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By developing the ∂-approach to global "inverse scattering" at zero energy we give a principal effectivization of the global reconstruction method for the Gel'fand-Calderon inverse boundary value problem in three dimensions. This work goes back to results

Introduction

The global reconstruction method for the Gel'fand-Calderon inverse boundary value problem in 3D was proposed for the first time by the author in 1987,1988, see [HN] (Note added in proof) and [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt. Anal. i Pril[END_REF]. The sheme of this global reconstruction can be presented as follows:

Φ → h Θρ → v ρ → v, ( * ) 
where Φ denotes boundary measurements, h is the Faddeev generalized scattering amplitude (at zero energy for simplicity) defined in complex domain Θ, Θρ is the subset of Θ with the imaginary part not greater than ρ, v ρ is an approximate inverse scattering reconstruction from h Θρ , v ρ → v for ρ → +∞, where v is the unknown potential to be reconstructed from Φ. The global uniqueness in the Gel'fand-Calderon problem in 3D follows from this global reconstruction as a corollary, see [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt. Anal. i Pril[END_REF]. Slightly earlier with respect to [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt. Anal. i Pril[END_REF] the global uniqueness in the Calderon problem in 3D was proved in [SU]. Note that [SU] gives no reconstruction method.

Slightly later with respect to [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt. Anal. i Pril[END_REF] the global reconstruction from boundary measurements in 3D similar to the global reconstruction of [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt. Anal. i Pril[END_REF] was also published in [START_REF] Nachman | Reconstructions from boundary measurements[END_REF]. Note that [START_REF] Nachman | Reconstructions from boundary measurements[END_REF] contains a reference to the preprint of [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt. Anal. i Pril[END_REF].

The Gel'fand-Calderon problem is formulated as Problem 1.2 of Subsection 1.2 of this introduction.

Reconstruction problems from the Faddeev generalized scattering amplitude h in the complex domain at zero energy are formulated as Problems 1.1a, 1.1b and 1.1c of Subsection 1.1 of this introduction.

The reduction of Problem 1.2 to Problems 1.1 is given by formulas and equations (1.23)-(1.25) mentioned in Subsection 1.2 of this introduction, see also [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichletto-Neumann map with nonzero background potential[END_REF] for more advanced version of these formulas and equations.

For a long time the main disadvantage of the global reconstruction (*) in 3D was related with the following two facts:

(1) The determination of h Θρ from Φ via formulas and equations of the type (1.23)-

(1.25) is stable for relatively small ρ, but is very unstable for ρ → +∞ in the points of Θρ with sufficiently great imaginary part, see Subsection 1.2 of this introduction.

(2) The decay of the error vv ρ for ρ → +∞ was very slow (not faster than O(ρ -1 ) even for infinitely smooth compactly supported v) in existing global results for stable construction of v ρ from h Θρ in 3D, see Remarks 1.1, 1.2, 1.3 of Subsection 1.1 of this introduction.

As a corollary, the global reconstruction (*) in 3D was not efficient with respect to its stability properties.

The key point is that in the present work we give a global and stable construction of v ρ from h bΘ ρ in 3D, where bΘ ρ denotes the boundary of Θρ , with rapid decay of the error vv ρ for ρ → +∞ (in particular, with vv ρ = O(ρ -∞ ) for v of the Schwartz class). This gives a principal effectivization of the global reconstruction (*) with respect to its stability properties.

Our new results are presented in detail below in Subsections 1.1, 1.2, 1.3 (of the introduction) and in Sections 2 and 6. These results were obtained proceeding from [START_REF] Novikov | The ∂approach to approximate inverse scattering at fixed energy in three dimensions[END_REF], [START_REF] Novikov | On non-overdetermined inverse scattering at zero energy in three dimensions[END_REF].

1.1. Inverse scattering at zero energy. Consider the equation

-∆ψ + v(x)ψ = 0, x ∈ R d , d ≥ 2, (1.1)
where v is a sufficiently regular function on R d

with sufficient decay at infinity (1.2) (precise assumptions on v are specified below in this introduction and in Section 2). Equation (1.1) arises, in particular, in quantum mechanics, acoustics, electrodynamics. Formally, (1.1) looks as the Schrödinger equation with potential v at fixed energy E = 0.

For equation (1.1), under assumptions (1.2), we consider the Faddeev generalized scattering amplitude h(k, l), where (k, l) ∈ Θ,

Θ = {k ∈ C d , l ∈ C d : k 2 = l 2 = 0, Im k = Im l}.
(1.3) Given v, to determine h on Θ one can use, in particular, the formula h(k, l) = H(k, kl), (k, l) ∈ Θ, (1.4) and the linear integral equation For more details concerning definitions of h, see [START_REF] Henkin | The ∂equation in the multidimensional inverse scattering problem[END_REF]Section 2.2], [No1, Section 2] and [START_REF] Novikov | On non-overdetermined inverse scattering at zero energy in three dimensions[END_REF]Sections 1 and 3].

H(k, p) = v(p) - R d v(p + ξ)H(k, -ξ)dξ ξ 2 + 2kξ , k ∈ Σ, p ∈ R d , ( 
Actually, h on Θ is a zero energy restriction of a function h introduced by Faddeev as an extension to the complex domain of the classical scattering amplitude for the Schrödinger equation at positive energies (see [F2], [HN]). Note that the restriction h Θ was not considered in Faddeev's works and that h in its zero energy restriction was considered for the first time in [BC] for d = 3 in the framework of Problem 1.1a formulated below. The Faddeev function h was, actually, rediscovered in [BC]. The fact that ∂-scattering data of [BC] coincide with the Faddeev function h was observed, in particular, in [HN].

In the present work, in addition to h on Θ, we consider, in particular, h Θρ and h bΘ ρ , where Θρ = Θ ρ ∪ bΘ ρ ,

Θ ρ = {(k, l) ∈ Θ : |Im k| = |Im l| < ρ}, bΘ ρ = {(k, l) ∈ Θ : |Im k| = |Im l| = ρ}, (1.8) 
where ρ > 0. Note that dim Θ = 3d -4, dim bΘ ρ = 3d -5.

(1.9)

Using (1.4), (1.5) one can see that

h(k, l) ≈ v(p), p = k -l, (k, l) ∈ Θ.
(1.10) in the Born approximation (that is in the linear approximation near zero potential). In addition, one can see also that

(k, l) ∈ Θρ =⇒ p = k -l ∈ B2ρ , (1.11) where Br = B r ∪ ∂B r , B r = {p ∈ R d : |p| < r}, ∂B r = {p ∈ R d : |p| = r}, r > 0.
(1.12)

In the present work we consider, in particular, the following inverse scattering problems for equation (1.1) under assumptions (1.2).

Problem 1.1. (a) Given h on Θ, find v on R d ; (b) Given h on Θρ for some (sufficiently great) ρ > 0, find v on R d , at least, approximately;

(c) Given h on bΘ ρ for some (sufficiently great) ρ > 0, find v on R d , at least, approximately.

Note that Problems 1.1a, 1.1b make sense for any d ≥ 2, whereas Problem 1.1c is reasonable for d ≥ 3 only: dim bΘ ρ < dim R d for d = 2, see (1.9).

Note that: (1) any reconstruction method for Problem 1.1b with decaying error as ρ → +∞ gives also a reconstruction method for Problem 1.1a and (2) for d ≥ 3, any reconstruction method for Problem 1.1c gives also a reconstruction method for Problem 1.1b.

Note that in the Born approximation (1.10):

(a) Problem 1.1a is reduced to finding v on R d from v on R d , (b) Problem 1.1b is reduced to (approximate) finding v on R d from v on B 2ρ , (c) Problem 1.1c for d ≥ 3 is reduced to (approximate) finding v on R d from v on B 2ρ
, where v is defined by (1.6). Thus, in the Born approximation, Problem 1.1c for d ≥ 3 (as well as Problem 1.1b for d ≥ 2) can be solved by the formula

v(x) = v lin appr (x, ρ) + v lin err (x, ρ), v lin appr (x, ρ) = B 2ρ e -ipx v(p)dp, v lin err (x, ρ) = R d \B 2ρ e -ipx v(p)dp, (1.13) where x ∈ R d . In addition, if, for example, v ∈ W n,1 (R d ) for some n ∈ N, (1.14) 
and v n,1 ≤ C, where W n,1 (R d ) denotes the space of n-times smooth functions on R d in L 1 -sense and • n,1 denotes some fixed standard norm in W n,1 (R d ), then

|v(p)| ≤ c 1 (n, d)C(1 + |p|) -n , p ∈ R d , (1.15)
and, therefore, for n > d,

|v lin err (x, ρ)| ≤ c 2 (n, d)Cρ -(n-d) , x ∈ R d , ρ ≥ 1, (1.16)
where c 1 (n, d), c 2 (n, d) are some fixed positive constants and v lin err (x, ρ) is the error term of (1.13).

Thus, in the Born approximation (1.10) (that is in the linear approximation near zero potential) we have that:

(1) h on bΘ ρ for d ≥ 3 (as well as h on Θρ for d ≥ 2) stably determines v lin appr (x, ρ) of (1.13) and

(2) the error (n-d) ) in the uniform norm as ρ → +∞ for n-times smooth v in the sense (1.14), where n > d. In particular, v lin err = O(ρ -∞ ) in the uniform norm as ρ → +∞ for v of the Schwartz class on R d .

v lin err (x, ρ) = v(x) -v lin appr (x, ρ) = O(ρ -
The main results of the present work consist in global analogs for the nonlinearized case for d = 3 of the aforementioned Born-approximation results for Problem 1.1c, see Theorem 2.1 and Corollary 2.1 of Section 2. In particular, we give a stable approximate solution of nonlinearized Problem 1.1c for d = 3 and v satisfying (1.14), n > d = 3, with the error term decaying as O(ρ -(n-d) ln ρ) in the uniform norm as ρ → +∞ (that is with almost the same decay rate of the error for ρ → +∞ as in the linearized case near zero potential, see (1.13), (1.16)). The results of the present work were obtained in the framework of a development of the ∂-approach to inverse scattering at fixed energy in dimension d ≥ 3 of [BC], [HN], [START_REF] Novikov | The ∂approach to approximate inverse scattering at fixed energy in three dimensions[END_REF], [START_REF] Novikov | On non-overdetermined inverse scattering at zero energy in three dimensions[END_REF], with applications to the Gel'fand-Calderon inverse boundary value problem via the reduction going back to [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt. Anal. i Pril[END_REF]. See Subsections 1.2, 1.3 and Sections 2, 3, 4, 5, 6 for details.

Remark 1.1. Note that if v ∈ L ∞ (R d ), ess sup x∈R d (1 + |x|) d+ε |v(x)| ≤ C,
for some positive ε and C, (1.17) then (see [HN], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt. Anal. i Pril[END_REF], [START_REF] Nachman | Reconstructions from boundary measurements[END_REF], [START_REF] Novikov | On non-overdetermined inverse scattering at zero energy in three dimensions[END_REF]):

v(p) = lim ρ→+∞, k-l=p h(k, l) for any p ∈ R d , d ≥ 3, (1.18) |v(k -l) -h(k, l)| ≤ c 3 (ε, d)C 2 ρ -1 as ρ → +∞, (1.19)
where (k, l) ∈ bΘ ρ , c 3 (ε, d) is some positive constant. Formulas (1.18), (1.19) show that the Born approximation (1.10) holds on bΘ ρ (and on Θ\Θ ρ ) for any sufficiently great ρ (actually, for any sufficiently great ρ in comparison with C of (1.17)). However, because of O(ρ -1 ) in the right-hand side of (1.19), formulas (1.18), (1.19) give no method to reconstruct v on R d from h on bΘ ρ (or on Θρ ) with the error term decaying more rapidly than O(ρ -1 ) in the uniform norm as ρ → +∞ (even for v of the Schwartz class on R d , d ≥ 3).

Remark 1.2. On the other hand (in comparison with the result mentioned in Remark 1.1), for sufficiently small potentials v, in [START_REF] Novikov | On non-overdetermined inverse scattering at zero energy in three dimensions[END_REF] we succeeded, in particular, to give a stable method for solving Problem 1.1b for d = 3 with the same type rapid decay of the error term for ρ → +∞ as in formulas (1.13), (1.16) for the linearized case near zero potential. Moreover, in this result of [START_REF] Novikov | On non-overdetermined inverse scattering at zero energy in three dimensions[END_REF], v is approximately reconstructed already from nonoverdetermined restriction h Θ ρ ∩Γ , where Γ ⊂ Θ, dim Γ = d = 3. However, this result of [START_REF] Novikov | On non-overdetermined inverse scattering at zero energy in three dimensions[END_REF] is local: the smallness of v is used essentially.

Remark 1.3. We emphasize that before the present work no results were given, in general, in the literature on solving Problems 1.1c and 1.1b for d ≥ 3 with the error term decaying more rapidly than O(ρ -1 ) as ρ → +∞ even for v of the Schwartz class on R d (and even for the infinitely smooth compactly supported case in the framework of sufficiently stable rigorous algorithms). In addition, rapid decay of this error term is a property of principal importance in the framework of applications of methods for solving Problems 1.1 to the Gel'fand-Calderon inverse boundary value problem (Problem 1.2) via the reduction of [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt. Anal. i Pril[END_REF], see the next part of introduction.

Note that Problem 1.1a was considered for the first time in [BC] for d = 3 from pure mathematical point of view without any physical applications. No possibility to measure h on Θ\{(0)} directly in some physical experiment is known at present (here

{0} = {(k, l) ∈ Θ : |k| = |l| = 0}
). However, as it was shown in [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt. Anal. i Pril[END_REF] (see also [HN] (Note added in proof), [START_REF] Nachman | Reconstructions from boundary measurements[END_REF], [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichletto-Neumann map with nonzero background potential[END_REF]), Problems 1.1 naturally arise in the electrical impedance tomography and, more generally, in connection with Problem 1.2 formulated in the next subsection. (1.20)

For simplicity we assume also that 0 is not a Dirichlet eigenvalue for the operator -∆ + v in D.

(1.21)

Consider the map Φ such that ∂ψ ∂ν ∂D = Φ ψ ∂D (1.22)
for all sufficiently regular solutions ψ of (1.1) in D, where ν is the outward normal to ∂D.

The map Φ is called the Dirichlet-to-Neumann map for equation (1.1) in D. We consider the following inverse boundary value problem for equation (1.1) in D:

Problem 1.2. Given Φ, find v. This problem can be considered as the Gel'fand inverse boundary value problem for the Schrödinger equation at zero energy (see [G], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt. Anal. i Pril[END_REF]). This problem can be also considered as a generalization of the Calderon problem of the electrical impedance tomography (see [C], [SU], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt. Anal. i Pril[END_REF]).

One can see that the Faddeev function h of Problems 1.1 does not appear in Problem 1.2. However, as it was shown in [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt. Anal. i Pril[END_REF] (see also [HN] (where this result of [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt. Anal. i Pril[END_REF] was announced in Note added in proof), [START_REF] Nachman | Reconstructions from boundary measurements[END_REF], [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichletto-Neumann map with nonzero background potential[END_REF]), if h corresponds to equation (1.1) on R d , where v is the potential of Problem 1.2 on D and v ≡ 0 on R d \ D, then h on Θ can be determined from the Dirichlet-to-Neumann map Φ via the following formulas and equation:

h(k, l) = (2π) -d ∂D ∂D e -ilx (Φ -Φ 0 )(x, y)ψ(y, k)dydx for (k, l) ∈ Θ, (1.23) ψ(x, k) = e ikx + ∂D A(x, y, k)ψ(y, k)dy, x ∈ ∂D, (1.24) A(x, y, k) = ∂D G(x -z, k)(Φ -Φ 0 )(z, y)dz, x, y ∈ ∂D, (1.25) G(x, k) = -(2π) -d e ikx R d e iξx dξ ξ 2 + 2kξ , x ∈ R d , (1.26)
where k ∈ C d , k 2 = 0 in (1.24)-(1.26), Φ 0 denotes the Dirichlet-to-Neumann map for equation (1.1) in D with v ≡ 0, and (Φ -Φ 0 )(x, y) is the Schwartz kernel of the integral operator Φ -Φ 0 . Note that (1.23), (1.25), (1.26) are explicit formulas, whereas (1.24) is a linear integral equation (with parameter k) for ψ on ∂D. In addition, G of (1.26) is the Faddeev's Green function of [F1] for the Laplacian ∆. Formulas and equation (1.23)-(1.26) reduce Problem 1.2 to Problems 1.1. In addition, from numerical point of view h(k, l) for (k, l) ∈ Θρ can be relatively easily determined from Φ via (1.25), (1.24), (1.23) if ρ is sufficiently small. However, if (k, l) ∈ Θ\Θ ρ , where ρ is sufficiently great, then the determination of h(k, l) from Φ via (1.25), (1.24), (1.23) is very unstable (especially on the step (1.24)); see, for example, [BRS], [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichletto-Neumann map with nonzero background potential[END_REF], [START_REF] Novikov | On non-overdetermined inverse scattering at zero energy in three dimensions[END_REF]. This explains the principal importance (mentioned in Remark 1.3) of the error term rapid decay as ρ → +∞ in methods for solving Problems 1.1b and 1.1c.

Final remarks.

In the present work we consider, mainly, Problems 1.1 and 1.2 for d = 3. The main results of the present work are presented in Sections 2 and 6. Some of these results were already mentioned above. Note that only restrictions in time prevent us from generalizing all main results of the present work to the case of the Schrödinger equation at arbitrary (not necessarily zero) fixed energy E for d ≥ 3.

Note that results of the present work permit to complete (at least for d = 3) the proof of new stability estimates for Problem 1.2, d ≥ 3, announced as Theorem 2.2 of [NN]. We plan to return to this proof in a separate article.

Our new global reconstruction for Problem 1.2 in 3D is summarized in schemes (6.1), (6.2) of Section 6. We expect that this reconstruction can be implemented numerically in a similar way with implementations developed in [ABR], where the parameter ρ of (6.1), (6.2) will play in some sense the role of the wave number k 0 of [ABR].

As regards results given in the literature on Problem 1.1, see [BC], [HN], [GN], [START_REF] Nachman | Reconstructions from boundary measurements[END_REF], [START_REF] Nachman | Global uniqueness for a two-dimensional inverse boundary value problem[END_REF], [START_REF] Novikov | On non-overdetermined inverse scattering at zero energy in three dimensions[END_REF] and references therein.

As regards results given in the literature on Problem 1.2 (in its Calderon or Gel'fand form), see [SU], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt. Anal. i Pril[END_REF], [Al], [START_REF] Nachman | Reconstructions from boundary measurements[END_REF], [START_REF] Nachman | Global uniqueness for a two-dimensional inverse boundary value problem[END_REF], [Ma], [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichletto-Neumann map with nonzero background potential[END_REF], [START_REF] Novikov | On non-overdetermined inverse scattering at zero energy in three dimensions[END_REF], [NN], [HM], [Am] and references therein.

2.Main new results

In the present work we consider, mainly, the three dimensional case d = 3. In addition, in the main considerations of the present work for d = 3 our basic assumption on v consists in the following condition on its Fourier transform:

v ∈ L ∞ µ (R 3 ) ∩ C(R 3 ) for some real µ ≥ 2, (2.1)
where v is defined by (1.6),

L ∞ µ (R d ) = {u ∈ L ∞ (R d ) : u µ < +∞}, u µ = ess sup p∈R d (1 + |p|) µ |u(p)|, µ > 0, (2.2)
and C denotes the space of continuous functions. Actually, (2.1) is a specification of (1.2).

Note that

v ∈ W n,1 (R d ) =⇒ v ∈ L ∞ µ (R d ) ∩ C(R d ), v µ ≤ c 4 (n, d) v n,1 for µ = n, (2.3) where W n,1 , L ∞ µ are the spaces of (1.14), (2.2). Let Θ ∞ ρ,τ = {(k, l) ∈ Θ\ Θρ : k -l ∈ B 2ρτ }, bΘ ρ,τ = {(k, l) ∈ bΘ ρ : k -l ∈ B 2ρτ }, (2.4)
where Θ, Θρ , bΘ ρ , B r are defined by (1.3), (1.8), (1.12), ρ > 0, 0 < τ < 1. In (2.4) by symbol ∞ we emphasize that Θ ∞ ρ,τ is unbounded with respect to k, l. One can see also that by definition bΘ ρ,τ ⊂ bΘ ρ , ρ > 0, 0 < τ < 1.

(2.5)

Our main new results on Problem 1.1 are summarized as Theorem 2.1 and Corollary 2.1 below.

Theorem 2.1. Let v satisfy (2.1) and v µ ≤ C. Let 2 ≤ µ 0 < µ, 0 < δ < 1, 0 < τ < τ 1 (µ, µ 0 , C, δ), ρ ≥ ρ 1 (µ, µ 0 , C, δ), (2.6) 
where τ 1 , ρ 1 are the constants of (4.36) and, in particular, 0 < τ 1 < 1. Then h on bΘ ρ,τ stably determines v± (•, τ, ρ) via (6.2) (where the nonlinear integral equation (4.31) is solved by successive approximations) and

|v(p) -v± (p, τ, ρ)| ≤ c 5 (µ, µ 0 , τ, δ)C 2 (1 + |p|) -µ 0 ρ -(µ-µ 0 ) for p ∈ B 2τ ρ , (2.7)
where c 5 is the constant of (6.4), see Section 6. Construction (6.2) is actually a definition of v± (•, τ, ρ). We consider v± (•, τ, ρ) as an approximation to v on B 2τ ρ . The error between v and v± (•, τ, ρ) on B 2τ ρ is estimated in (2.7). Estimate (2.7) is especially interesting for ρ → +∞ at fixed τ .

Theorem 2.1 follows from Proposition 4.2, Corollary 4.1 and formulas (5.2), (5.3), (5.6) (and related results of Sections 4 and 5). A more detailed version of (2.7) is given by (6.3). The stability mentioned in Theorem 2.1 follows from estimate (6.10). See Sections 4, 5, 6 for additional details.

An outline of the reconstruction formalized in Theorem 2.1 is given also at the end of the present section.

Let

v ± (x, τ, ρ) = B 2τ ρ e -ipx v± (p, τ, ρ)dp, x ∈ R 3 , (2.8)
where v± (p, τ, ρ) is the approximation of Theorem 2.1. Formula (2.3) and Theorem 2.1 imply the following Corollary 2.1. Let v satisfy (1.14), n > d = 3, and v n,1 ≤ D. Let τ and ρ satisfy (2.6) for µ = n, µ 0 = 3, C = c 4 (n, 3)D and fixed δ ∈]0, 1[. Then h on bΘ ρ,τ stably determines v ± (•, τ, ρ) via (6.2), (2.8) and

|v(x) -v ± (x, τ, ρ)| ≤ (c 6 (n, τ )D + c 7 (n, τ, δ)D 2 ln (1 + 2τ ρ))ρ -(n-3) for x ∈ R 3 , (2.8)
where the constants c 6 , c 7 are simply related with c 2 and c 5 . In addition, in particular,

v -v ± (•, τ, ρ) L ∞ (R 3 ) = O(ρ -(n-3) ln ρ) for ρ → +∞ for fixed τ, 0 < τ < τ 1 (n, 3, c 4 (n, 3)D, δ).
(2.9)

We consider Theorem 2.1 as a global nonlinear analog of the result that in the Born approximation h bΘ ρ is reduced to a v on B 2ρ for d ≥ 3. One can see, in particular, that in Theorem 2.1 we even do not try to reconstruct v on R 3 \B 2ρ from h on bΘ ρ . We consider Corollary 2.1 as a global nonlinear analog of the Born approximation result (for Problem 1.1c) consisting in formulas (1.13), (1.16).

In the derivations of the present work we rewrite h on Θ, Θρ , bΘ ρ , Θ ∞ ρ,τ and bΘ ρ,τ as H on Ω, Ωρ , Ω ∞ ρ,τ and bΩ ρ,τ (respectively), where h is related with H by (1.4),

Ω = {k ∈ C d , p ∈ R d : k 2 = 0, p 2 = 2kp}, Ωρ = Ω ρ ∪ bΩ ρ , Ω ρ = {(k, p) ∈ Ω : |Im k| < ρ}, bΩ ρ = {(k, p) ∈ Ω : |Im k| = ρ}, Ω ∞ ρ,τ = {(k, p) ∈ Ω\ Ωρ : p ∈ B 2ρτ }, bΩ ρ,τ = {(k, p) ∈ bΩ ρ : p ∈ B 2ρτ }, (2.10) where ρ > 0, 0 < τ < 1. Note that Ω ≈ Θ, Ωρ ≈ Θρ , bΩ ρ ≈ bΘ ρ , Ω ∞ ρ,τ ≈ Θ ∞ ρ,τ , bΩ ρ,τ ≈ bΘ ρ,τ .
(2.11)

or more precisely

(k, p) ∈ Ω =⇒ (k, k -p) ∈ Θ, (k, l) ∈ Θ =⇒ (k, k -l) ∈ Ω
and the same for Ωρ , bΩ ρ , Ω ∞ ρ,τ , bΩ ρ,τ and Θρ , bΘ ρ , Θ ∞ ρ,τ , bΘ ρ,τ , respectively, in place of Ω and Θ.

(2.12) An outline of the reconstruction formalized in Theorem 2.1 consists in the following: 1. We rewrite h on bΘ ρ,τ ⊂ bΘ ρ as H on bΩ ρ,τ ⊂ bΩ ρ as mentioned above. 2. We consider H on bΩ ρ as boundary data for H on Ω\Ω ρ , which solves the non-linear ∂-equation (3.5) with estimates (3.2), (3.3). 3. Using this ∂-equation and these estimates we obtain the non-linear integral equation (4.31) for finding Hρ,τ on Ω ∞ ρ,τ from H on bΩ ρ,τ , where Hρ,τ approximates H on Ω ρ,τ (with estimate (4.31)). 4. The function Hρ,τ determines v± (•, τ, ρ) by formulas (4.32), where v± (•, τ, ρ) approximates v on B 2τ ρ .

As it was already mentioned in introduction, the results of the present work were obtained in the framework of a development of the ∂-approach to inverse scattering at fixed energy in dimension d ≥ 3 of [BC], [HN], [START_REF] Novikov | The ∂approach to approximate inverse scattering at fixed energy in three dimensions[END_REF], [START_REF] Novikov | On non-overdetermined inverse scattering at zero energy in three dimensions[END_REF]. In particular, there is a considerable similarity between the reconstruction scheme of the present work for the case of Problem 1.1c and the reconstruction scheme of [START_REF] Novikov | The ∂approach to approximate inverse scattering at fixed energy in three dimensions[END_REF] for the case of inverse scattering at fixed positive energy E. Actually, in the present work the parameter ρ of Problem 1.1 plays the role of E 1/2 of [START_REF] Novikov | The ∂approach to approximate inverse scattering at fixed energy in three dimensions[END_REF]. Some results of [BC], [HN], [START_REF] Novikov | On non-overdetermined inverse scattering at zero energy in three dimensions[END_REF] we use in the present work are recalled in the next section.

Background results

For simplicity always in this section we assume that d = 3.

Estimates for

H on Ω\Ω ρ . Let v satisfy (2.1) and v µ ≤ C. Let η(C, ρ, µ) def = a(µ)C(ln ρ) 2 ρ -1 < 1, ln ρ ≥ 2, (3.1)
where a(µ) is the constant c 2 (µ) of [START_REF] Novikov | On non-overdetermined inverse scattering at zero energy in three dimensions[END_REF]. Then (according to [START_REF] Novikov | On non-overdetermined inverse scattering at zero energy in three dimensions[END_REF]):

H ∈ C(Ω\Ω ρ ), (3.2) |H(k, p)| ≤ C (1 -η(C, ρ, µ))(1 + |p|) µ , (k, p) ∈ Ω\Ω ρ , (3.3) v(p) = lim |k|→∞, (k,p)∈Ω H(k, p), p ∈ R 3 , (3.4) 
where |k| = ((Re k) 2 + (Im k) 2 ) 1/2 . (These and some additional estimates on H are given in Proposition 3.2 of [START_REF] Novikov | On non-overdetermined inverse scattering at zero energy in three dimensions[END_REF].) Note that, for sufficiently regular v on R 3 with sufficient decay at infinity, formula (3.4) was obtained for the first time in [HN].

3.2. The ∂-equation for H on Ω\Ω ρ . Let v satisfy (2.1), vµ ≤ C, and (3.1) hold. Then (see [START_REF] Novikov | On non-overdetermined inverse scattering at zero energy in three dimensions[END_REF]):

∂k H(k, p) Ω\Ω ρ = 3 j=1 -2π ξ∈S k ξ j H(k, -ξ)H(k + ξ, p + ξ) ds |Im k| 2 d kj Ω\Ω ρ , (3.5) 
where

S k = {ξ ∈ R 3 : ξ 2 + 2kξ = 0}, (3.6)
ds is arc-length measure on the circle S k in R 3 . Actually, under some stronger assumptions on v than in the present subsection, the ∂equation (3.5) was obtained for the first time in [BC].

An important property of the ∂-equation (3.5) is that (3.5) can be considered for H on Ω\Ω ρ only, see, in particular, formulas (3.24) of Subsection 3.4.

Coordinates on Ω\Ω

ρ . Let Ω ν = {(k, p) ∈ Ω : p ∈ L ν }, (3.7) 
where (3.9) Assumptions (3.9) imply that

L ν = {p ∈ R 3 : p = tν, t ∈ R}, ν ∈ S 2 . ( 3 
ω(p) = p × θ(p) |p| for p ∈ R 3 \L ν (3.10a) or ω(p) = - p × θ(p) |p| for p ∈ R 3 \L ν , (3.10b) 
where × denotes vector product.

To satisfy (3.9), (3.10a) we can take

θ(p) = ν × p |ν × p| , ω(p) = p × θ(p) |p| , p ∈ R 3 \L ν . (3.11)
Let θ, ω satisfy (3.9). Then (according to [START_REF] Novikov | On non-overdetermined inverse scattering at zero energy in three dimensions[END_REF]) the following formulas give a diffeomorphism between Ω ν and (C\0)

× (R 3 \L ν ): (k, p) → (λ, p), where λ = λ(k, p) = 2k(θ(p) + iω(p)) i|p| , (3.12a) (λ, p) → (k, p), where k = k(λ, p) = κ 1 (λ, p)θ(p) + κ 2 (λ, p)ω(p) + p 2 , κ 1 (λ, p) = i|p| 4 (λ + 1 λ ), κ 2 (λ, p) = |p| 4 (λ - 1 λ ), (3.12b) 
where (k, p) ∈ Ω ν , (λ, p) ∈ (C\0)×(R 3 \L ν ). In addition, formulas (3.12a), (3.12b) for λ(k) and k(λ) at fixed p ∈ R 3 \L ν give a diffeomorphism between Z p = {k ∈ C 3 : (k, p) ∈ Ω} for fixed p and C\0.

In addition, for k and λ of (3.12) we have that

|Im k| = |p| 4 |λ| + 1 |λ| , |Re k| = |p| 4 |λ| + 1 |λ| , (3.13) where (k, p) ∈ Ω ν , (λ, p) ∈ (C\0) × (R 3 \L ν ). Let Ω ∞ ρ,τ,ν = Ω ∞ ρ,τ ∩ Ω ν , (3.14)
where Ω ∞ ρ,τ , Ω ν are defined as in (2.10), (3.7). Let

Λ ρ,ν = {(λ, p) : λ ∈ D ρ/|p| , p ∈ R 3 \L ν }, (3.15) Λ ρ,τ,ν = {(λ, p) : λ ∈ D ρ/|p| , p ∈ R 3 \L ν , |p| < 2τ ρ}, bΛ ρ,τ,ν = {(λ, p) : λ ∈ T ρ/|p| , p ∈ R 3 \L ν , |p| < 2τ ρ}, where ρ > 0, 0 < τ < 1, ν ∈ S 2 , D r = {λ ∈ C\0 : 1 4 (|λ| + |λ| -1 ) > r}, r > 0. (3.16) T r = {λ ∈ C : 1 4 (|λ| + |λ| -1 ) = r}, r ≥ 1/2.
(3.17)

Using (3.13) one can see that formulas (3.12) give also the following diffeomorphisms

Ω ν \ Ωρ ≈ Λ ρ,ν , Ω ∞ ρ,τ,ν ≈ Λ ρ,τ,ν , bΩ ρ,τ ∩ Ω ν ≈ bΛ ρ,τ,ν , Z ∞ p,ρ = {k ∈ C 3 : (k, p) ∈ Ω ν \ Ωρ } ≈ D ρ/|p| for fixed p, (3.18) 
where ρ > 0, 0 < τ < 1, ν ∈ S 2 .

In [START_REF] Novikov | On non-overdetermined inverse scattering at zero energy in three dimensions[END_REF] λ, p of (3.12) were used as coordinates on Ω. In the present work we use them also as coordinates on Ω\Ω ρ (or more precisely on Ω ν \Ω ρ ).

3.4. ∂-equation for H in the λ, p coordinates and some related estimate. Let λ, p be the coordinates of Subsection 3.3, where θ, ω satisfy (3.9), (3.10). Then (see Lemma 5.1 of [START_REF] Novikov | On non-overdetermined inverse scattering at zero energy in three dimensions[END_REF]) in these coordinates the ∂-equation (3.5) for p = 0 takes the form:

∂ ∂ λ H(k(λ, p), p) = - π 4 π -π |p| 2 (|λ| 2 -1) λ|λ| (cos ϕ -1) -|p| 1 λ sin ϕ × H(k(λ, p), -ξ(λ, p, ϕ))H(k(λ, p, ϕ), p + ξ(λ, p, ϕ))dϕ (3.19)
for (λ, p) ∈ Λ ρ,ν , where k(λ, p) is defined in (3.12b) (and also depends on ν, θ, ω), Λ ρ,ν is defined in (3.15),

ξ(λ, p, ϕ) = Re k(λ, p)(cos ϕ -1) + k ⊥ (λ, p) sin ϕ, (3.20) k ⊥ (λ, p) = Im k(λ, p) × Re k(λ, p) |Im k(λ, p)| , (3.21)
where × in (3.21) denotes vector product. Note that (3.19) can be written as

∂ ∂ λ H(k(λ, p), p) = {H, H}(λ, p), (λ, p) ∈ Λ ρ,ν , (3.22) 
where 

{U 1 , U 2 }(λ, p) = - π 4 π -π |p| 2 |λ| 2 -1 λ|λ| (cos ϕ -1) - |p| λ sin ϕ × U 1 (k(λ, p), -ξ(λ, p, ϕ))U 2 (k(λ, p) + ξ(λ,
∈ Λ ρ,ν , ϕ ∈ [-π, π]. Let U 1 , U 2 ∈ L ∞ µ (Ω\ Ωρ ), µ ≥ 2, where L ∞ µ (Ω\ Ωρ ) = {U ∈ L ∞ (Ω\ Ωρ ) : |||U ||| ρ,µ < +∞}, |||U ||| ρ,µ = ess sup (k,p)∈Ω\ Ωρ (1 + |p|) µ |U (k, p)|, µ > 0. (3.25)
Let {U 1 , U 2 } be defined by (3.23). Then (as a corollary of Lemma 5.2 of [START_REF] Novikov | On non-overdetermined inverse scattering at zero energy in three dimensions[END_REF]):

{U 1 , U 2 } ∈ L ∞ local (Λ ρ,ν ) (3.26)
and

|{U 1 , U 2 }(λ, p)| ≤ |||U 1 ||| ρ,µ |||U 2 ||| ρ,µ (1 + |p|) µ b(µ, |λ|, |p|)
for almost all (λ, p)

∈ Λ ρ,ν , b(µ, |λ|, |p|) = b 1 (µ)|λ| (|λ| 2 + 1) 2 + b 2 (µ)|p|||λ| 2 -1| |λ| 2 (1 + |p|(|λ| + |λ| -1 )) 2 + b 3 (µ)|p| |λ|(1 + |p|(|λ| + |λ| -1 )) , (3.27) where Λ ρ,ν is defined in (3.15), b 1 (µ), b 2 (µ), b 3 (µ) are the constants c 3 (µ), c 4 (µ), c 5 (µ) of [No4].
4. Approximate finding H on Ω ∞ ρ,τ from H on bΩ ρ,τ We recall that Ω ∞ ρ,τ and bΩ ρ,τ were defined in Section 2, see formulas (2.10). We assume that d = 3.

Consider χ r H, where χ r denotes the multiplication operator by the function

χ r (p) = 1 for |p| < r, χ r (p) = 0 for |p| ≥ r, where p ∈ R 3 , r > 0. (4.1) Note that χ 2τ ρ H(k, p) = H(k, p) for (k, p) ∈ Ω ∞ ρ,τ χ 2τ ρ H(k, p) = 0 for (k, p) ∈ (Ω\ Ωρ )\Ω ∞ ρ,τ , (4.2) 
where ρ > 0, τ ∈]0, 1[.

As a corollary of (3.5), (3.22), (3.23) we have that

∂ ∂ λ χ 2τ ρ H(k(λ, p), p) = {χ 2τ ρ H, χ 2τ ρ H}(λ, p) + R ρ,τ (λ, p), (4.3) R ρ,τ (λ, p) = {(1 -χ 2τ ρ )H, χ 2τ ρ H}(λ, p) + {χ 2τ ρ H, (1 -χ 2τ ρ )H}(λ, p)+ {(1 -χ 2τ ρ )H, (1 -χ 2τ ρ )H}(λ, p) (4.4)
for (λ, p) ∈ Λ ρ,τ,ν of (3.15). Because of the remainder R ρ,τ of (4.3), (4.4), the ∂-equation (3.5), (4.3) is only an approximate ∂equation for χ 2τ ρ H = H on Ω ∞ ρ,τ or on Λ ρ,τ,ν in the coordinates λ, p. However, R ρ,τ rapidly vanishes when ρ increases for fixed τ ∈]0, 1[; see Lemma 4.1.

For approximate finding H on Ω ∞ ρ,τ from H on Ω ∞ ρ,τ we proceed from (3.2), (3.3), (4.3), (4.4), (3.26), (3.27) and the following formulas

u + (λ) = 1 2πi T + r u + (ζ) dζ ζ -λ - 1 π D + r ∂u + (ζ) ∂ ζ d Re ζ d Im ζ ζ -λ , λ ∈ D + r , (4.5a) u -(λ) = - 1 2πi T - r u -(ζ) λdζ ζ(ζ -λ) - 1 π D - r ∂u -(ζ) ∂ ζ λd Re ζ d Im ζ ζ(ζ -λ) , λ ∈ D - r , (4.5b) 
where

D ± r = {λ ∈ C\0 : 1 4 (|λ| + |λ| -1 ) > r, |λ| ±1 < 1}, T ± r = {λ ∈ C : 1 4 (|λ| + |λ| -1 ) = r, |λ| ±1 ≤ 1}, r > 1/2, (4.6) u + (λ) is continuous and bounded on D + r ∪ T + r , ∂u + (λ)/∂ λ is bounded on D + r , u -(λ) is continuous and bounded on D - r ∪ T - r , ∂u -(λ)/∂ λ is bounded on D - r , and ∂u -(λ)/∂ λ = O(|λ| -2 )
as |λ| → ∞ (and where the integrals along T ± r are taken in the counter-clockwise direction). The aforementioned assumptions on u ± in (4.5) can be somewhat weakened. Formulas (4.5) follow from the well-known Cauchy-Green formula 

u(λ) = 1 2πi ∂D u(ζ) dζ ζ -λ - 1 π D ∂u(ζ) ∂ ζ d Re ζ d Im ζ ζ -λ , λ ∈ D, ( 4 
Let Λ ± ρ,τ,ν = {(λ, p) : λ ∈ D ± ρ/|p| , p ∈ B 2τ ρ \L ν }, bΛ ± ρ,τ,ν = {(λ, p) : λ ∈ T ± ρ/|p| , p ∈ B 2τ ρ \L ν }, (4.9) 
where B r , L ν , D ± r , T ± r are defined by (1.12) for d = 3, (3.8), (4.6), ρ > 0

, τ ∈]0, 1[, ν ∈ S 2 . Note that Λ ρ,τ,ν = Λ + ρ,τ,ν ∪ Λ - ρ,τ,ν , Λ + ρ,τ,ν ∩ Λ - ρ,τ,ν = ∅, bΛ ρ,τ,ν = bΛ + ρ,τ,ν ∪ Λ - ρ,τ,ν , (4.10)
where Λ ρ,τ,ν , bΛ ρ,τ,ν were defined in (3.15), ρ > 0, τ ∈]0, 1[, ν ∈ S 2 . As a corollary of (3.2), (3.3), (4.3), (4.4), (3.26), (3.27), (4.5), we obtain the following Proposition 4.1. Let v and ρ satisfy the same assumptions that in Subsection 3.1. Let H(λ, p) be defined by (4.8). Then H = H(λ, p) as a function of (λ, p) ∈ Λ ρ,τ,ν of (4.10), where τ ∈]0, 1[, satisfies the following nonlinear integral equation (4.11) where

H = H 0 + M ρ,τ (H) + Q ρ,τ , τ ∈]0, 1[,
H 0 (λ, p) = 1 2πi T + ρ/|p| H(ζ, p) dζ ζ -λ , (λ, p) ∈ Λ + ρ,τ,ν , (4.12a) H 0 (λ, p) = - 1 2πi T - ρ/|p| H(ζ, p) λdζ ζ(ζ -λ) , (λ, p) ∈ Λ - ρ,τ,ν , (4.12b) 
where T ± r are defined by (4.6);

M ρ,τ (U )(λ, p) = M + ρ,τ (U )(λ, p) = - 1 π D + ρ/|p| (U, U ) ρ,τ (ζ, p) d Re ζ d Im ζ ζ -λ , (λ, p) ∈ Λ + ρ,τ,ν , (4.13a) M ρ,τ (U )(λ, p) = M - ρ,τ (U )(λ, p) = - 1 π D - ρ/|p| (U, U ) ρ,τ (ζ, p) λd Re ζ d Im ζ ζ(ζ -λ) , (λ, p) ∈ Λ - ρ,τ,ν , (4.13b) (U 1 , U 2 ) ρ,τ (ζ, p) = {χ 2τ ρ U ′ 1 , χ 2τ ρ U ′ 2 }(ζ, p), (ζ, p) ∈ Λ ρ,τ,ν , χ 2τ ρ U ′ j (k, p) = U j (λ(k, p), p), (k, p) ∈ Ω ∞ ρ,τ,ν , χ 2τ ρ U ′ j (k, p) = 0, |p| ≥ 2τ ρ, j = 1, 2, (4.14) where U, U 1 , U 2 are test functions on Λ ρ,τ,ν , {•, •} is defined by (3.23), λ(k, p) is defined in (3.12a); Q ρ,τ (λ, p) = - 1 π D + ρ/|p| R ρ,τ (ζ, p) d Re ζ d Im ζ ζ -λ , (λ, p) ∈ Λ + ρ,τ,ν , (4.15a) Q ρ,τ (λ, p) = - 1 π D - ρ/|p| R ρ,τ (ζ, p) λd Re ζ d Im ζ ζ(ζ -λ) , (λ, p) ∈ Λ - ρ,τ,ν , (4.15b)
where R ρ,τ is defined by (4.4).

Remark 4.1. In addition to (4.14), note that the definition of (U 1 , U 2 ) ρ,τ can be also written as

(U 1 , U 2 ) ρ,τ (λ, p) = - π 4 π -π |p| 2 |λ| 2 -1 λ|λ| (cos ϕ -1) - |p| λ sin ϕ × U 1 (z 1 (λ, p, ϕ), -ξ(λ, p, ϕ))U 2 (z 2 (λ, p, ϕ), p + ξ(λ, p, ϕ))× χ 2τ ρ (ξ(λ, p, ϕ))χ 2τ ρ (p + ξ(λ, p, ϕ))dϕ, (4.16)
where

z 1 (λ, p, ϕ) = 2k(λ, p)(θ(-ξ(λ, p, ϕ)) + iω(-ξ(λ, p, ϕ))) i|p| , z 2 (λ, p, ϕ) = 2(k(λ, p) + ξ(λ, p, ϕ))(θ(p + ξ(λ, p, ϕ)) + iω(p + ξ(λ, p, ϕ))) i|p| , (4.17) (λ, p) ∈ Λ ρ,τ,ν , ϕ ∈ [-π, π], k(λ, p) is defined in (3.12b), ξ(λ, p, ϕ
) is defined by (3.20), θ, ω are the vector functions of (3.9), (3.10a).

We consider (4.11) as an integral equation for finding H from H 0 with unknown remainder Q ρ,τ , where H, H 0 , Q ρ,τ are considered on Λ ρ,τ,ν . Thus, actually, we consider (4.11) as an approximate equation for finding H on Λ ρ,τ,ν from H 0 on Λ ρ,τ,ν . To deal with (4.11) we use Lemmas 4.1-4.5 given below.

Let |||U ||| ρ,τ,µ = ess sup (λ,p)∈Λ ρ,τ,ν

(1 + |p|) µ |U (λ, p)| (4.18) for U ∈ L ∞ (Λ ρ,τ,ν ), where ρ > 0, τ ∈]0, 1[, ν ∈ S 2 , µ > 0.
Lemma 4.1. Let v and ρ satisfy the same assumptions that in Subsection 3.1. Let R ρ,τ , Q ρ,τ be defined by (4.4), (4.15 Lemma 4.1 is proved in Section 7.

), τ ∈]0, 1[. Then R ρ,τ ∈ L ∞ local (Λ ρ,τ,ν ), (4.19a) |R ρ,τ (λ, p)| ≤ 3b(µ 0 , |λ|, |p|)C 2 (1 -η) 2 (1 + 2τ ρ) µ-µ 0 (1 + |p|) µ 0 , (λ, p) ∈ Λ ρ,τ,ν , (4.19b) Q ρ,τ ∈ L ∞ (Λ ρ,τ,ν ), (4.20a) |||Q ρ,τ ||| ρ,τ,µ 0 ≤ 3b 4 (µ 0 )C 2 (1 -η) 2 (1 + 2τ ρ) µ-µ 0 , (4.20b) where 2 ≤ µ 0 ≤ µ, b(µ, |λ|, |p|) is defined in (3.27), η = η(C, ρ, µ) is defined by (3.1), b 4 (µ) = 1 π (b 1 (µ)n 1 + b 2 (µ)n 2 + b 3 (µ)n 3 ), ( 4 
Lemma 4.2. Let v and ρ satisfy the same assumptions that in Subsection 3.1. Let H 0 be defined by (4.8), (4.12), τ ∈]0, 1[. Then

H 0 ∈ L ∞ (Λ ρ,τ,ν ), (4.22a) |||H 0 ||| ρ,τ,µ 0 ≤ C 1 -η 1 + b 4 (µ 0 )C 1 -η , (4.22b)
where 2 ≤ µ 0 ≤ µ, η = η(C, ρ, µ) is defined by (3.1), b 4 is defined by (4.21). Lemma 4.2 is proved in Section 7.

Lemma 4.3. Let ρ > 0, ν ∈ S 2 , τ ∈]0, 1[, µ ≥ 2.
Let M ρ,τ be defined by (4.13), (4.14) (where λ, p the coordinates of Subsection 3.3 under assumption

(3.10a)). Let U 1 , U 2 ∈ L ∞ (Λ ρ,τ,ν ), |||U 1 ||| ρ,τ,µ < +∞, |||U 2 ||| ρ,τ,µ < +∞. Then M ρ,τ (U j ) ∈ L ∞ (Λ ρ,τ,ν ), j = 1, 2, (4.23) |||M ρ,τ (U j )||| ρ,τ,µ ≤ c 8 (µ, τ, ρ)(|||U j ||| ρ,τ,µ ) 2 , j = 1, 2, (4.24) |||M ρ,τ (U 1 ) -M ρ,τ (U 2 )||| ρ,τ,µ ≤ c 8 (µ, τ, ρ)(|||U 1 ||| ρ,τ,µ + |||U 2 ||| ρ,τ,µ )|||U 1 -U 2 ||| ρ,τ,µ , (4.25) 
where

c 8 (µ, τ, ρ) = 3b 1 (µ)τ 2 + 4b 2 (µ)ρ -1 + 4b 3 (µ)τ, (4.26) 
where b 1 , b 2 , b 3 are the constants of (3.27). Lemma 4.3 is proved in Section 7. Lemmas 4.1, 4.2, 4.3 show that, under the assumptions of Proposition 4.1, the nonlinear integral equation (4.11) for unknown H can be analysed for H

0 , Q ρ,τ , H ∈ L ∞ (Λ ρ,τ,ν ) using the norm ||| • ||| ρ,τ,µ 0 , where 2 ≤ µ 0 ≤ µ.
Consider the equation

U = U 0 + M ρ,τ (U ), ρ > 0, τ ∈]0, 1[, (4.27) 
for unknown U (where U 0 , U are functions on Λ ρ,τ,ν ). Actually, under the assumptions of Proposition 4.1, we suppose that U 0 = H 0 + Q ρ,τ or consider U 0 as an approximation to

H 0 + Q ρ,τ . Lemma 4.4. Let ρ > 0, ν ∈ S 2 , τ ∈]0, 1[, µ ≥ 2 and 0 < r < (2c 8 (µ, τ, ρ)) -1 . Let M ρ,
τ be defined by (4.13), (4.14) (where λ, p are the coordinates of Subsection 3.3 under assumption (3.10a)). Let U 0 ∈ L ∞ (Λ ρ,τ,ν ) and |||U 0 ||| ρ,τ,µ ≤ r/2. Then equation (4.27) is uniquely solvable for U ∈ L ∞ (Λ ρ,τ,ν ), |||U ||| ρ,τ,µ ≤ r, and U can be found by the method of successive approximations, in addition,

|||U -(M ρ,τ,U 0 ) n (0)||| ρ,τ,µ ≤ r(2c 8 (µ, τ, ρ)r) n 2(1 -2c 8 (µ, τ, ρ)r) , n ∈ N, (4.28) 
where M ρ,τ,U 0 denotes the map U → U 0 + M ρ,τ (U ).

Lemma 4.4 is proved in Section 8 (using Lemma 4.3 and the lemma about contraction maps).

Lemma 4.5. Let the assumptions of Lemma 4.4 be fulfilled. Let also Ũ 0 ∈ L ∞ (Λ ρ,τ,ν ), ||| Ũ 0 ||| ρ,τ,µ ≤ r/2, and Ũ denote the solution of (4.27) with U 0 replaced by Ũ 0 , where

Ũ ∈ L ∞ (Λ ρ,τ,ν ), ||| Ũ||| ρ,τ,µ ≤ r. Then |||U -Ũ ||| ρ,τ,µ ≤ (1 -2c 8 (µ, τ, ρ)r) -1 |||U 0 -Ũ 0 ||| ρ,τ,µ .
(4.29) Lemma 4.5 is proved in Section 8. Estimates (3.2), (3.3), Proposition 4.1 and Lemmas 4.1, 4.2, 4.3, 4.4, 4.5 imply, in particular, the following result.

Proposition 4.2. Let v and ρ satisfy the same assumptions that in Subsection 3.1. Let ν ∈ S 2 , τ ∈]0, 1[, 2 ≤ µ 0 < µ. Let H, H 0 be defined on Λ ρ,τ,ν by (4.8), (4.12) and M ρ,τ be defined by (4.13). Let

r min (µ, µ 0 , τ, ρ, C) ≤ r < (2c 8 (µ 0 , τ, ρ)) -1 , r min def = 2C 1 -η(C, ρ, µ) + 2b 4 (µ 0 )C 2 (1 -η(C, ρ, µ)) 2 1 + 3 (1 + 2τ ρ) µ-µ 0 , (4.30) 
where η is defined in (3.1), c 8 is defined by (4.26). Then the equation

Hρ,τ = H 0 + M ρ,τ ( Hρ,τ ) (4.31)
is uniquely solvable for Hρ,τ ∈ L ∞ (Λ ρ,τ,ν ), ||| Hρ,τ ||| ρ,τ,µ 0 ≤ r, by the method of successive approximations and

|||H -Hρ,τ ||| ρ,τ,µ 0 ≤ 3b 4 (µ 0 )C 2 (1 -2c 8 (µ 0 , τ, ρ)r)(1 -η(C, ρ, µ)) 2 (1 + 2τ ρ) µ-µ 0 .
(4.32)

Note that (4.30) can be fulfilled if and only if

r min (µ, µ 0 , τ, ρ, C) < (2c 8 (µ 0 , τ, ρ)) -1 . (4.33)
Using the definitions of η of (3.1) and c 8 of (4.26) one can see that: conditions (3.1) and (4.33) are fulfilled, if C ≤ c 9 (µ, µ 0 , ρ, τ ) for appropriate positive c 9 , (4.34)

where 2 ≤ µ 0 < µ, ln ρ ≥ 2, 0 < τ < 1. Using (4.34) one can see that Proposition 4.2 gives a method for approximate finding H on Ω ∞ ρ,τ from H on bΩ ρ,τ with estimate (4.32), at least, for sufficiently small potentials v in the sense v µ < C, C ≤ c 9 (µ, µ 0 , ρ, τ ). However, the main point is that Proposition 4.2 also contains a global result, see considerations given below in this section.

Due to (4.26) we have that

c 8 (µ 0 , τ, ρ) ≤ ε if 0 < τ ≤ τ (ε, µ 0 ), ρ ≥ ρ(ε, µ 0 ) (4.35)
for any arbitrary small ε > 0 and appropriate sufficiently small τ (ε, µ 0 ) ∈]0, 1[ and sufficiently great ρ(ε, µ 0 ). Using (4.35) and the definition of η of (3.1) we obtain that: conditions (3.1), (4.33) are fulfilled and

0 ≤ η(C, ρ, µ) < δ, 0 ≤ 2c 8 (µ 0 , τ, ρ) r min (µ, µ 0 , τ, ρ, C) < δ, if 0 < τ ≤ τ 1 (µ, µ 0 , C, δ), ρ ≥ ρ 1 (µ, µ 0 , C, δ), (4.36) 
where τ 1 and ρ 1 are appropriate constants such that τ 1 ∈]0, 1[ is sufficiently small and ρ 1 is sufficiently great, 2 ≤ µ 0 < µ, 0 < δ < 1. As a corollary of Proposition 4.2 and property (4.36), we obtain the following result.

Corollary 4.1. Let v satisfy (2.1) and v µ ≤ C. Let

0 < τ ≤ τ 1 (µ, µ 0 , C, δ), ρ ≥ ρ 1 (µ, µ 0 , C, δ), (4.37)
where 2 ≤ µ 0 ≤ µ, 0 < δ < 1. Then H on bΩ ρ,τ determines via (4.12), (4.31) the approximation Hρ,τ to H on Ω ∞ ρ,τ with the error estimate (4.32) (where r can be taken, for example, as r = r min of (4.30)) and, in particular, with

|||H -Hρ,τ ||| ρ,τ,µ 0 = O(ρ -(µ-µ 0 ) ) as ρ → +∞.
(4.38)

The constant C can be arbitrary great in Corollary 4.1 and, therefore, the result of Corollary 4.1 is global. (5.5) and ρ, τ, µ 0 are the same that in Proposition 4.2. Thus, under the assumptions of Proposition 4.2 (or under the assumptions of Corollary 4.1), formulas (5.2), (5.3), (5.4), (4.32) imply that v on B 2τ ρ can be approximately determined from Hρ,τ on Ω ∞ ρ,τ as v± (•, ρ, τ ) of (5.2), (5.3) and v -v± (•, ρ, τ ) 2τ ρ,µ 0 is smaller or equal than the righthand side of (4.32) and, in particular, is O(ρ -(µ-µ 0 ) ) as ρ → +∞.

(5.6)

6. Reconstruction of v from Φ In this section we summarize our global 3D reconstruction

Φ 1 → h bΘ ρ,τ 2 → v B 2τ ρ 3 → v (6.1)
developed in [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt. Anal. i Pril[END_REF], [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichletto-Neumann map with nonzero background potential[END_REF] and in Sections 4, 5 of the present work. See formulas (1.22), (1.3)-(1.12), (2.4) for notations used in (6.1). In (6.1) the numbers ρ > 0 and τ ∈]0, 1[ are parameters. The reconstruction (6.1) for fixed ρ and τ is approximate on the steps 2 and 3. The steps 1, 2, 3 of (6.1) consist in the following:

(1) To find h bΘ ρ,τ from Φ we use formulas and equations (1.23)-(1.25). In addition, if v is sufficiently close to some known non-zero background potential v 0 , then instead of (1.23)-(1.25) one can use their advanced version of [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichletto-Neumann map with nonzero background potential[END_REF] for improving the reconstruction stability.

(2) To find v on B 2τ ρ from h on bΘ ρ,τ (approximately but stably and with minimal approximation error) we proceed as follows

h bΘ ρ,τ -→ (1.4) H bΩ ρ,τ -→ (3.12) H bΛ ρ,τ,ν -→ (4.12) H 0 Λ ρ,τ,ν -→ (4.31) Hρ,τ on Λ ρ,τ,ν -→ (5.3) v± (•, τ, ρ) on B 2τ ρ , (6.2)
where v± (•, τ, ρ) approximates v on B 2τ ρ . See also formulas (2.4), (2.10), (2.11), (3.15), (3.18) concerning the sets bΩ ρ,τ , bΛ ρ,τ,ν , Λ ρ,τ,ν mentioned in (6.2). In (6.2) the substep from H 0 to Hρ,τ consists in solving the nonlinear integral equation (4.31), whereas all other substeps are given by explicit formulas.

(3) Finally, from v± (•, τ, ρ) of ( 6.2) we find v ± (•, τ, ρ) by formula (2.8), where v ± (•, τ, ρ) approximates v on R 3 .

One can see that on its steps 1 and 3 reconstruction (6.1) is reduced to results of [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt. Anal. i Pril[END_REF], [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichletto-Neumann map with nonzero background potential[END_REF] and to the inverse Fourier transform, whereas (6.2) is developed in the present work. Some rigorous results concerning (2.8), (6.2), were already summarized as Theorem 2.1 and Corollary 2.1 of Section 2.

In addition, under the assumptions of Theorem 2.1, a more detailed version of (2.7) is given by

|v(p) -v± (p, τ, ρ)| ≤ q(µ, µ 0 , τ, ρ, C)C 2 (1 + 2τ ρ) µ-µ 0 , q(µ, µ 0 , τ, ρ, C) = 3b 4 (µ 0 ) (1 -2c 8 (µ 0 , τ, ρ)r min (µ, µ 0 , τ, ρ, C))(1 -η(C, ρ, µ)) 2 , (6.3)
where η, b 4 , c 8 , r min are defined in (3.1), (4.21), (4.26), (4.30). Estimate (2.7) with

c 5 (µ, µ 0 , τ, δ) = 3b 4 (µ 0 ) (1 -δ) 3 (2τ ) µ-µ 0 (6.4)
follows from (6.3) and (4.36). Note that h bΘ ρ,τ , H bΩ ρ,τ and H bΛ ρ,τ,ν represent the same function in different coordinates. For stability analysis of (6.2) it is convenient to fix this function as H bΛ ρ,τ,ν . Under the assumptions of Theorem 2.1, this function has, in particular, the following properties (see (3.2), (3.3) and the proof of (4.22b)):

H ∈ C(bΛ ρ,τ,ν ), (6.5) H ρ,τ,µ 0 ≤ C 1 -η(C, ρ, µ) , (6.6) T b H ρ,τ,µ 0 ≤ C 1 -η(C, ρ, µ) 1 + b 4 (µ 0 )C 1 -η(C, ρ, µ) , (6.7) 
where C denotes the space of continuous functions, η is defined by (3.1),

(T b U )(λ, p) = 1 2πi T + ρ/|p| U (ζ, p) dζ ζ -λ(1 -0) , (λ, p) ∈ bΛ + ρ,τ,ν , (T b U )(λ, p) = - 1 2πi T - ρ/|p| U (ζ, p) λdζ ζ(ζ -λ(1 + 0)) , (λ, p) ∈ bΛ - ρ,τ,ν , (6.8) U ρ,τ,µ 0 = sup (λ,p)∈bΛ ρ,τ,ν (1 + |p|) µ 0 |U (λ, p)|, (6.9)
where U is a test function on bΛ ρ,τ,ν , bΛ ± ρ,τ,ν are defined in (4.9) (and bΛ ρ,τ,ν = bΛ + ρ,τ,ν ∩ bΛ - ρ,τ,ν , see (4.10)). Properties (6.5)-(6.7) are necessary properties of H bΛ ρ,τ,ν under the assumptions of Theorem 2.1. In addition, if two functions H 1 , H 2 satisfy (6.5)-(6.7), where τ , ρ satisfy (2.6), C > 0, 2 ≤ µ 0 < µ, 0 < δ < 1, then v± i (•, τ, ρ) on B 2τ ρ can be constructed from H i via (4.12), (4.31), (5.2), (5.3), i = 1, 2 (in the same way as v± (•, τ, ρ) is constructed from H bΛ ρ,τ,ν in the framework of Theorem 2.1), and (6.10) where • 2τ ρ,µ 0 in the left-hand side of (6.10) is defined as in (5.5), • ρ,τ,µ 0 in the right-hand side of (6.10) is defined by (6.9), T b is defined by (6.8).

v± 1 (•, τ, ρ) -v± 2 (•, τ, ρ) 2τ ρ,µ 0 ≤ (1 -δ) -1 T b (H 1 -H 2 ) ρ,τ,µ 0 ,
The stability estimate (6.10) follows from: (a) the maximum principle in λ for H 0 1 , H 0 2 , H 0 1 -H 0 2 , where H 0 n is constructed from H n via (4.12), n = 1, 2, (b) Lemma 4.5 and statement of (4.36), (c) arguments similar with the arguments used for (5.4).

In the present work, restrictions in time prevent us from discussing the stability of (6.1), (6.2) in more detail. 

H, χ 2τ ρ H, (1 -χ 2τ ρ )H ∈ L ∞ µ 0 (Ω\ Ωρ ), |||H||| ρ,µ 0 ≤ (1 -η) -1 C, |||χ 2τ ρ H||| ρ,µ 0 ≤ (1 -η) -1 C, |||(1 -χ 2τ ρ )H||| ρ,µ 0 ≤ (1 -η) -1 (1 + 2τ ρ) -(µ-µ 0 ) C, (7.1)
where η is given by (3.1), τ ∈]0, 1[, 0 ≤ µ 0 ≤ µ.

Formulas (4.19) follow from (4.4), (7.1), (3.26), (3.27). Formulas (4.20) follow from (4.15), (4.19), Lemma 11.1 of [START_REF] Novikov | On non-overdetermined inverse scattering at zero energy in three dimensions[END_REF] and the following formulas 

D - r u j (ζ, s) |λ| |ζ| d Re ζ d Im ζ |ζ -λ| = D + r u j (ζ, s) d Re ζ d Im ζ |ζ -λ -1 | , j = 1, 2, 3, r > 1/2, λ ∈ D - r , s > 0, (7.2) u 1 (ζ, s) = |ζ| (|ζ| 2 + 1) 2 , u 2 (ζ, s) = (|ζ| 2 + 1)s |ζ| 2 (1 + s(|ζ| + |ζ| -1 )) 2 , u 3 (ζ, s) = s |ζ|(1 + s(|ζ| + |ζ| -1 )) . ( 7 
ρ,τ (U, V )(λ, p) = I + ρ,τ (U, V )(λ, p) = - 1 π D + ρ/|p| (U, V ) ρ,τ (ζ, p) d Re ζ d Im ζ ζ -λ , (λ, p) ∈ Λ + ρ,τ,ν , (7.5a) 
I ρ,τ (U, V )(λ, p) = I - ρ,τ (U, V )(λ, p) = - 1 π D - ρ/|p| (U, V ) ρ,τ (ζ, p) λ d Re ζ d Im ζ ζ(ζ -λ) , (λ, p) ∈ Λ - ρ,τ,ν , (7.5b) 
where U, V ∈ L ∞ (Λ ρ,τ,ν ), |||U ||| ρ,τ,µ < +∞, |||V ||| ρ,τ,µ < +∞, (U, V ) ρ,τ is defined by (4.14), (4.16), ρ, ν, τ , µ are the same that in Lemma 4.3. Note that M ρ,τ (U j ) = I ρ,τ (U j , U j ), j = 1, 2, (7.6) M ρ,τ (U 1 ) -M ρ,τ (U 2 ) = I ρ,τ (U 1 -U 2 , U 1 ) + I ρ,τ (U 2 , U 1 -U 2 ), (7.7)

where U 1 , U 2 are the functions of Lemma 4.3. Using (7.6), (7.7) one can see that in order to prove Lemma 4.3 it is sufficient to prove that I ρ,τ (U, V ) ∈ L ∞ (Λ ρ,τ,ν ), (7.8) |||I ρ,τ (U, V )||| ρ,τ,µ ≤ c 8 (µ, τ, ρ)|||U ||| ρ,τ,µ |||V ||| ρ,τ,µ (7.9) under the same assumptions that in (7.5). Formulas (7.8), (7.9) follow from (7.5), (4.14), (4.16), (3.26), (3.27), (7.2), (7.3) and the following estimates: The proof of (7.11). One can see that (7.13) where r ≥ 1/2.

ζ ∈ D + r (4.6) ⇒ |ζ| 2 -4|ζ|r + 1 > 0, |ζ| < 1 ⇒ |ζ| < 2r(1 -1 -1/(2r) 2 ) ≤ (2r) -1 ,
The proof of (7.12). We have that (7.17) Estimates (7.12) follow from (7.14)-(7.17 where I ρ,τ (U, V ) is defined by (7.5).

In view of (8.8b) we can consider (8.8a) as a linear integral equation for "unknown" U -Ũ with given U 0 -Ũ 0 , U , Ũ . Using (7.9) and the properties |||U ||| ρ,τ,µ ≤ r, ||| Ũ||| ρ,τ,µ ≤ r we obtain that |||I ρ,τ (U -Ũ , U ) -I ρ,τ ( Ũ , U -Ũ )||| ρ,τ,µ ≤ 2c 8 (µ, τ, ρ)r|||U -Ũ ||| ρ,τ,µ .

(8.9)

Using (8.8b), (8.9) and solving (8.8a) by the method of successive approximations we obtain (4.29). Lemma 4.5 is proved.

1. 2 .

 2 The Gel'fand-Calderon problem. Consider the equation (1.1) in D ⊂ R d only, where D is an open bounded domain in R d , d ≥ 2, with sufficiently regular boundary ∂D, v is a sufficiently regular function on D = D ∪ ∂D.

  .8) For p ∈ R 3 \L ν we consider θ(p) and ω(p) such that θ(p), ω(p) smoothly depend on p ∈ R 3 \L ν , take values in S 2 , and θ(p)p = 0, ω(p)p = 0, θ(p)ω(p) = 0.

  .7) where D is a bounded open domain in C with sufficiently regular boundary and u is a sufficiently regular function on D = D ∪ ∂D. Let H(λ, p) = H(k(λ, p), p), (λ, p) ∈ (C\0) × (R 3 \L ν ), (4.8) where λ, p are the coordinates of Subsection 3.3 under assumption (3.10a).

  .21) where b 1 , b 2 , b 3 are the constants of (3.27) (the constants c 3 , c 4 , c 5 of Lemma 5.2 of [No4]), n 1 , n 2 , n 3 are the constants of Lemma 11.1 of [No4].

5.

  Approximate finding v on B 2τ ρ from Hρ,τ on Ω ∞ ρ,τ Consider, first, H on Ω ∞ ρ,τ,ν in the coordinates k, p as H on Λ ρ,τ,ν in the coordinates λ, p according to (4.8). If v satisfies (2.1), then formulas (3.4), (4.8), (3.12b), (3.13) imply that H(λ, p) → v(p) as λ → 0, H(λ, p) → v(p) as λ → ∞, (5.1) where p ∈ B 2τ ρ \L ν , τ ∈]0, 1[. Consider now Hρ,τ defined in Proposition 4.2. Under the assumptions of Proposition 4.2, the following formulas hold: Hρ,τ (λ, p) → v+ (p, ρ, τ ) as λ → 0, (5.2a) Hρ,τ (λ, p) → v-(p, ρ, τ ) as λ → ∞,

7.

  Proofs of Lemmas 4.1, 4.2, 4.3 Proof of Lemma 4.1. Under the assumptions of Subsection 3.1, due to (3.2), (3.3), (3.25), (4.2), we have that

  u j (ζ, |p|) d Re ζ d Im ζ |ζ -λ| ≤    (3/4)π(|p|/ρ) 2 for j = 1 4π/ρ for j = 2 2π|p|/ρ for j = 3,(7.10) where u 1 , u 2 , u 3 are defined by (7.3), 0 < |p| < 2τ ρ, 0 < τ < 1, λ ∈ D + ρ/|p| . In turn, estimates (7.10) follow from the estimatesζ ∈ D + r ⇒ |ζ| ≤ (2r) -1 , r ≥ 1ε ≤ 1, s > 0, |λ| ≤ ε.(To obtain (7.10) we use (7.11), (7.12) for r = ρ/|p|, ε = (2r) -1 , s = |p|.)

  ε 2 )s d Re ζ d Im ζ (|ζ -λ| + s(|ζ -λ| 2 + 1))|ζζ d Im ζ (|ζ -λ| + s(|ζ -λ| 2 + 1))|ζ -λ| , A 3 + B 3 ≤ 2

  Proof of Lemma 4.4. For U 0 , U, U 1 , U 2 ∈ L ∞ (Λ ρ,τ,ν ),|||U 0 ||| ρ,τ,µ ≤ r/2, |||U ||| ρ,τ,µ ≤ r, |||U 1 ||| ρ,τ,µ ≤ r, |||U 2 ||| ρ,τ,µ ≤ r, (8.1)using Lemma 4.3 and the assumptions of Lemma 4.4 we obtain thatM ρ,τ,U 0 (U ) ∈ L ∞ (Λ ρ,τ,ν ), |||M ρ,τ,U 0 (U )||| ρ,τ,µ ≤ |||U 0 ||| ρ,τ,µ + |||M ρ,τ (U )||| ρ,τ,µ ≤ r/2 + c 8 (µ, τ, ρ)r 2 < r, (8.2) |||M ρ,τ,U 0 (U 1 ) -M ρ,τ,U 0 (U 2 )||| ρ,τ,µ ≤ 2c 8 (µ, τ, ρ)r|||U 1 -U 2 ||| ρ,τ,µ , 2c 8 (µ, τ, ρ)r < 1, (8.3) where M ρ,τ,U 0 (U ) = U 0 + M ρ,τ (U ). (8.4) Due to (8.1)-(8.4), M ρ,τ,U 0 is a contraction map of the ball U ∈ L ∞ (Λ ρ,τ,ν ), |||U ||| ρ,τ,µ ≤ r.Using now the lemma about contraction maps and using the formulas|||U -M n ρ,τ,U 0 (0)||| ρ,τ,µ ≤ ∞ j=n |||M j+1 ρ,τ,U 0 (0) -M j ρ,τ,U 0 (0)||| ρ,τ,µ , (8.5) |||M ρ,τ,U 0 (0) -0||| ρ,τ,µ = |||U 0 ||| ρ,τ,µ ≤ r/2, (8.6) |||M j+1 ρ,τ,U 0 (0) -M j ρ,τ,U 0 (0)||| ρ,τ,µ (8.3) ≤ 2c 8 (ρ, τ, µ)r× |||M j ρ,τ,U 0 (0) -M j-1 ρ,τ,U 0 (0)||| ρ,τ,µ , j = 1,2, 3, . . . , (8.7) where U is the fixed point of M ρ,τ,U 0 in the aforementioned ball, M 0 ρ,τ,U 0 (0) = 0, we obtain Lemma 4.4.Proof of Lemma 4.5. We have thatU -Ũ = U 0 -Ũ 0 + M ρ,τ(U ) -M ρ,τ ( Ũ), (8.8a) M ρ,τ (U ) -M ρ,τ ( Ũ ) (7.7) = I ρ,τ (U -Ũ , U ) + I ρ,τ ( Ũ , U -Ũ ), (8.8b)