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ABSTRACT

We propose a network characterization of combinatoriatfisiand-
scapes by adapting the notion ioherent networkgroposed for
energy surfaces[l[S]. We use the well-known familyéf< land-
scapes as an example. In our case the inherent network isaple g
where the vertices are all the local maxima and edges meam bas
adjacency between two maxima. We exhaustively extract sath
works on representative small K landscape instances, and show
that they are ‘small-worlds’. However, the maxima graples raot
random, since their clustering coefficients are much latgan
those of corresponding random graphs. Furthermore, theedeg
distributions are close to exponential instead of PoissoniWe
also describe the nature of the basins of attraction and téki-
tionship with the local maxima network.

Categories and Subject Descriptors

1.2.8 [Artificial Intelligence ]: Problem Solving, Control Methods,
and Search-Heuristic methodsG.2.2 Discrete Mathematicg:
Graph Theory—Network problems

General Terms
Algorithms, Measurement, Performance

Keywords

Landscape Analysis, Network Analysis, Complex Networks;dl
Optima, N K Landscapes
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1. INTRODUCTION

A fitness landscape of a combinatorial problem can be seen as a
graph whose vertices are the possible configurations. Ifdwoe
figurations can be transformed into each other by a suitgisess
tor move, then we can trace an edge between them. The resultin
graph, with an indication of the fitness at each vertex, isp re
resentation of the given problem fitness landscape. Dﬂy 1[5,
has recently introduced a useful simplification of the fitnksd-
scape graph for the energy landscapes of atomic clusteesidéh
consists in taking as vertices of the graph not all the ptessitn-
figurations, but only those that correspond to energy miniFa
atomic clusters these are well-known, at least for relbtigenall
assemblages. Two minima are considered connected, anarhus
edge is traced between them, if the energy barrier sepgrétam
is sufficiently low. In this case there is a transition stateaning
that the system can jump from one minimum to the other by ther-
mal fluctuations going through a saddle point in the energehy
surface. The values of these activation energies are mkisblyn
experimentally or can be determined by simulation. In thigw
a network can be built which is called the “inherent struetwr
“inherent network” in [b]. We use a modification of this idear f
studying the well-knownN K combinatorial landscapes. In our
case, a vertex of the graph is a local maximum, and there idg® e
between two maxima if they lay on adjacent basins.

In the context of meta-heuristics, it is important to idgnthe
features of landscapes that would influence the effectaemé
heuristic search. Such knowledge may be helpful for botdipte
ing the performance and improving the design of meta-hgécsis
Among the features of landscapes known to have a strong mtiue
on heuristic search, is the number and distribution of logaima
in the search space. An interesting property of combirattand-
scapes, which has been observed in many different studidsat
on average, local optima are very much closer to the global op
timum than are randomly chosen points, and closer to eadr oth
than random points would be. In other words, the local optnga
not randomly distributed, rather they tend to be clustenea’cen-
tral massif”’ (or “big valley” if we are minimising). This ghmally
convex landscape structure has been observed iV fkidfamily of
landscapeg [11], and in many combinatorial optimisati@bjams,



such as the traveling salesman probleﬂn [2], graph bipamtity
[E], and flowshop schedulinﬂm].

In this study we seek to provide fundamental new insights int
the structural organization of the local optima in combamit land-
scapes, particularly into the connectivity and charasties of their
basins of attraction, usingV K landscapes as a case study. To
achieve this, we first map the landscape onto a network, amd th
analyze the topology of this network for a number of sl
landscape instances for which complete networks can bénebta
Our analysis is inspired, in particular, by the work of Dofe[§]
on energy landscapes, and in general, by the field of com@ex n
works ,,@1]. The study of complex networks has already
permeated the evolutionary computation field. Specificatlyhe
study of scientific collaboration [:Ellz the structureagbopu-
lation in cellular evolutionary algorithm [Ellm 15], atitk evo-
lution of networks of cellular automatq [19]. However, otudy
is the first attempt, to our knowledge, of using network asialy
techniques in connection with the study of fithess landssapel
problem difficulty in combinatorial optimization.

The next section introduces the study of complex netwonkg, a
describes the main featuressmhall-worldandscale-freenetworks.
Section B describes how landscapes are mapped onto nepandks
includes the relevant definitions and algorithms. The eicgdinet-
work analysis of our selected K landscape instances is presented
in Sectiorﬁl, whilst Sectioﬂ 5 gives our conclusions andddea
future work.

2. COMPLEX NETWORKS

The recent interest in the study of networks and networked sy

tems was influenced by the seminal paper by Watts and Strogatz

[@], who showed that many real-world networks are neittoenc
pletely ordered nor completely random, but rather exhibjiartant
properties of both. Some of these network properties camiastig
fied by simple statistics such as the clustering coeffidignivhich
is a measure of local density, and the average shortest gagthl
I, which is a global measure of separation. It has been showaz in
cent years that many social, biological, and man-made rsystew
what has been calledsanall-worldtopology ], in which nodes
are highly clustered yet the path length between them islsmal

To model a physical energy landscape as a network, Dﬂye [6]
needed to decide first on a definition both of a state of theesyst
and how two states were connected. The states and their@onne
tions will then provide the nodes and edges of the networksiFe
tems with continuous degrees of freedom, the author adthithis
through the ‘inherent structure’ mapping|[18]. In this maggpeach
point in configuration space is associated with the minimem (
‘inherent structure’) reached by following a steepestedas path
from that point. This mapping divides configuration into inaf
attraction surrounding each minimum on the energy landscap

We use a modification of this idea for ti€ K family of bi-
nary landscapes, which indeed can be applied to any conabinat
rial landscape. In our case, the vertexes of the graph aredché
maxima of the landscape, obtained exhaustively by runninesé
improvement local search algorithm (see Algorithm 1) frorarg
configuration of the search space. The edges in the netwarieco
local optima of adjacent basins of attraction. An illustratfor a
model 2D landscape can be seenin Figﬂ;re 1, whichis inspired b
similar figure appearing w[[.ﬂ 6]. Here, we illustrate a natkvof
local maxima (instead of local minima). A more formal defiit
of our inherent networks is given in Sectipn|3.1. As it wasdase
in the study on physical energy landscapgs [6], we do notidens
multiple edges, or weights in the edges. This may be a faotor t
consider in future work.
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Figure 1: Amodel of a 2D landscape (left), and a contour plotb
the local optima partition of the configuration space into bains

A second important aspect in the study of networks has been of attraction surrounding maxima and minima (right). A sim-

the realization that in many real-world networks, the dstiion
of the number of neighbours (the degree distribution) isciity
right-skewed with a "heavy tail”, meaning that most of thales
have less-than-average degree whilst a small fractionslzdf have
a large number of connections. These qualitative desorigtan
be described mathematically by a power-lgw [1], which has th
asymptotic formp(k) ~ k~<. This means that the probability of
a randomly chosen point having a degkedecays like a power of
k, where the exponent (typically in the rangg2, 3]) determines
the rate of decay. A distinguishing feature of power-lavtriis-
tions is that when plotted on a double logarithmic scale, \aguo
law appears as a straight line with negative slopeThis behav-
ior contrasts with a normal distribution which would cunreagply
on a log-log plot, such that the probability of a node havirdga
gree greater than a certain "cutoff” value is nearly zeroe ean
would then trivially represent a characteristic scale far metwork
degree distribution. Since networks with power-low degifiseri-
bution lack any such cutoff value, at least in theory, theyaften
called scale-freenetworks ]. Examples of such scale-free net-
works are the world-wide-web, the internet, scientificabbiration
and citation networks, and biochemical networks.

3. LANDSCAPES AS NETWORKS

ple regular network of six local maxima can be observed.

Note that while a physical energy landscape is formally & con
tinuous landscape, ours are strictly combinatorial, iiscréte and
finite. Moreover, the energy landscape of a stable atomistetu
crystal or molecule is relatively smooth and easy to seandhhas
been called a “funnel” landscapg| [5]. In contrast,NiK land-
scapes one can continuously vary the intrinsic landscdfieuttly
by changing the value oK. As a result, we shall see thatK
landscapes show a number of different behaviors dependirig o
for a given N, and these different behaviors are reflected on their
inherent networks. Indeedy K landscapes can be seen as analo-
gous to those of spin-glass[ , 17]. In contrast to ataiu&ter
energy landscapes, spin glass landscapes may show fiurstiat.
configurations that must respect conflicting constraintd,solving
for the ground state of the system that is, the minimum eneogy
figuration is an NP-hard problem. Similar consequencesarsed
by the introduction of epistatic interactions through therease of
the K value in N K landscapes.

Below we present the relevant formal definitions and alpori
to obtain our combinatorial analogous of an energy landsdap
herent network.



3.1 Definitions and Algorithms thans;, and theadjacent neighborhoothodel, in which the vari-

Definition : Fitness landscape. ables that are closest tg in a total orderingsi, s2, ..., s, (us-
A landscape is a tripletS, V, f) wheresS is a set of potential solu-  ing periodic boundaries)._No significant differences beméhe
tions i.e. a search spadg,: S — 2°, a neighborhood structure, W0 models were found i [}1] in terms of global propertiestaf
is a function that assigns to evesye S a set of neighbour¥ (s), respective families of landscapes, such as mean numbecalf lo
andf : S — Ris a fitness function that can be pictured as the Optima or autocorrelation length. Therefore, we explorefiae
heightof the corresponding potential solutions. adjacent neighborhood model, leaving the random modetaré

In our study, the search space is composed by binary strings o analysis. ) _ _
length N, therefore its size i8”. The neighborhood is defined by In order to avoid sampling problems that could bias the tesul
the minimum possible move on a binary search space, thatds, t We used the largest values df that can still be analyzed exhaus-
1-move or bit-flip operation. In consequence, for any giveing tively with reasonable computational resources. We thtimeted

s of length N, the neighborhood size |¥(s)| = N. Notice that the local optima networks of landscape instances Witk 16, 18,
in NK landscapes, two neighboring solutions never have the same@ndK = 2,4,6, ..., N — 2, N — 1. For each pair ofV and K val-

fitness value. Therefore, neutrality is not present. Lampss with ues, 30 instances were explored. Therefore, the netwaatkiststs
neutrality will be considered in future work. reported below represent the average behaviour of 30 indiepé
Definition: Local Optimum. Instances.
A local optimum is a solutiors™ such thatvs € V(s*), < ..
ey T s € V(. £(s) 4.2 General Network Statistics
The Local Search algorithm to determine the local optima and Tablel]. reports the average of the network properties medsur
therefore define the basins of attraction, is given below: on NK landscapes foN = 16,18 and all evenk values;K =

N — 1is also given. Values are averages over 30 randomly gener-
ated landscapesi, andn. are, respectively, the mean number of

Algorithm 1: Local Search vertices and the mean number of edges of the graph for a given
Choose initial solutios € S rounded to the next integef! is the average of the mean clustering
repeat coefficient$ over all the generated landscap&s, is the average
chooses’ € V (s) such thatf(s/) = maz,ey(s) () clus_tering coefficient of a _random graph with the same nu[pber
if f(s) < f(s/) then vertices and mean degreeis the average of the mean degrdas.
y the average of the mean path lengths over all landscapanaesta
enZ; s The last column contains the average degree assortativéific

cienta, which measures whether nodes with similar degrees tend
to pair up with each other. The assortativity coefficienosputed
according to [24].

The LocalSearch algorithm defines a mapping from the search Notice that the mean number of vertexas X confirms that the

until s is a Local optimum

spaceS to the set of locally optimal solutionS*. We therefore number of local optima (and thus the search difficulty) iases

define a basin of attraction as follows: with the value of K. Some other interesting inferences can be
Definition : Basin of attraction. drawn from these metrics. First of all, looking at thealues one

The basin of attraction of a local optimuiris the set; = {s € can conclude that the maxima networks are small worlds foaél

S | LocalSearch(s) = i}. The size of the basin of attraction of a  ues ofK since the growth of is bounded by a functio®(log n.,).

local optimai is the cardinality ob;. In a sense, this is not surprising as the whole configuratiaces
We then define the inherent network, or network of local optim  spans the binary hypercule, 1} of degreeV with 2V vertices,

as: which has maximum distance (diametér)= log2", i.e. 16 and
Definition : Local optima network. 18 for our studied instances. However, while the base corafigun

The local optima networlG = (S*, E) is the graph where the  space has constant degree for any node, the maxima netweork ar
nodes are the local optima, and there is an edgec E between degree-inhomogeneous (see next section) and have ahgsteri
two local optimai andj if there is at least a pair of direct neighbors  efficients well above those of equivalent random graphswiimp
(1-bit apart)s; ands;, such thats; € b; ands; € b;. That is, if that there is local structure in the networks. For bdth= 16 and

there exists a pair of direct neighbors solutiesand s;, one in 18, the mean degreefirst increases with' and then goes down

each basiny; andb;) again for K > 8. The assortativity coefficients are always very
small which means that there is almost no correlation beiviee

4. EMPIRICAL NETWORK ANALYSIS degrees of neighboring nodes. For easy energy landscapgs, D

found that the networks were slightly disassortatiﬂs [6].

4.1 Experimental Setting

The NK family of Iandscapesml] is a problem-independent 4.3 Degree Distributions

model for constructing multimodal landscapes that can gty The degree distribution function(k) of a graph represents the
be tuned from smooth to rugged. In the modal,refers to the ~ Probability that a randomly chosen node has dedréd]. Ran-
number of (binary) genes in the genotype (i.e. the stringtten dom graphs are characterized by (&) of Poissonian form, while

and K to the number of genes that influence a particular gene. By 7

increasing the value ok from 0 to V -1, NK landscapes can be 2, ki (ks — 1), where B, is the number of edges in the neigh-

tuned from smooth to rugged. Thevariables that form the context  ,5/\q0d ofi. ThusC; measures the amount of “cliquishness’ of
of the fitness contribution of gene can be chosen according to dif-  the neighborhood of nodieand it characterizes the extent to which

ferent models. The two most widely studied models areahdom nodes adjacent to nodeare connected to each other. The cluster-
neighborhoodmodel, where thé: variables are chosen randomly ing coefficient of the graph is simply the average over allesod

according to a uniform distribution among the- 1 variables other C=+3N G [@].

The clustering coefficienC; of a nodei is defined asC; =



Table 1: Network properties of N K landscapes forN = 16, 18 and all even K values; K = N — 1 is also given. Values are averages
over 30 randomly generated landscapes, standard deviatisrare shown as subscriptsn, and n. represent the number of vertexes
and edges (rounded to the next integer), the mean clustering coefficient, whilsC,. is the clustering coefficient of a random graph
with the same number of vertexes and mean degree, which @, ~ z/n,. z represent the mean degred, the mean path length , and

a the degree assortativity coefficient.

N =16
K Ty Ne C C z l a
2 3315 261166 0.680.005 | 0.5070.1536 | 14.553.826 | 1.540.182 | —0.00070.00591
4 17833 6, 3341646 0.660.036 | 0.4060.0615 | 70.486.615 | 1.600.062 | —0.01620.00467

6 46029 26,4142035 | 0.550.013 | 0.2500.0150 | 114.763.033 | 1.750.016 | —0.02370.00283
8 89033 56,0221951 | 0.440.008 | 0.1390.0061 | 124.521.800 | 1.880.008 | —0.02190.00250
10| 1,47034 | 86,4461766 | 0.360.006 | 0.0800.0023 | 117.621.137 | 2.000.009 | —0.01700.00182
12 | 2,25432 117,0851111 | 0.300.003 | 0.0460.0000 | 103.910.695 | 2.190.012 | —0.0122¢.00104
14 | 3,26429 | 146,3901025 | 0.260.002 | 0.0270.0003 | 89.700.349 | 2.470.000 | —0.00920.00064
15| 3,86833 160, 690829 | 0.250.002 | 0.0210.0003 | 83.090.469 | 2.580.007 | —0.00860.00059

N =18

2 5025 478342 0.620.106 | 0.4140.1697 | 17.084.930 | 1.660.210 | 0.003900.00530
4 33072 17,5764898 | 0.610.044 | 0.3320.0573 | 105.398.106 | 1.670.058 | —0.01680.00495
6 99473 93,0438588 | 0.510.016 | 0.1890.0115 | 187.074.650 | 1.820.012 | —0.02790.00321
8 | 2,09370 | 214,8446793 | 0.410.007 | 0.0980.0038 | 205.292.615 | 1.920.006 | —0.02630.00184
10 | 3,619¢1 | 348,761s5275 | 0.330.004 | 0.0530.0011 | 192.761.150 | 2.050.009 | —0.01990.00127
12| 5,65759 | 476,6143416 | 0.270.002 | 0.0300.0005 | 168.501.003 | 2.290.012 | —0.01410.00072
14| 8,35260 | 594,9022459 | 0.230.001 | 0.0170.0002 | 142.460.652 | 2.560.007 | —0.01020.00044
16 | 11,797¢3 | 707,3262296 | 0.210.001 | 0.0100.0001 | 119.920.368 | 2.720.003 | —0.00800.00036
17 | 13,79577 | 762,1972299 | 0.200.001 | 0.0080.0001 | 110.510.377 | 2.790.005 | —0.00720.00026
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Figure 2: Cumulative degree distributions for N = 16 and K = 4 (top), K = 10 (bottom). All 30 curves are plotted. Left: Log-log

plot. Right: Lin-log plot.

social and technological real networks often show long tiailthe
right, i.e. there are nodes that have an unusually large st
neighbors. Sometimes this behavior can be described by arpow
law, but often the distribution is less extreme and can bedfikty

a stretched exponential or by an exponentially truncateslepo
law[[L4].

gle curves are shown rather than the average curve becausernth
of a sufficient number of independent random variables witti a
trary distributions, provided that the first few momentseand are
finite, tends to distribute normally according to a genevaifula-
tion of the central limit theorenﬂ7]. In other words, if theeslage
of the sum were plotted, the original shapes would essénbal

Figure|} shows all the curves for 30 randomly generated land- lost. The curves cannot be described by power-laws: thisilpibs

scapes folNV = 16 and K = 4, 10, whilst figure I}S does the same

ity is ruled out by the left parts of figﬂ 2, aﬂi 3 which are deub

for N = 18. To smooth out fluctuations in the high degree region, logarithmic plots. In log-log plots, power laws should appas

the cumulative degree distribution function is plottedjaitis just
the probability that the degree is greater than or equil the sin-

straight lines, at least for a sizable part of abscissaestang
On the other hand, the right images in the same figures shaw tha
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Figure 3: Cumulative degree distributions for N = 18 and K = 4 (top), K = 10 (bottom). All 30 curves are plotted. Left: Log-log

plot. Right: Lin-log plot.

the distributions can be fitted approximately by exponénti&ithe
type p(k) (1/2)e~*/* where z is the mean degree, as most
curves are approximately straight lines on these lineguplots.
This is true for the larger part of the degree range. When we ap
proach the finite degree cutoff the fit is obviously less gdawahall
networks such as those witN = 16 and K = 4 show larger
fluctuations and their tails decay faster than exponewtialiwo
particular examples with a medium value&f(K = 8) are shown

in detail in fig.[}, together with an exponential fit. Tafjle 2egi the
parameters of the regression lines forslland K values.

Table 2: Correlation coefficient (p), intercept (@) and slope (3)
and slope of the linear regression between the cumulative mo-
ber of nodes and the degree of nodeslog(p(k)) = a+ Bk +e.
The averages and standard deviations of 30 independent land
scapes, are shown.

N =16

K p o 8

2 | —0.8160.340 | 4.050.717 | —0.11090.0379
4 | —0.9320.026 | 6.070.276 | —0.02950.0026
6 | —0.9670.009 | 7-090.105 | —0.01780.0009
8 | —0.9860.006 | 7.600.107 | —0.01440.0007
10 | —0.9890.004 | 8.040.125 | —0.01460.0008
12 | —0.9900.004 | 8.510.156 | —0.01700.0010
14 | —0.992¢0.003 | 8.920.121 | —0.0202¢.0010
15 | —0.9910.004 | 9.110.144 | —0.02200.0011

N =18

2 | —0.8230.343 | 4.570.865 | —0.10880.0325
4 | —0.951p.025 | 6.71g.225 | —0.0198¢.0021
6 | —0.982¢0.007 | 7.740.107 | —0.00980.0005
8 | —0.991¢0.004 | 8.280.006 | —0.00760.0003
10 | —0.9940.003 | 8.740.119 | —0.00760.0004
12 | —0.9950.003 | 9.190.161 | —0.00880.0005
14 | —0.995¢0.003 | 9.650.134 | —0.0110¢.0005
16 | —0.9940.003 | 10.10.173 | —0.01390.0008
17 | —0.9940.005 | 10.20.207 | —0.01510.0008
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Figure 4: Cumulative degree distribution (with regressionline)
of two representative instances withX' = 8, N = 16 (top) and
N = 18 (bottom).

If we compare these results with DoyeB []5 6] the most impor-
tant difference is that we do not observe power-law distitins.
Indeed, power-law degree distributions of the inherentggnkand-
scape networks point to the “easiness” of those landscajpesto
the presence of highly connected nodes, which are also atheng
fittest, a simple gradient-descent would bring a searchemdo
a local energy minimum, often the global one, starting argngh
in the configuration space. In other words, there exist tharfél”



effect described by Doye[|[5]. In contrady] K landscapes have
tunable difficulty. How can random networks with exponelntie:
gree distributions be obtained? One way is the followingeach
time step, just add a new node, and add a new link between two
randomly chosen nodes, including the new one. Iteratirgdig
namical process produces graphs with an exponential laisin
of the node degreeﬂ [4]. BIf K landscapes are static and thusiitis
difficult to see how this process could be implemented. Harev
the following qualitative explanation might help. Imagithat K is
increased from 2 tdV — 1 in single steps. Then we could have the
image of the previous landscape increasing its size andrdefg
itself whenK goes from its current value t& + 1. The new max-
ima that appear could be considered as if they were addedrdyna
ically (of course some previous optima might disappear af.we
Edges in the new landscape are selected essentially rapdwithi
more probability of selecting an already existing node. S[twith
this imaginary mechanism a distribution close to exporémtould
be obtained.

Thus, as theéV K landscape difficulty varies smoothly whéa
is increased, the degree distribution of the correspondiagima
networks remains essentially exponential. We do not olessrale-
free distributions for the easy landscapes as in the enargistape
case [p]. This is understandable: standard energy landsdap
molecular chemistry and crystal physics do correspondeontb-
dynamically stable states which are naturally smooth alsg &a
reach when the system is forming or it is slightly perturbed.
contrast,N K landscape are synthetic and do not correspond to any
physical principle in their construction. The only physisgstems
that resembléV K landscapes are spin glasses, in which conflicting
energy minimization requirements lead to frustration amthhd-
scape ruggednesE[ 17]. However, disordered condersterm
systems similar to spin glasses are only obtained in pdaticitu-
ations, for instance by fast coolinE[l?].

4.4 Basins of Attraction

Besides the maxima network, it is useful to describe the-asso
ciated basins of attraction as these play a key role in search
gorithms. Furthermore, some characteristics of the basinsbe
related to the network features described above. The nation
the basin of attraction of a local maximum has been presédnted
sect.. We have exhaustively computed the size and nuofiber
all the basins of attraction fa¥ = 16 and N = 18 and for all even
K values plusk = N — 1. In this section, we analyze the basins
of attraction from several points of view as it is describetbty.

4.4.1 Global optimum basin size \&.

In Figurel}i we plot the average size of the basin correspgndin
to the global maximum folV = 16 and N = 18, and all values
of K studied. The trend is clear: the basin shrinks very quickly
with increasingK. This confirms that the higher th€ value, the
more difficult for an stochastic search algorithm to locaghasin
of attraction of the global optimum

4.4.2 Number of basins of a given size

Figureﬂi shows the cumulative distribution of the number of
basins of a given size (with regression line) for two repnéstive
instances withk' = 4 and N = 16 (top) andN = 18. Table |]3
shows the average (of 30 independent landscapes) coorelzdt
efficients and linear regression coefficients (interceptand slope
(B)) between the number of nodes and the basin sizes. Notite tha
distribution decays exponentially or faster for the lowérand it
is closer to exponential for the highé&f. This observation is rele-
vant to theoretical studies that estimate the size of dgitrabasins

N=16 —+—
[T J—
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0.01 ¢

0.001 ¢

relative size of the global optima’s basin
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le-04
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K

8 18

Figure 5: Average of the relative size of the basin correspating
to the global maximum for each K over 30 landscapes.
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Figure 6: Cumulative distribution of the number of basins of a
given size with regression line. Two Representative landapes
are visualized with N=16 (top) and N=18 (bottom) and K=4. A
lin-log scale is used.

(see for example[[S]). These studies often assume that tia ba
sizes are uniformly distributed. From the slopesf the regression
lines (tablg B) one can see that high value&agive rise to steeper
distributions (higher3 values). This indicates that there are less
basins of large size for large values &t In consequence, basins
are broader for low values d&, which is consistent with the fact
that those landscapes are smoother.

4.4.3 Fitness of local optima vs. their basin sizes

The scatter-plots in figut@ 7 illustrate the correlationimsn the
basin sizes of local maxima (in logarithmic scale) and tfigiess
values. Two representative instances for= 18 andK = 4,8 are
shown. Table[|4 shows the averages (of 30 independent lgreca
of the correlation coefficient, and the linear regressiceffaments



Table 3: Correlation coefficient (p), and linear regression co-
efficients (intercept @) and slope (3)) of the relationship be-
tween the basin size of optima and the cumulative number of
nodes of a given (basin) size (in logarithmic scaldog(p(s)) =
a+ (Bs+e¢). The average and standard deviation values over 30
instances, are shown.

N =16

K p a B

2 | —0.9440.0454 | 2.890.673 | —0.00030.0002
4

6

—0.9590.0310 | 4.190.554 | —0.00140.0006
—0.9670.0280 | 5.090.504 | —0.00360.0010
8 | —0.9820.0116 | 5.970.321 | —0.00800.0013
10 | —0.9850.0161 | 6.740.392 | —0.01630.0025
12 | —0.9900.0088 | 7-470.346 | —0.03040.0042
14 | —0.9940.0059 | 8.080.241 | —0.05080.0048
15 | —0.9950.0044 | 8-370.240 | —0.06350.0058
N =18
2 | —0.9590.0257 | 3.180.696 | —0.00010.0001
4 | —0.9600.0400 | 4.570.617 | —0.00050.0002
6 | —0.9670.0283 | 5.500.520 | —0.00150.0004
8 | —0.9770.0238 | 6.440.485 | —0.00370.0007
10 | —0.9850.0141 | 7.240.372 | —0.00770.0011
12 | —0.9890.0129 | 7.980.370 | —0.01500.0019
14 | —0.9930.0072 | 8.690.276 | —0.02720.0024
16 | —0.9950.0056 | 9.330.249 | —0.04500.0036
17 | —0.9920.0113 | 9-490.386 | —0.05440.0058
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Figure 7: Correlation between the fitness of local optima
and their corresponding basin sizes, for two representatie in-
stances withN = 18, K = 4 (top) and K = 8 (bottom).

between these two metrics (maxima fitness and their basés)siz
All the studied landscapes fdv¥ = 16 and 18, are reported. Notice
that, there is a clear positive correlation between thedgnalues
of maxima and their basins’ sizes. In other words, the higher
peak the wider tend to be its basin of attraction. Therefore,
average, with a hill-climbing algorithm, the global optimwould

Table 4: Correlation coefficient (), and linear regression coef-
ficients (intercept (@) and slope (3)) of the relationship between
the fitness of optima and their basin size (in logarithmic scke:
log(s) = a + Bf + ¢). The average and standard deviation
values over 30 instances, are shown

N =16
P o B
0.8320.0879 | —15.4765.9401 | 33.0668 9252
0.8420.0259 | —13.0351.9907 | 27.0942.8611
0.8520.0180 | —12.9770.9921 | 26.06171.4908
0.8600.0088 | —12.5700.3769 | 24.8800.5725
10 | 0.8500.0050 | —11.9540.3501 | 23.5610.5421
12 | 0.8330.0065 | —11.4850.2993 | 22.5190.4773
14 | 0.8160.0047 | —11.2619.2008 | 21.864¢.3256
15 | 0.812¢.0044 | —11.352¢.2109 | 21.8760.3298
N =18
2 | 0.8390.0680 | —16.5856.0606 | 35.9258.6640
4 | 0.842¢.0257 | —14.4582.1746 | 30.1743.1520
6 | 0.8520.0140 | —14.5420.9506 | 29.2191.4147
8 | 0.8670.0066 | —14.5150.3750 | 28.5380.5988
10 | 0.8660.0038 | —13.9140.3068 | 27.2090 4621
12 | 0.8540.0030 | —13.1800.1700 | 25.7510.2804
14 | 0.8360.0027 | —12.602¢.1399 | 24.5530.2214
16 | 0.8220.0022 | —12.5020.1039 | 24.1330.1633
17 | 0.8179.0027 | —12.5830.1278 | 24.1430.2066

oo b NX

surprising. But, we have to keep in mind that as the numbeaz|
optima increases (with increasing), the global optimum basin
is more difficult to reach by an stochastic local search dtigor
(see figure[|5). This observation offers a mental pictureVat
landscapes: we can consider the landscape as composed@é a la
number of mountains (each corresponding to a basin of &tirgc
and those mountains are wider the taller the hilltops. Mezedhe
size of a mountain basin grows exponentially with its hight.

4.4.4 Basins sizes of local optima vs. their degrees

The scatter plots in figurE 8 illustrate the correlation hestw
basin sizes of maxima and their degrees. Representatizeoes
with N = 18, andK = 4,8, are illustrated. There is a clear pos-
itive correlation between the degree and the basin sizesagima
in the network. This observation suggests that landscajibsow
K values can be searched more effectively since a given config-
uration has many neighbors belonging to the same large bésin
attraction. It is also confirmed that the basins for l&hare much
larger than those for higlk’, not only the basin corresponding to
the global maximum.

5. CONCLUSIONS

We have proposed a new characterization of combinatorial fit
ness landscapes using the well-known family\aK™ landscapes as
an example. We have used an extension of the concept of inher-
ent networks proposed for energy surfatﬂs [5] in order téradts
and simplify the landscape description. In our case therérite
network is the graph where the vertices are all the local maxi
and edges mean basin adjacency between two maxima. We have
exhaustively obtained these graphs fér= 16 and N = 18, and
for all even values of<, plus K = N — 1. The maxima graphs
are small worlds since the average path lengths are shodcatel
logarithmically in the size of the graphs. However, the maxi
graphs are not random. This is shown by their clusteringficoef
cients, which are much larger than those of correspondindora

be easier to find than any other local optimum. This may seem graphs and also by their degree distribution functionsctvhre not
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Figure 8: Correlation between the degree of local optima
and their corresponding basin sizes, for two representatie in-
stances with with N = 18, K = 4 (top) and K = 8 (bottom).

Poissonian but rather exponential. The construction ofrthgima
networks requires the determination of the basins of dttraof
the corresponding landscapes. We have thus described tilve na
of the basins and their relationship with the local maxinmavoek.
We have found that the size of the basin corresponding toltiab
maximum becomes smaller with increasiig The distribution of
the basin sizes is approximately exponential forland K, but
the basin sizes are larger for la, another indirect indication of
the increasing randomness and difficulty of the landscagesnw
K becomes large. Finally, there is a strong positive coligaldie-
tween the basin size of a maxima and their degree, which cosfir
that the synthetic view provided by the maxima graph is aulsef
one.

This study represents our first attempt towards a topolbginz
statistical characterization of easy and hard combirgtdaind-
scapes. Much remains to be done. First of all, the resultsdfou
should be confirmed for larger instancesM landscapes. This
will require good sampling techniques, or theoretical sidince
exhaustive sampling becomes quickly impractical. Othed$aape
types should also be examined, such as those containingaheut
ity, which are very common in real-world applications. Wagkn
progress for neutral versions 8f K landscapes. Finally, the land-
scape statistical characterization is only a step towamldment-
ing good methods for searching it. We thus hope that our tesul
will help in designing or estimating efficient search tecjugs and
operators.
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