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We solve explicitely the differential system obtained by Peres for the construction of a conserved vector associated to any central potential. We then obtain a very direct access to the discontinuous behavior of this Fradkin-Bacry-Ruegg-Souriau perihelion vector.

II. BASICS OF 2D MOTION IN A CENTRAL POTENTIAL

Complex formulation

We consider a planar motion -→ r (t) = x(t) y(t) (O, -→ ux, -→ uy)

for a particle of mass m = 1 submitted to a potential U ( -→ r ), eventually singular at the origin. We choose to adopt a complex formulation where we represent the position by its corresponding affix z(t) = x(t) + iy(t), the potential being then viewed as a real valued function of z, U (z, z), defined on C or C * . The gradient of any real valued function of z and z is then given by :

-→ ∇U ( -→ r ) → 2 ∂U (z, z) ∂z (1) 
where

∂ ∂z = ∂ ∂z = 1 2 ∂ ∂x + i ∂ ∂y .
The equation of motion for our system takes the form:

.. z + 2 ∂U (z, z) ∂z = 0 ( 2 
)
where the dot represents the time derivative.

For two vectors -→ A and -→ B in the (O, -→ u x , -→ u y ) plane, -→ A × -→ B is represented in complex form by the real quantity Im AB , A and B be being the complex affixes of -→ A and -→ B respectively.

The angular momentum (which necesseraly conserves its direction orthogonal to the plane) -→ L (t) = -→ r (t) ×

.

-→ r (t) = L (t) -→ k , admits then the following correspondent :

L = Im z(t) . z(t) = 1 2i z . z - . zz (3) 
In the case of a central potential U (z, z) = U (|z|) = U (r), we have:

-→ ∇U (r) → z r U ′ (r) (4) 
where f ′ (x) = df (x) dx is the usual derivative of a function f of one variable x. Eq.(2) becomes simply:

.. z + z r U ′ (r) = 0 (5) 
Using this result, the angular momentum's conservation is immediate (see Eq.( 3)):

.

L = 1 2i z .. z - .. zz = 0 (6)

Radial equation of motion

If we use a polar representation for z, z = re iθ , with θ ∈ [0, 2π[, we have:

. (r 2 ) = 2 . rr = . zz + z . z (7) 
which gives:

. r = 1 2r

.

zz + z . z = 1 r z . z + iL (8) 
and (since e 2iθ = z z ) :

.

θ(t) = z . z - . zz 2ir 2 = L r 2 (t) (9) 
Then, we can write:

. z = .

re iθ + i

.

θre iθ = . r + i L r z r (10) and: 
..

z = .. r r - L 2 r 4 z (11) 
Then using Eq.( 5), we deduce an equation for the the radial motion:

..

r(t) = L 2 r 3 (t) -U ′ (r(t)) (12) 
which is readily integrated as :

.

r 2 = 2 E - L 2 2r 2 -U (r) (13) 
E is a constant of integration, which can be identified with the energy of the system, since from Eq.( 10) we have:

1 2 . z 2 = 1 2 . r r + i L r 2 z . r r -i L r 2 z = 1 2 . r 2 + L r 2 = E -U (r) (14) 
If we note T (r) = E -U (r), Eq.( 12) takes the form:

.

r(t) 2 = L 2 r 2 f (r(t)), (15) 
where :

f (r) = 2r 2 L 2 T (r) -1 = 2r 2 L 2 (E -V L (r)), (16) 
V L (r) = U (r) + L 2 2r 2 being the radial effective potential. From Eq.( 15) and Eq.( 16), we see that the radial oscillation motion presents, for bounded orbits, two turning point r m and r M , corresponding to the pericenters et apocenters (apsidal positions) of the orbital motion. They are roots of the equation:

f (r) = 0 ⇔ V L (r) = E (17) 
In the sequel, we will suppose that r m and r M , are simple roots, that is V ′ L (r m ) < 0 and V ′ L (r M ) < 0. At the apsidal positions, . r m = . r M = 0 and:

. z j = i . θ j z j = i L r 2 j z j , j = m, M (18) 
The i factor in the right hand side of Eq.( 18) implies that, for apsidal positions, the instantaneous speed vector is orthogonal to the position vector.

Note that if z(t) and . z(t) are continuous and differentiable for every values of t, the differentiability domain of r(t) is stricly limited to the real interval ]r m , r M [.

To extract from Eq.( 15) the radial celerity . r(t) as a real-valued function, the square root has to be constructed with a pre-defined sign. To take account of the turn back in the radial motion, this sign changes when r reaches the extremal values r m and r M , which corresponds to change the square root determination.

We obtain:

.

r(t) = ± L r(t) f (r(t)) (19) 
or:

dr(t) = ± L r f (r)dt (20) 
The + sign is chosen when r moves from r m to r M (increasing phase of the radial oscillation, dr(t) > 0) and the -sign during the reverse motion (decreasing phase of the radial oscillation, dr(t) < 0). To be more precise, we will index each phase of the motion by an integer number k ∈ N, the even value k = 2n corresponding to the decreasing phase of the n-th period (except for n = 0) and the odd value k = 2n + 1 corresponding to the increasing phase of the same period. With this convention, we then have:

dr(t) = (-1) k+1 L r(t) f (r(t))dt (21) and: 
.

r(t) = (-1) k+1 L r(t) f (r(t)) (22) 
Eq.( 21) gives implicitely the solution of the radial equation of motion Eq.( 12).

Orbital equation and r-parametrization of the motion

In the k-phase of the motion ,in every point except the apsidal ones, . r(t) is a monotonic function (see Eq.( 22)) and we can choose to parametrize the motion by r rather than by t.

For instance:

dθ dr(t) = . θ . r = (-1) k+1 1 r f (r) (23) 
where we have used Eq.( 22) and Eq.( 9). Choosing a reference time t 0 during the same phase, we can write:

θ (r(t)) = θ (r 0 ) + (-1) k+1 r(t) r0 dρ ρ f (ρ) (24) 
with r(t 0 ) = r 0 and the orbital equation for this phase writes:

θ (r) = θ (r 0 ) + (-1) k+1 r r0 dρ ρ f (ρ) (25) 
We have to be more careful if we want to use r as a global parameter for the motion. Indeed, since r(t) is a periodic function of t, t(r) and every monotonic function of t, as θ (see Eq.( 9)), will be multivalued. Therefore, at every k phase of the motion will be attached a different branch of the function.

For simplicity, we choose the initial condition:

r(t = 0) = r m θ (t = 0) = 0 (26)
Then, the different determinations of θ (r) corresponding to each phase of the motion are given by:

In the first phase of the motion :

θ (r(t)) = g(r(t)) (27) 
In the second phase of the motion :

θ (r(t)) = Φ - r(t) rM dρ ρ f (ρ) = 2Φ -g(r(t))
In the third phase of the motion :

θ (r(t)) = 2Φ + g(r(t)) ... (28) 
where:

g(r(t)) = r(t) rm dρ ρ f (ρ) , (29) 
Φ = g(r M ) = rM rm dr ′ r ′ √ f (r ′ )
being the apsidal angle.

More generally, we will write:

In the k-th phase of the motion :

θ k (r(t)) = 2nΦ + (-1) k+1 g (r(t)) ( 30 
)
where n is the integral part of k 2 .

From Eq.( 22) and Eq.( 23), we deduce the following expression for the instantaneous velocity in the k-th phase:

.

z(t) = (-1) k+1 f (r(t)) + i L r 2 (t) z(t) = L r(t) (-1) k+1 f (r(t)) + i e iθ k (r(t)) (31) 
θ k (r) being given by Eq.(30). Note that, since . z = λz where λ has a nonzero imaginary part, Eq.(31) ensures the non-colinearity of -→ r and .

-→ r .

In the sequel, we will have to use the vector .

-→ r × -→ L which has the following complex correspondent :

.

-→ r (t) × -→ L → iL . z(t) = -1 + (-1) k i f (r(t)) L 2 r 2 (t) z(t) (32) 
We see immediately that -→ L ×

.

-→ r and -→ r are always linearly independent, except at the apsidal positions.

III. PERES APPROACH TO THE FBRS VECTOR

In the special case of the Kepler system U (r) = -r -1 , the system admits the Laplace-Runge-Lenz vector,

-→ A LRL = .
-→ r × -→ L -1 r -→ r , as a supplementary conserved quantity 1 . In the complex formulation used above, this gives :

-→ A LRL → A LRL = iL . z - 1 r z (33) 
Following Peres [START_REF] Peres | A classical constant of motion with discontinuities[END_REF] , for the general central potential U (r), we will then look for a supplementary conserved vector of the form:

-→ A = . -→ r × -→ L r 2 L 2 a(r) + b(r) -→ r (34) 
whose associated complex correspondent is:

A = r 2 L 2 a(r) iL . z + b(r)z, (35) 
a(r) and b(r) being two real valued functions that we will have to determine (the factor r 2 L 2 in the first term has been introduced for future convenience).

Using Eq.(32), we can rewrite A in the k-th phase, as:

A k = b(r) -a(r) + (-1) k+1 i f (r)a(r) z (36) 

Differential system for the coefficients of the FBRS vector

On every time interval I on which A is constant we must have:

.

A = 0 (37)
that is, with Eq.( 31):

0 = d dt b(r) -a(r) + (-1) k+1 i f (r)a(r) z + b(r) -a(r) + (-1) k+1 i f (r)a(r) . z (38) 
.

r b ′ (r) -a ′ (r) + (-1) k+1 i f (r)a ′ (r) + a(r)f ′ (r) 2 f (r) z + b(r) -a(r) + (-1) k+1 i f (r)a(r) (-1) k+1 f (r) + i L r 2 z = 0 (39) 
Using Eq.( 22), this becomes:

(-1) k+1 f (r) b ′ (r) -a ′ (r) + b(r) -2a(r) r + i f (r)a ′ (r) + f ′ (r) 2 f (r) + f (r) -1 r a(r) + b(r) = 0 (40)
Consequently, in the k-phase of the motion, on the interval of radial values ]r m , r M [, we must have:

a ′ (r) -b ′ (r) + 2a(r)-b(r) r = 0 rf (r)a ′ (r) + a(r) r f ′ (r) 2 + f (r) -1 + b(r) = 0 (41)
Extracting a ′ (r) from the second equation above and substituting in the first one, we obtain, in matrix form:

a(r) b(r) ′ = -1 rf (r) r f ′ (r) 2 + f (r) -1 1 r f ′ (r) 2 -f (r) -1 f (r) + 1 a(r) b(r) (42) 

Exact solution

Peres [START_REF] Peres | A classical constant of motion with discontinuities[END_REF] , starting from a first order differential system equivalent to Eq.( 41) transforms it in a second order differential equation for the coefficient a(r). Nevertheless, the structure of this last equation is, at first sight, rather complicated and the author restricts its analysis to a characterization of the singularities.

Things are much more transparent if we choose to work with a slightly different unknown function.

where v (n) (x) = d n v dx n . The resolution of Eq.( 53) is immediate and gives:

u(r) = α cos g (r) + β sin g (r) , α, β ∈ R (54)
Reporting this result in Eq.( 44) and Eq.( 46), we finally have:

a(r) = 1 r √ f (r) (β cos g (r) -α sin g (r)) b(r) = a(r) + 1 r (α cos g (r) + β sin g (r)) , α, β ∈ R (55)
that is:

a(r) = γ r √ f (r) cos (g (r) + φ) b(r) = a(r) + γ r sin (g (r) + φ) , γ ∈ R, φ ∈ [0, 2π[ (56) 

Discontinuous behavior of A

The preceding result Eq.( 56) determines completely the form of A on ]r m , r M [ during a given phase of the motion. Indeed, inserting Eq.(56) in Eq.(36), we obtain:

A k = γ r sin (g (r) + φ) + (-1) k+1 i cos (g (r) + φ) z(r) = (-1) k+1 iγe (-1) k i(g(r)+φ) e iθ k (r) (57) 
Using Eq.( 30), this becomes:

A k = (-1) k+1 iγe (-1) k i(g(r)+φ) e i(2nΦ+(-1) k+1 g(r)) = (-1) k+1 γie (-1) k iφ+2niΦ (58) 
where n is the integer part of k 2 . Under a more detailed form, we have:

A 2n = -γe i π 2 +iφ+2niΦ A 2n+1 = γe i π 2 -iφ+2niΦ (59) 
The integration constants γ and φ for and determine then respectively the modulus and argument of the -→ A vector affix. The freedom in the choice of the parameters γ and φ induces that -→ A can be identified with any vector of the plane. We have the same type of result for the specific Kepler problem. Indeed, in this case, we can add to the Laplace-Runge-Lenz vector -→ A K a second conserved vector, -→ S K = -→ L × -→ A K , the so-called Hamilton vector 1,3,11 , whose constancy is a direct consequence of these ones of -→ L and -→ A K . Any linear combination of this two orthogonal vectors being conserved, we can build a conserved vector corresponding to any vector of the plane.

-→ S K and -→ A K are particularly interesting choices because they give the directions of the minor and major axes of the elliptical trajectory.

If we want that the functional forms of a(r) and b(r) being globally defined during all the motion, we have to keep the same values for γ and φ in every phase. With the choice φ = π 2 , Eq.(59) becomes:

A 2n = A 2n+1 = γe 2niΦ (60) -→
A is then constant when we pass from a even phase to the following odd one, that is when we cross the apocenter. But after a complete period of oscillation, when we reach the pericenter again, we pass from k = 2n to k = 2n + 1. At this moment the value of A 2n+1 change toA 2n+1 with:

A 2n+2 = A 2n+1 e 2iΦ (61) 
This corresponds to a 2Φ rotation of the associated vector. We recover here the discontinuity jumps (observed by Serebrennikov, Shabad, Buch and Denman [START_REF] Serebrennikov | Method of calculation of the spectrum of a centrally symmetric Hamiltonian on the basis of approximate O4 and SU3 symmetries[END_REF][START_REF] Buch | Conserved and piecewise-conserved Runge vectors for the isotropic harmonic oscillator[END_REF] and Peres [START_REF] Peres | A classical constant of motion with discontinuities[END_REF] and first studied in a detailed by Holas and March 21 ) which make FBRS vector only a piecewise conserved quantity: the perihelion vector A presents discontinuities at each pericenter (with the choice made here and at each apocenter if we choose the initial condition r(t = 0) = r M ) corresponding to a rotation of two times the apsidal angle. For Φ = π, which is the case of the Kepler problem U (r) = -r -1 for every values of the characteristic parameters of the motion L and E, -→ A is a true vector conserved quantity and is identical to the usual Laplace-Runge-Lenz vector -→ A K . Indeed, in this case, with E < 0, introducing Clairaut's variable 4 u = 1 r , we have (see Eq.( 29) and(see Eq.( 16)):

g(r) = - L √ 2 u um= 1 rm dv -|E| + v -L 2 2 v 2 (62) 
which gives 29 for 1 -2L 2 |E| = e 2 > 0 8 :

g(r) = arg sin 1 -L 2 v e u= 1 r um (63) Since r m is the smallest root of f (r) = 2r 2 L 2 -|E| + 1 r -L 2 2r 2 = 0, that is, u m = 1 rm is the greatest root of -|E| + u -L 2
2 u 2 = 0, we obtain:

u m = 1 + e L 2 (64) 
and:

g(r) = arg sin 1 -L 2 r e + π 2 (65) 
Then (see Eq.( 56)

with φ = π 2 ):    a(r) = γ r √ f (r) cos g (r) + π 2 = -γ r √ f (r) 1 -r-L 2 er 2 = -γ L 2 er 2 b(r) = a(r) + γ r sin g (r) + π 2 = -γ L 2 er 2 -γ r r-L 2 er = -γ 1 er (66) 
Taking γ = -e, we recover the coefficients of the usual Laplace-Runge-Lenz vector (see Eq.(33):

a(r) = L 2 r 2 b(r) = 1 r (67) 
In the isotropic harmonic oscillator problem (Hooke's problem) Φ = π 2 , for every L and E. The global direction is then conserved but the sense of -→ A is alterned at each pericenter crossing :

-→ A → --→ A [START_REF] Serebrennikov | Method of calculation of the spectrum of a centrally symmetric Hamiltonian on the basis of approximate O4 and SU3 symmetries[END_REF][START_REF] Buch | Conserved and piecewise-conserved Runge vectors for the isotropic harmonic oscillator[END_REF] . The generalized Hamilton vector -→ S = -→ L × -→ A is subject to the same phenomenon :

-→ S → --→ S . As for the Fradkin tensor T = 1 2 .

-→ r ⊗ .

-→ r + ω 2

2

-→ r ⊗ -→ r , recalling that it can be written as

11 T = ω 2 2 -→ A ⊗ -→ A + 1 2|A| 2
-→ S ⊗ -→ S , we see immediately that it's a global invariant of the motion.

As established by Bertrand 25,[START_REF] Grandati | An alternative proof of Bertrand's theorem[END_REF] more than one century ago, Kepler and Hooke potentials are the only central potentials for which the apsidal angle is commensurable with π for every values of the initial parameters of the motion. For all the other central potentials, this condition, which is necessary for the closure of the orbit, is obtained only for specific values of E and L. In these cases, as established by Holas and March 21 , it is still possible for an orbit of multiplicity n to build global geometrical invariants in form of n-arm stars by using the n distinct FBRS vectors associated to the system. Nevertheless, as we have seen before, the existence of a general (that is for every initial condition) true invariant vector or tensor is a specificity of Kepler and Hooke problems respectively.
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P. G. L. Leach and G. P. Flessas, " Generalisations of the Laplace-Runge-Lenz vector ," J. Nonlin. Math. Phys.10, 340-423 (2003).

Indeed, it is readily seen that the first equation in Eq.( 41) can be rewritten: ra ′ (r) + 2a(r) = (rb(r))

Introducing an auxiliary function u(r) defined by:

the above equation Eq.(41) becomes:

Then:

where the integration constant b 0 has been chosen equal to 0. We can report the expressions Eq.( 44) and Eq.( 46) of a(r) and b(r) in terms of u(r) in the second equation of Eq.( 41). This gives:

or :

In a more compact form, we obtain the following second order differential equation for u(r):

or (see Eq.( 29)):

The coefficients in Eq.( 50) depending only on g (r), if we define:

Eq.( 50) becomes then:

g ′ (r) v (1) (g (r)) + (g ′ (r)) 2 v(g (r)) = 0 (52) that is, simply:

v [START_REF] Goldstein | Prehistory of the "Runge-Lenz" vector[END_REF] (g (r)) + v(g (r)) = 0 (53)