapes, two neighboring solutions never have the same
fitness value. Therefore, neutrality is not present. Landscapes with
neutrality will be considered in future work.

Definition: Local Optimum.
A local optimum is a solutions∗ such that∀s ∈ V (s∗), f(s) <
f(s∗).

TheLocalSearch algorithm to determine the local optima and
therefore define the basins of attraction, is given below:

Algorithm 1: LocalSearch
Choose initial solutions ∈ S
repeat

chooses
′

∈ V (s) such thatf(s
′

) = maxx∈V(s) f(x)

if f(s) < f(s
′

) then
s← s

′

end if
until s is a Local optimum

TheLocalSearch algorithm defines a mapping from the search
spaceS to the set of locally optimal solutionsS∗. We therefore
define a basin of attraction as follows:

Definition : Basin of attraction.
The basin of attraction of a local optimumi is the setbi = {s ∈
S | LocalSearch(s) = i}. The size of the basin of attraction of a
local optimai is the cardinality ofbi.

We then define the inherent network, or network of local optima
as:

Definition : Local optima network.
The local optima networkG = (S∗, E) is the graph where the
nodes are the local optima, and there is an edgeeij ∈ E between
two local optimai andj if there is at least a pair of direct neighbors
(1-bit apart)si andsj , such thatsi ∈ bi andsj ∈ bj . That is, if
there exists a pair of direct neighbors solutionssi andsj , one in
each basin (bi andbj)

4. EMPIRICAL NETWORK ANALYSIS

4.1 Experimental Setting
The NK family of landscapes [11] is a problem-independent

model for constructing multimodal landscapes that can gradually
be tuned from smooth to rugged. In the model,N refers to the
number of (binary) genes in the genotype (i.e. the string length)
andK to the number of genes that influence a particular gene. By
increasing the value ofK from 0 toN − 1, NK landscapes can be
tuned from smooth to rugged. Thek variables that form the context
of the fitness contribution of genesi can be chosen according to dif-
ferent models. The two most widely studied models are therandom
neighborhoodmodel, where thek variables are chosen randomly
according to a uniform distribution among then−1 variables other

thansi, and theadjacent neighborhoodmodel, in which thek vari-
ables that are closest tosi in a total orderings1, s2, . . . , sn (us-
ing periodic boundaries). No significant differences between the
two models were found in [11] in terms of global properties ofthe
respective families of landscapes, such as mean number of local
optima or autocorrelation length. Therefore, we explore here the
adjacent neighborhood model, leaving the random model for future
analysis.

In order to avoid sampling problems that could bias the results,
we used the largest values ofN that can still be analyzed exhaus-
tively with reasonable computational resources. We thus extracted
the local optima networks of landscape instances withN = 16, 18,
andK = 2, 4, 6, ..., N − 2, N − 1. For each pair ofN andK val-
ues, 30 instances were explored. Therefore, the networks statistics
reported below represent the average behaviour of 30 independent
instances.

4.2 General Network Statistics
Table 1 reports the average of the network properties measured

on NK landscapes forN = 16, 18 and all evenK values;K =
N − 1 is also given. Values are averages over 30 randomly gener-
ated landscapes.̄nv andn̄e are, respectively, the mean number of
vertices and the mean number of edges of the graph for a givenK
rounded to the next integer.̄C is the average of the mean clustering
coefficients1 over all the generated landscapes.Cr is the average
clustering coefficient of a random graph with the same numberof
vertices and mean degree.z̄ is the average of the mean degrees.l̄ is
the average of the mean path lengths over all landscape instances.
The last column contains the average degree assortativity coeffi-
cient ā, which measures whether nodes with similar degrees tend
to pair up with each other. The assortativity coefficient is computed
according to [14].

Notice that the mean number of vertexes (n̄v) confirms that the
number of local optima (and thus the search difficulty) increases
with the value ofK. Some other interesting inferences can be
drawn from these metrics. First of all, looking at thel̄ values one
can conclude that the maxima networks are small worlds for all val-
ues ofK since the growth of̄l is bounded by a functionO(log nv).
In a sense, this is not surprising as the whole configuration space
spans the binary hypercube{0, 1}N of degreeN with 2N vertices,
which has maximum distance (diameter)d = log2N , i.e. 16 and
18 for our studied instances. However, while the base configuration
space has constant degree for any node, the maxima network are
degree-inhomogeneous (see next section) and have clustering co-
efficients well above those of equivalent random graphs, showing
that there is local structure in the networks. For bothN = 16 and
18, the mean degreēz first increases withK and then goes down
again forK > 8. The assortativity coefficients are always very
small which means that there is almost no correlation between the
degrees of neighboring nodes. For easy energy landscapes, Doye
found that the networks were slightly disassortative [6].

4.3 Degree Distributions
The degree distribution functionp(k) of a graph represents the

probability that a randomly chosen node has degreek [14]. Ran-
dom graphs are characterized by ap(k) of Poissonian form, while

1The clustering coefficientCi of a nodei is defined asCi =
2Ei/ki(ki − 1), whereEi is the number of edges in the neigh-
borhood ofi. ThusCi measures the amount of “cliquishness” of
the neighborhood of nodei and it characterizes the extent to which
nodes adjacent to nodei are connected to each other. The cluster-
ing coefficient of the graph is simply the average over all nodes:
C = 1

N

∑N
i=1 Ci [14].



Table 1: Network properties of NK landscapes forN = 16, 18 and all evenK values;K = N − 1 is also given. Values are averages
over 30 randomly generated landscapes, standard deviations are shown as subscripts.nv and ne represent the number of vertexes
and edges (rounded to the next integer),̄C, the mean clustering coefficient, whilstCr is the clustering coefficient of a random graph
with the same number of vertexes and mean degree, which isCr ≃ z̄/n̄v . z̄ represent the mean degree,̄l the mean path length , and
ā the degree assortativity coefficient.

N = 16

K n̄v n̄e C̄ Cr z̄ l̄ ā

2 3315 261166 0.680.095 0.5070.1536 14.553.826 1.540.182 −0.00070.00591

4 17833 6, 3341646 0.660.036 0.4060.0615 70.486.615 1.600.062 −0.01620.00467

6 46029 26, 4142035 0.550.013 0.2500.0150 114.763.033 1.750.016 −0.02370.00283

8 89033 56, 0221951 0.440.008 0.1390.0061 124.521.800 1.880.008 −0.02190.00250

10 1, 47034 86, 4461766 0.360.006 0.0800.0023 117.621.137 2.000.009 −0.01700.00182

12 2, 25432 117, 0851111 0.300.003 0.0460.0009 103.910.695 2.190.012 −0.01220.00104

14 3, 26429 146, 3901025 0.260.002 0.0270.0003 89.700.349 2.470.009 −0.00920.00064

15 3, 86833 160, 690829 0.250.002 0.0210.0003 83.090.469 2.580.007 −0.00860.00059

N = 18

2 5025 478342 0.620.106 0.4140.1697 17.084.930 1.660.210 0.003900.00530

4 33072 17, 5764898 0.610.044 0.3320.0573 105.398.106 1.670.058 −0.01680.00495

6 99473 93, 0438588 0.510.016 0.1890.0115 187.074.650 1.820.012 −0.02790.00321

8 2, 09370 214, 8446793 0.410.007 0.0980.0038 205.292.615 1.920.006 −0.02630.00184

10 3, 61961 348, 7615275 0.330.004 0.0530.0011 192.761.150 2.050.009 −0.01990.00127

12 5, 65759 476, 6143416 0.270.002 0.0300.0005 168.501.003 2.290.012 −0.01410.00072

14 8, 35260 594, 9022459 0.230.001 0.0170.0002 142.460.652 2.560.007 −0.01020.00044

16 11, 79763 707, 3262296 0.210.001 0.0100.0001 119.920.368 2.720.003 −0.00800.00036

17 13, 79577 762, 1972299 0.200.001 0.0080.0001 110.510.377 2.790.005 −0.00720.00026
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Figure 2: Cumulative degree distributions for N = 16 and K = 4 (top), K = 10 (bottom). All 30 curves are plotted. Left: Log-log
plot. Right: Lin-log plot.

social and technological real networks often show long tails to the
right, i.e. there are nodes that have an unusually large number of
neighbors. Sometimes this behavior can be described by a power-
law, but often the distribution is less extreme and can be fitted by
a stretched exponential or by an exponentially truncated power-
law[14].

Figure 2 shows all the curves for 30 randomly generated land-
scapes forN = 16 andK = 4, 10, whilst figure 3 does the same
for N = 18. To smooth out fluctuations in the high degree region,
the cumulative degree distribution function is plotted, which is just
the probability that the degree is greater than or equal tok. The sin-

gle curves are shown rather than the average curve because the sum
of a sufficient number of independent random variables with arbi-
trary distributions, provided that the first few moments exist and are
finite, tends to distribute normally according to a general formula-
tion of the central limit theorem [7]. In other words, if the average
of the sum were plotted, the original shapes would essentially be
lost. The curves cannot be described by power-laws: this possibil-
ity is ruled out by the left parts of figs. 2, and 3 which are double
logarithmic plots. In log-log plots, power laws should appear as
straight lines, at least for a sizable part of abscissae range.

On the other hand, the right images in the same figures show that
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Figure 3: Cumulative degree distributions for N = 18 and K = 4 (top), K = 10 (bottom). All 30 curves are plotted. Left: Log-log
plot. Right: Lin-log plot.

the distributions can be fitted approximately by exponentials of the
type p(k) = (1/z)e−k/z wherez is the mean degree, as most
curves are approximately straight lines on these linear-log plots.
This is true for the larger part of the degree range. When we ap-
proach the finite degree cutoff the fit is obviously less good.Small
networks such as those withN = 16 and K = 4 show larger
fluctuations and their tails decay faster than exponentially. Two
particular examples with a medium value ofK (K = 8) are shown
in detail in fig. 4, together with an exponential fit. Table 2 gives the
parameters of the regression lines for allN andK values.

Table 2: Correlation coefficient (ρ̄), intercept (ᾱ) and slope (̄β)
and slope of the linear regression between the cumulative num-
ber of nodes and the degree of nodes :log(p(k)) = α + βk + ǫ.
The averages and standard deviations of 30 independent land-
scapes, are shown.

N = 16

K ρ̄ ᾱ β̄

2 −0.8160.340 4.050.717 −0.11090.0379

4 −0.9320.026 6.070.276 −0.02950.0026

6 −0.9670.009 7.090.105 −0.01780.0009

8 −0.9860.006 7.600.107 −0.01440.0007

10 −0.9890.004 8.040.125 −0.01460.0008

12 −0.9900.004 8.510.156 −0.01700.0010

14 −0.9920.003 8.920.121 −0.02020.0010

15 −0.9910.004 9.110.144 −0.02200.0011

N = 18

2 −0.8230.343 4.570.865 −0.10880.0325

4 −0.9510.025 6.710.225 −0.01980.0021

6 −0.9820.007 7.740.107 −0.00980.0005

8 −0.9910.004 8.280.096 −0.00760.0003

10 −0.9940.003 8.740.119 −0.00760.0004

12 −0.9950.003 9.190.161 −0.00880.0005

14 −0.9950.003 9.650.134 −0.01100.0005

16 −0.9940.003 10.10.173 −0.01390.0008

17 −0.9940.005 10.20.207 −0.01510.0008
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Figure 4: Cumulative degree distribution (with regressionline)
of two representative instances withK = 8, N = 16 (top) and
N = 18 (bottom).

If we compare these results with Doye’s [5, 6] the most impor-
tant difference is that we do not observe power-law distributions.
Indeed, power-law degree distributions of the inherent energy land-
scape networks point to the “easiness” of those landscapes:due to
the presence of highly connected nodes, which are also amongthe
fittest, a simple gradient-descent would bring a searcher down to
a local energy minimum, often the global one, starting anywhere
in the configuration space. In other words, there exist the “funnel”



effect described by Doye [5]. In contrast,NK landscapes have
tunable difficulty. How can random networks with exponential de-
gree distributions be obtained? One way is the following: ineach
time step, just add a new node, and add a new link between two
randomly chosen nodes, including the new one. Iterating this dy-
namical process produces graphs with an exponential distribution
of the node degrees [4]. ButNK landscapes are static and thus it is
difficult to see how this process could be implemented. However,
the following qualitative explanation might help. ImaginethatK is
increased from 2 toN − 1 in single steps. Then we could have the
image of the previous landscape increasing its size and deforming
itself whenK goes from its current value toK + 1. The new max-
ima that appear could be considered as if they were added dynam-
ically (of course some previous optima might disappear as well).
Edges in the new landscape are selected essentially randomly, with
more probability of selecting an already existing node. Thus, with
this imaginary mechanism a distribution close to exponential would
be obtained.

Thus, as theNK landscape difficulty varies smoothly whenK
is increased, the degree distribution of the correspondingmaxima
networks remains essentially exponential. We do not observe scale-
free distributions for the easy landscapes as in the energy landscape
case [5]. This is understandable: standard energy landscapes in
molecular chemistry and crystal physics do correspond to thermo-
dynamically stable states which are naturally smooth and easy to
reach when the system is forming or it is slightly perturbed.In
contrast,NK landscape are synthetic and do not correspond to any
physical principle in their construction. The only physical systems
that resembleNK landscapes are spin glasses, in which conflicting
energy minimization requirements lead to frustration and to land-
scape ruggedness [11, 17]. However, disordered condensed matter
systems similar to spin glasses are only obtained in particular situ-
ations, for instance by fast cooling [17].

4.4 Basins of Attraction
Besides the maxima network, it is useful to describe the asso-

ciated basins of attraction as these play a key role in searchal-
gorithms. Furthermore, some characteristics of the basinscan be
related to the network features described above. The notionof
the basin of attraction of a local maximum has been presentedin
sect. 3.1. We have exhaustively computed the size and numberof
all the basins of attraction forN = 16 andN = 18 and for all even
K values plusK = N − 1. In this section, we analyze the basins
of attraction from several points of view as it is described below.

4.4.1 Global optimum basin size vs.K

In Figure 5 we plot the average size of the basin corresponding
to the global maximum forN = 16 andN = 18, and all values
of K studied. The trend is clear: the basin shrinks very quickly
with increasingK. This confirms that the higher theK value, the
more difficult for an stochastic search algorithm to locate the basin
of attraction of the global optimum

4.4.2 Number of basins of a given size
Figure 6 shows the cumulative distribution of the number of

basins of a given size (with regression line) for two representative
instances withK = 4 andN = 16 (top) andN = 18. Table 3
shows the average (of 30 independent landscapes) correlation co-
efficients and linear regression coefficients (intercept (ᾱ) and slope
(β̄)) between the number of nodes and the basin sizes. Notice that
distribution decays exponentially or faster for the lowerK and it
is closer to exponential for the higherK. This observation is rele-
vant to theoretical studies that estimate the size of attraction basins
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Figure 6: Cumulative distribution of the number of basins of a
given size with regression line. Two Representative landscapes
are visualized with N=16 (top) and N=18 (bottom) and K=4. A
lin-log scale is used.

(see for example [8]). These studies often assume that the basin
sizes are uniformly distributed. From the slopesβ̄ of the regression
lines (table 3) one can see that high values ofK give rise to steeper
distributions (higherβ̄ values). This indicates that there are less
basins of large size for large values ofK. In consequence, basins
are broader for low values ofK, which is consistent with the fact
that those landscapes are smoother.

4.4.3 Fitness of local optima vs. their basin sizes
The scatter-plots in figure 7 illustrate the correlation between the

basin sizes of local maxima (in logarithmic scale) and theirfitness
values. Two representative instances forN = 18 andK = 4,8 are
shown. Table 4 shows the averages (of 30 independent landscapes)
of the correlation coefficient, and the linear regression coefficients



Table 3: Correlation coefficient (ρ̄), and linear regression co-
efficients (intercept (̄α) and slope (̄β)) of the relationship be-
tween the basin size of optima and the cumulative number of
nodes of a given (basin) size ( in logarithmic scale:log(p(s)) =
α+βs+ ǫ). The average and standard deviation values over 30
instances, are shown.

N = 16

K ρ̄ ᾱ β̄

2 −0.9440.0454 2.890.673 −0.00030.0002

4 −0.9590.0310 4.190.554 −0.00140.0006

6 −0.9670.0280 5.090.504 −0.00360.0010

8 −0.9820.0116 5.970.321 −0.00800.0013

10 −0.9850.0161 6.740.392 −0.01630.0025

12 −0.9900.0088 7.470.346 −0.03040.0042

14 −0.9940.0059 8.080.241 −0.05080.0048

15 −0.9950.0044 8.370.240 −0.06350.0058

N = 18

2 −0.9590.0257 3.180.696 −0.00010.0001

4 −0.9600.0409 4.570.617 −0.00050.0002

6 −0.9670.0283 5.500.520 −0.00150.0004

8 −0.9770.0238 6.440.485 −0.00370.0007

10 −0.9850.0141 7.240.372 −0.00770.0011

12 −0.9890.0129 7.980.370 −0.01500.0019

14 −0.9930.0072 8.690.276 −0.02720.0024

16 −0.9950.0056 9.330.249 −0.04500.0036

17 −0.9920.0113 9.490.386 −0.05440.0058
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Figure 7: Correlation between the fitness of local optima
and their corresponding basin sizes, for two representative in-
stances withN = 18, K = 4 (top) and K = 8 (bottom).

between these two metrics (maxima fitness and their basin sizes).
All the studied landscapes forN = 16 and 18, are reported. Notice
that, there is a clear positive correlation between the fitness values
of maxima and their basins’ sizes. In other words, the higherthe
peak the wider tend to be its basin of attraction. Therefore,on
average, with a hill-climbing algorithm, the global optimum would
be easier to find than any other local optimum. This may seem

Table 4: Correlation coefficient (ρ̄), and linear regression coef-
ficients (intercept (ᾱ) and slope (̄β)) of the relationship between
the fitness of optima and their basin size (in logarithmic scale:
log(s) = α + βf + ǫ). The average and standard deviation
values over 30 instances, are shown

N = 16

K ρ̄ ᾱ β̄

2 0.8320.0879 −15.4765.9401 33.0668.9252

4 0.8420.0259 −13.0351.9907 27.0942.8611

6 0.8520.0180 −12.9770.9921 26.0611.4908

8 0.8600.0088 −12.5700.3769 24.8800.5725

10 0.8500.0050 −11.9540.3501 23.5610.5421

12 0.8330.0065 −11.4850.2993 22.5190.4773

14 0.8160.0047 −11.2610.2008 21.8640.3256

15 0.8120.0044 −11.3520.2109 21.8760.3298

N = 18

2 0.8390.0680 −16.5856.0606 35.9258.6640

4 0.8420.0257 −14.4582.1746 30.1743.1520

6 0.8520.0140 −14.5420.9596 29.2191.4147

8 0.8670.0066 −14.5150.3750 28.5380.5988

10 0.8660.0038 −13.9140.3068 27.2090.4621

12 0.8540.0030 −13.1800.1700 25.7510.2804

14 0.8360.0027 −12.6020.1399 24.5530.2214

16 0.8220.0022 −12.5020.1039 24.1330.1633

17 0.8170.0027 −12.5830.1278 24.1430.2066

surprising. But, we have to keep in mind that as the number of local
optima increases (with increasingK), the global optimum basin
is more difficult to reach by an stochastic local search algorithm
(see figure 5). This observation offers a mental picture ofNK
landscapes: we can consider the landscape as composed of a large
number of mountains (each corresponding to a basin of attraction),
and those mountains are wider the taller the hilltops. Moreover, the
size of a mountain basin grows exponentially with its hight.

4.4.4 Basins sizes of local optima vs. their degrees
The scatter plots in figure 8 illustrate the correlation between

basin sizes of maxima and their degrees. Representative instances
with N = 18, andK = 4, 8, are illustrated. There is a clear pos-
itive correlation between the degree and the basin sizes of maxima
in the network. This observation suggests that landscapes with low
K values can be searched more effectively since a given config-
uration has many neighbors belonging to the same large basinof
attraction. It is also confirmed that the basins for lowK are much
larger than those for highK, not only the basin corresponding to
the global maximum.

5. CONCLUSIONS
We have proposed a new characterization of combinatorial fit-

ness landscapes using the well-known family ofNK landscapes as
an example. We have used an extension of the concept of inher-
ent networks proposed for energy surfaces [5] in order to abstract
and simplify the landscape description. In our case the inherent
network is the graph where the vertices are all the local maxima
and edges mean basin adjacency between two maxima. We have
exhaustively obtained these graphs forN = 16 andN = 18, and
for all even values ofK, plusK = N − 1. The maxima graphs
are small worlds since the average path lengths are short andscale
logarithmically in the size of the graphs. However, the maxima
graphs are not random. This is shown by their clustering coeffi-
cients, which are much larger than those of corresponding random
graphs and also by their degree distribution functions, which are not
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Figure 8: Correlation between the degree of local optima
and their corresponding basin sizes, for two representative in-
stances with withN = 18, K = 4 (top) and K = 8 (bottom).

Poissonian but rather exponential. The construction of themaxima
networks requires the determination of the basins of attraction of
the corresponding landscapes. We have thus described the nature
of the basins and their relationship with the local maxima network.
We have found that the size of the basin corresponding to the global
maximum becomes smaller with increasingK. The distribution of
the basin sizes is approximately exponential for allN andK, but
the basin sizes are larger for lowK, another indirect indication of
the increasing randomness and difficulty of the landscapes when
K becomes large. Finally, there is a strong positive correlation be-
tween the basin size of a maxima and their degree, which confirms
that the synthetic view provided by the maxima graph is a useful
one.

This study represents our first attempt towards a topological and
statistical characterization of easy and hard combinatorial land-
scapes. Much remains to be done. First of all, the results found
should be confirmed for larger instances ofNK landscapes. This
will require good sampling techniques, or theoretical studies since
exhaustive sampling becomes quickly impractical. Other landscape
types should also be examined, such as those containing neutral-
ity, which are very common in real-world applications. Workis in
progress for neutral versions ofNK landscapes. Finally, the land-
scape statistical characterization is only a step toward implement-
ing good methods for searching it. We thus hope that our results
will help in designing or estimating efficient search techniques and
operators.
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