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Consider a multidimensional SDE of the form X t = x + t 0 b(X s-)ds + t 0 f (X s-)dZs where (Zs) s≥0 is a symmetric stable process. Under suitable assumptions on the coefficients the unique strong solution of the above equation admits a density w.r.t. the Lebesgue measure and so does its Euler scheme. Using a parametrix approach, we derive an error expansion w.r.t. the time step for the difference of these densities.

Introduction

Consider the following R d -valued Stochastic Differential Equation (SDE in short)

X t = x + t 0 b(X s-)ds + t 0 f (X s-)dZs, (1.1)
where b, f are respectively Lipschitz continuous mappings from R d to R d and R d to R d ⊗ R d and (Zs) s≥0 is a general Lévy process. The previous assumptions guarantee the existence of a unique strong solution to (1.1). Also, this solution satisfies the strong Markov property, see e.g. Theorem 7 and 32 Chapter 5 in Protter [Pro04]. Let T > 0 be a fixed time horizon and (X N t ) t∈Λ a given approximation scheme of (X t ) t∈[0,T ] associated to the time step h := T /N, N ∈ N * on the grid Λ := {t i := ih, i ∈ [[0, N ]]}. When speaking about weak approximation of (1.1) two kinds of quantities are of interest. The first one writes for a suitable class of test functions g. The second one concerns, when it exists, the approximation of the transition density p of the original SDE (1.1). If the approximation scheme (X N t ) t∈Λ admits as well a transition density p N , the quantity under study becomes E 2 (x, y, T, N ) := (pp N )(T, x, y).

In both cases, the goal is to give a bound or an error expansion of these quantities in terms of h. The error expansions are particularly useful for practical simulation. For E 1 , the expansion allows to use the Romberg Richardson extrapolation to improve the convergence of the discretization error, see e.g. Talay and Tubaro [TT90]. On the other hand, if p and p N exist, and a suitable expansion of E 2 holds, it can be useful to estimate the sensitivity of E 1 w.r.t. to the spatial variable x and it also allows to get a control on E 1 for a wider class of test functions g than those considered by the direct methods used to control this quantity, see e.g. Guyon [Guy06]. Indeed, the typical assumptions and techniques associated to the study of E 1 and E 2 are quite of different nature.

In the continuous case, i.e. Zs = bs + σWs where (Ws) s≥0 is a standard ddimensional Brownian motion, provided the test function g and the coefficients b, f are sufficiently smooth and g has polynomial growth, without any additional assumption on the generator Talay and Tubaro [TT90] derive an error expansion at order 1 for E 1 (x, T, N ) when (X N t ) t∈Λ is the Euler approximation. Their proof is based on standard stochastic analysis tools: Itô's expansions and stochastic flows. To obtain the same kind of result for bounded Borel functions g some non degeneracy has to be assumed, namely hypoellipticity of the underlying diffusion, and the proof relies on Malliavin calculus techniques, see Bally and Talay [BT96a]. The authors also manage to extend their results to E 2 (x, y, T, N ) for a slightly modified Euler scheme [BT96b].

Anyhow, in the uniformly elliptic case, the most natural approach to handle the estimation of the quantity E 2 (x, y, T, N ) consists in using the so called "parametrix" technique introduced to obtain existence and controls on the fundamental solutions of PDEs, see e.g. Mc Kean and Singer [MS67] or Friedman [Fri64]. Roughly speaking it consists in expressing the density of X T in terms of an infinite sum of suitable iterated kernels applied to the density of an SDE with constant coefficients. This has been done successfully by Konakov and Mammen [KM02].The main advantage of this approach is that the density of the solution X T and the Euler approximation X N T can be expressed in the same form and therefore quite directly compared. Furthermore this technique turns out to be quite robust and can be applied as soon as good controls on the densities p, p N and their derivatives are available, see e.g. [KMM08] for an extension to a slightly degenerate framework.

For a general Lévy process Z and suitable smooth functions b, f , g, under additional assumptions on the behavior at infinity of the Lévy measure ν of Z, that is integrability conditions of the large jumps, Protter and Talay [PT97], manage to get a control at order one or even an error expansion for E 1 (x, T, N ) with the same approach as in [TT90]. In that work the approximation is the Euler scheme which for a general Lévy measure ν cannot always be exactly simulated on a computer.

The quantity E 1 (x, T, N ) for approximations of the Euler scheme that can be simulated has also been studied by Jacod et al. [JKMP05] who derived bounds at order 1. Moment conditions are also assumed. We finally refer to the work of Hausenblas and Marchis [HM06] for approximations of Poisson jump measures that are easy to simulate.

In this work, we consider the case where (Z t ) t≥0 is an α-stable symmetric process, α ∈ (0, 2). Under suitable non degeneracy assumptions on its coefficients specified below (see (A-1)-(A-3)), equation (1.1) is known to have a density p w.r.t. the Lebesgue measure. This can be proved via a Malliavin calculus-Bismut integration by parts approach, see e.g. Bichteller et al. [BGJ87]. Also, a direct construction of this density using a parametrix expansion has been obtained by Kolokoltsov [Kol00] who derived as well "Aronson's like" bounds with time singularity depending on the index α of the stable process (Z t ) t≥0 .

Analogoulsy to the "diffusion case" the first step of the parametrix is to consider that the density p(T, x, y) of (1.1) can be approximated by the density of the process X y t = x + b(y)t + f (y)Z t at time T . Namely, we freeze the coefficients in (1.1) at the final spatial point. The next crucial point is to obtain sharp estimates of the stable density p y (T, x, .) of X y T and its derivatives in order to solve the parametrix integral equations.

Stable driven SDEs appear in various applicative fields, from mathematical physics to electrical engineering or financial mathematics, see [IP06], [SK74] or [JMW96], therefore their approximation becomes of interest. To approximate equation (1.1), setting φ(t) := inf{t i : t i ≤ t < t i+1 }, we introduce the Euler scheme

X N t = x + t 0 b(X N φ(s) )ds + t 0 f (X N φ(s) )dZs. (1.2)
The computation of the above scheme only requires to be able to simulate exactly the increments of (Z t ) t≥0 , which up to a self similarity argument only amounts to simulate a stable law. This aspect is for instance discussed in Samorodnitsky and Taqqu [ST94], Weron and Weron [WR95] or Section 3 of [PT97]. Under the same assumptions (A-1)-(A-3), the Euler scheme defined in (1.2) also has a density p N .

Observe that the results of [PT97], [JKMP05] cannot be directly applied, even for the study of E 1 (x, T, N ), since stable laws have heavy tails. Comparing the parametrix developments of p and p N we obtain an expansion with leading term of order 1 in h for E 2 (x, y, T, N ). The parametrix expansion of p is discussed in [Kol00], see also Section 3 and Appendix, whereas the parametrix expansion of p N can be related to the ideas developed in [KM00, KM02] for the diffusive case corresponding to an index of stability equal to 2. This result also emphasizes the robustness of the method that naturally extends to a broad class of processes. Let us mention that, using a Malliavin calculus approach, Hausenblas [Hau02], derived an upper bound of order one w.r.t. h for the quantity E 1 (x, T, N ), g ∈ L ∞ in the scalar case. Concerning functional limit theorems for the approximation of stable driven SDEs we refer to the work of Jacod [Jac04].

The paper is organized as follows. In Section 2 we state our standing assumptions and main results. In Section 3 we prove the existence of the densities for both the stable driven equation and its Euler scheme and also give a parametrix representation of these densities. Section 4 is dedicated to the proof of the main results. Eventually, we state in Section 5 weaker assumptions under which our main result holds and we also briefly discuss how to extend it to the case of a stable process perturbed by a compound Poisson process.

Assumptions and Main results

Assumptions and Notation

In the following we consider symmetric stable processes, that is, for all

t ≥ 0, u ∈ R d , E[exp(i u, Z t )] = exp(it γ, u + t S d-1 +∞ 0 e iρ u,s -1 -i u, ρs 1 + ρ 2 dρ ρ 1+α λ(ds)) = exp(it γ, u -t S d-1 | s, u | α λ(ds)), (2.1)
where λ is a symmetric measure on the unit sphere S d-1 (i.e. for every A in the Borel σ-field B(S d-1 ), λ(A) = λ(-A)). The second equality in equation (2.1) is then obtained by direct integration over ρ and λ = Cα λ with

Cα := Γ (1 -α)α -1 cos πα 2 I α =1 + π 2 I α=1 .
We refer to the proof of Theorem 9.32 in Breiman [Bre68] and Lemma 2, Chapter XVII.4 in Feller [Fel66] for the expression of Cα.

We now introduce our assumptions. Fix an integer q ≥ 2. We assume that (A-1) For d ≥ 2, the spherical measure λ has a C q (S d-1 ) surface density and for all

d ≥ 1, there exist constants 0 < C 1 ≤ C 2 < +∞, ∀p ∈ R d , C 1 |p| α ≤ S d-1 | p, s | α λ (ds) ≤ C 2 |p| α .
(A-2) The coefficients b and f and their derivatives up to order q are uniformly bounded in x. Thus, for 1 < α < 2, B(x) := b(x) + f (x)γ is uniformly bounded.

We impose for 0 < α ≤ 1, B(x) = 0 for all x ∈ R d .

(A-3) There exist constants 0

< c ≤ c < +∞ s.t. for all x ∈ R d , ξ ∈ R d , c|ξ| 2 ≤ f (x)ξ, ξ ≤ c|ξ| 2 .
From now on we assume that Assumptions (A-1)-(A-3) are in force.

Remark 21 Note that for d = 1, with the convention S 0 = {-1, 1}, we have C 1 = C 2 in (A-1) even without symmetry. The symmetry is actually not needed in that case, see the beginning of Section 3 in [Kol00].

Remark 22

The zero drift condition in (A-2) comes from the fact that for α ∈ (0, 1] the addition of a drift of order t does not correspond to a negligible term in small time with respect to the natural scale t 1/α , see Appendix B in [KM10] for details.

In the following we denote by C a positive generic constant that can depend on α, d, the bounds appearing in the previous assumptions but neither on N nor on the spatial points involved. Its value may change from line to line. Other possible dependencies, especially w.r.t. the final time T are explicitely specified. Concerning functional spaces, we denote by C k b (R d ), k ∈ N * , the Banach space of continuous bounded functions having bounded derivatives up to and including the order k with the norm f :

= max 0≤l≤k sup x∈R d |f (l) (x)|. Eventually C k 0 (R d ) stands for the functions in C k b (R d ) with compact support.

Generator

From equation (2.1) and standard computations, see e.g. equation (5.11) in [JKMP05], we derive that for every smooth function g ∈ C 2 0 (R d ), the generator of (1.1) writes

Φg(x) = B(x), ∇xg(x) - R d g(x + f (x)y) -g(x) - ∇xg(x), f (x)y 1 + |y| 2 ν(dy),
where B(x) = b(x) + f (x)γ and ν stands for the Lévy measure of Z. Introduce for all

A ∈ B(R d ), ν f (x) (A) := ν({y ∈ R d : f (x)y ∈ A})
and denote by λf(x) its spherical part (which is still a symmetric measure). Setting z = f (x)y in the above equation, using the symmetry and the polar coordinates we derive:

Φg(x) = B(x), ∇xg(x) + S d-1 +∞ 0 g(x + ρs) -g(x) - ρ ∇xg(x), s 1 + ρ 2 dρ ρ 1+α λf(x) (ds).
(2.2)

Remark 23 Denote similarly to (2.1), λ f (x) = Cα λf(x) . The uniform ellipticity condition (A-3) allows to have good controls on the measure λ f (x) (•). As a consequence of (A-1), (A-3) one gets that there exist constants 0

< C 1 = C 1 (c, d, α) ≤ C 2 = C 2 (c, d, α) < +∞ s.t. ∀p ∈ R d , x ∈ R d , C 1 |p| α ≤ S d-1 | p, s | α λ f (x) (ds) ≤ C 2 |p| α .
(2.3)

Main results

Proposition 21 For every t > 0 the solution X t (resp. X N t ) of (1.1) (resp. (1.2)) has a density p(t, x, •)(resp. p N (t, x, •)) w.r.t. the Lebesgue measure. Additionally, as a function of the space variables the density p is in

C q b (R d × R d ) if α > 1 and in C q-1 b (R d × R d ) if α ≤ 1.
To state the theorem we first need some notation. Introduce for all ξ ∈ R d and all smooth function ϕ(t, x, y) the integro-differential operators:

Φ ξ ϕ(t, x, y) = B(ξ), ∇xϕ(t, x, y) + S d-1 +∞ 0 g(x + ρs) -g(x) - ρ ∇xg(x), s 1 + ρ 2 dρ ρ 1+α λf(ξ) (ds).
(2.4)

With this definition we write for given (x, y) ∈ R d :

Φ * ϕ(t, x, y) = Φyϕ(t, x, y), ∀m ∈ N * , Φ * m ϕ(t, x, y) = Φ ξ m ϕ(t, x, y) | ξ=x ,
(2.5) Note that we have Φ * ϕ(t, x, y) = Φϕ(t, x, y) defined in (2.2) but in general, for m ≥ 2, Φ * m ϕ(t, x, y) = (Φ) m ϕ(t, x, y). Define now, for t > 0, the kernel H(t, x, y) := (Φ -Φy) p y (t, x, y)

(2.6)

where p y (t, x, y) denotes the density at point y of X t = x+b(y)t+f (y)Z t . Note that the variable y acts here twice: as the argument of the density and as a defining quantity of the process X t (≡ X t,x,y ), i.e. the coefficients are frozen in y. Eventually we introduce the continuous and discrete convolution operators

ϕ ⊗ ψ(t, x, y) = t 0 du dzϕ(u, x, z)ψ(t -u, z, y), ∀t ∈ [0, T ], ϕ ⊗ N ψ(t, x, y) = t 0 du dzϕ(φ(u), x, z)ψ(t -φ(u), z, y), ∀t ∈ {(t i ) i∈[[1,N ]] },
with φ(u) is defined just before (1.2) and denotes the largest discretization time lower or equal to u. Also ϕ ⊗ H (0) = ϕ and ϕ ⊗ H (r) = ϕ ⊗ H (r-1) ⊗ H stands for the r-fold convolution.

Theorem 21 Suppose q > d + 4. Take 0 < M ≤ q -(d + 4). There exists a function

R M (T, x, y) with |R M (T, x, y)| ≤ C M (T ) 1 1+|y-x| d+α := ρ α,M (T, y -x) for some positive constant C M (T ) such that (p -p N )(T, x, y) = M-1 l=1 h l (l + 1)! p ⊗ N Φ -Φ * l+1 p d (T, x, y) - - M-1 k=1 h k (k + 1)! p d ⊗ N Φ * -Φ * k+1 p N (T, x, y) + h M R M (T, x, y) with 0 l=1 • • • = 0 and ∀t ∈ {(t i ) i∈[[1,N ]] }, p d (t, x, y) := ∞ r=0 p ⊗ N H (r) (t, x, y). It holds that M-1 l=1 p ⊗ N Φ -Φ * l+1 p d (T, x, y) ≤ ρ α,M (T, y -x), M-1 k=1 p d ⊗ N Φ * -Φ * k+1 p N (T, x, y) ≤ ρ α,M (T, y -x).
Remark 24 In the above expression, one writes for all

l ∈ [[1, M -1]], Φ -Φ * l+1 ϕ(t, x, y) = l+1 k=1 C k l+1 Φ k (-Φ * ) l+1-k ϕ(t, x, y), whereas, ∀k ∈ [[1, M -1]], Φ * -Φ * k+1 ϕ(t, x, y) = ( Φ ξ -Φy) • • • ( Φ ξ -Φy) (k+1) times ϕ(t, x, y)| ξ=x = ( Φ ξ -Φy) k+1 ϕ(t, x, y) ξ=x .
Remark 25 The terms in the previous expansion depend on N . Anyhow using iteratively the Theorem and controls on ⊗ N -⊗ (see also Lemma 41) it is possible to obtain an expansion with terms independent of N . For small M explicit formulas are thus easily derived but in all generality the terms become less transparent. For M = 2 one gets

(p -p N )(T, x, y) = h 2 p ⊗ N (Φ -Φ * ) 2 p d -p d ⊗ N ( Φ * -Φ * ) 2 p N (T, x, y) +h 2 R 2 (T, x, y) = h 2 p ⊗ (Φ -Φ * ) 2 p -p ⊗ ( Φ * -Φ * ) 2 p (T, x, y) +h 2 R 2 (T, x, y) = h 2 (p ⊗ (Φ 2 -Φ 2 * )p)(T, x, y) + h 2 R 2 (T, x, y),
where R 2 (T, x, y) ≤ C(T )ρ α,2 (T, yx) for some positive constant C(T ).

From the above expansion and the controls on the density and its derivatives, see e.g. Theorems 3.1, 3.2 and Proposition 3.1 in [Kol00] or Lemma 43, we can derive the error expansion for E 1 (x, T, N ) for measurable functions g satisfying the growth condition

∃C > 0, |g(x)| ≤ C(1 + |x| β ), β < α.
In particular, we do not need the smoothness assumption on g required in the approach of [TT90], [PT97]. We recall that the expansion of E 1 (x, T, N ) allows from a practical point of view to improve the convergence rate of the discretization error using the Romberg Richardson extrapolation.

This simply consists in observing that the expansion yields

E[g(X T )] -(E[2g(X 2N T )] - E[g(X N T )]) = O(h 2 ).
The associated Monte Carlo estimator, involving a refined scheme, is then used for simulations see [TT90] for details.

Also, the expansion can be used to study the sensitivity of E 1 (T, x, N ) w.r.t. x without any additional assumption on g. This is crucial for financial applications (hedging), see e.g. Guyon [Guy06] for further developments in the diffusive case.

3 Stable driven equations and their Euler scheme: existence of the density and associated parametrix expansion

Stable driven equation

Proof of Proposition 21: existence of the density for the solution of (1.1)

For (X t ) t≥0 , the existence of the density derives from Proposition 3.4 in [Kol00], where some properties of the fundamental solution of ∂ t p(t, x, y) = Φp(t, x, y), p(0, x, y) = δ(y -x) are discussed, and a standard identification argument, see e.g. Dynkin [Dyn63], Theorem 2.3, p. 56. The stated smoothness of the density is then a consequence of point (ii) of the same Proposition.

Remark 31 The existence of the density is discussed in Bichteler et al. [BGJ87],

where it is proved thanks to a Bismut-Malliavin approach. This technique requires the computation of a tangent equation associated to the gradient flow that involves the derivatives of the coefficients of equation (1.1). Thus, some additional smoothness of the coefficients is needed, see e.g. Theorem 6.48 of the above reference. We also mention the result of Picard [Pic96], Theorem 4.1, that gives existence and smoothness of the density for Lévy driven SDEs for very singular Lévy measures, provided there are sufficiently small jumps. For smooth coefficients b, f , it includes in particular the case of (1.1) where the spherical measure λ can be atomic.

Parametrix expansion of the density

For the sake of completeness and also because it is crucial for the discrete model we briefly recall how to get through a "parametrix" approach a series expansion for the density p(t, x, y).

Introduce, for all x, y ∈ R d the following stochastic "frozen" stable driven equation X t ≡ X t,x,y defined for t ≥ 0 by

X t = x + t 0 b(y)du + t 0 f (y) dZu. (3.1)
By computation of the Fourier transform of Z t and Fourier inversion the transition

density p y (t, x, z) of X t at point z ∈ R d explicitly writes p y (t, x, z) = 1 (2π) d e -i z-x-tB(y),p exp -t S d-1 | p, s | α λ f (y) (ds) dp, (3.2)
where λ f (y) has been introduced in Section 2.2. The densities of the solutions of (3.1) and (1.1) satisfy respectively

∂ p y ∂t (t, x, z) = Φy p y (t, x, z), for t > 0, (x, z) ∈ (R d ) 2 , p y (0, x, z) = δ(z -x), ∂p ∂t (t, x, z) = Φp(t, x, z), for t > 0, (x, z) ∈ (R d ) 2 , p(0, x, z) = δ(z -x). (3.3)
Note carefully that the derivatives in Φy are taken w.r.t. the x variable.

We will speak about the operators appearing in (3.3) as the "frozen" and "unfrozen" ones. In the following 

∀(t, x, z) ∈ R + * ×(R d ) 2 , p(t, x, z) := p z (t, x, z). Hence, from (2.6) ∀(t, z, y) ∈ R + * × (R d ) 2 , H(t, z, y) = (Φ -Φy) p(t, z, y) = ( Φz -Φy) p(t,
(p -p) (t, x, y) = t 0 ds ∂ ∂s p (s, x, z) p (t -s, z, y) dz = t 0 ds [ t Φzp (s, x, z) p (t -s, z, y) -p (s, x, z) Φy p (t -s, z, y)]dz = p ⊗ H(t, x, y).
The representation (3.4) then follows by simple iteration.

Remark 32 Note that the previous expansion is "formal". The convergence of the r.h.s. in (3.4) is investigated in the proof of Theorem 3.1 in [Kol00] and can also be derived with the controls of Lemmas A1 and A2 below. For the sake of completeness, a short proof of this convergence is also given in Appendix B.

Euler scheme

We consider now, for given N ∈ N * , the Euler scheme for equation (1.1) at the discretization times:

X N 0 = x, X N ti+1 = X N ti + b(X N ti )h + f X N ti Z ti+1 -Z ti recalling h = T /N .

Proof of Proposition 21 for the Euler scheme: existence of the density

For each N ∈ N * , (X N ti ) i∈[[0,N ]] is a Markov chain. Given the past {X N t l = x l , l ∈ [[0, i]]}, the conditional distribution of the innovations b(X N ti )h + f X N ti Z ti+1 -Z ti
has conditional density p xi (h, 0, •) (with the notation of (3.1), (3.2)). This proves the existence of the density for the discretization scheme.

Parametrix expansion for the Euler scheme

To give for the Euler scheme an expansion similar to equation (3.4), that will also be the starting point for our error expansion, we need to define, for fixed j, k, 0

≤ j < k ≤ N and x, y ∈ R d additional "frozen" Markov chains ( X N t l ) l∈[[j,k]] = ( X N t l ,x,y ) l∈[[j,k]]
. Their dynamics is described by

X N tj = x, X N ti+1 = X N ti + b(y)h + f (y) Z ti+1 -Z ti , i ∈ [[j, k -1]]. Given the past { X N t l = x l , l ∈ [[j, i]
]}, the conditional distribution of the innovations b(y)h+f (y)(Z ti+1 -Z ti ) has conditional density p y (h, 0, •) and, hence, does not depend on the past. Note that for the grid points (t i ) i∈[[0,N ]] the transition densities of the solution Xs,x,y of (3.1) coincide with the transition densities of the chain X N tj ,x,y for For all 0 ≤ j < k ≤ N, (x, y) ∈ (R d ) 2 , we denote by p N t kt j , x, y and p N (t kt j , x, y) the transition probability densities between times t j and t k from point x to y of the chains X N and X N respectively. In particular, p N (t kt j , x, y) = p y (t kt j , x, y) = p(t kt j , x, y).

(3.5)

Before stating the parametrix expansion of p N in terms of p N , we need to introduce a kernel H N that is the "discrete" analogue of H defined in (2.6):

H N (t k -t j , x, y) = L N -L y N p N (t k -t j , x, y), (3.6) with L N ϕ(t k -t j , x, y) = h -1 { p N (h, x, z)ϕ(t k -t j+1 , z, y)dz -ϕ(t k -t j+1 , x, y)}, L y N ϕ(t k -t j , x, y) = h -1 { p y (h, x, z)ϕ(t k -t j+1 , z, y)dz -ϕ(t k -t j+1 , x, y)}.
Note that the previous definitions yield p N (h, x, z) = p x (h, x, z). We also mention that, because of the discretisation, there is a slight "shift" in time in the definition of H N .

Namely we have t kt j+1 instead of the somehow expected t kt j .

Lemma 31 For 0 ≤ j < k ≤ N the following formula holds:

p N (t k -t j , x, y) = k-j r=0 ( p N ⊗ N H (r) N )(t k -t j , x, y) (3.7)
where in the calculation of p N ⊗ N H (r)

N (r-fold convolution) we define

p N (0, x, y) = p N (0, x, y) = δ(x -y).
The proof of this lemma is given in [KM00], Lemma 3.6 and does not rely on the specific distribution of the innovations.

Remark 33 With the convention that H (r) x, y). This expression will often be used in the sequel.

N = 0 for r > k -j, equation (3.7) also writes p N (t k -t j , x, y) = ∞ r=0 ( p N ⊗ N H (r) N )(t k -t j ,

Proof of the main results

In this section, we state in Subsection 4.1 the various points needed to prove Theorem 21. The proofs are postponed to Subsection 4.2. As mentioned earlier, the key idea consists in comparing the parametrix expansions of the densities p and p N respectively given by (3.4) and (3.7). In the whole section we suppose that the assumptions of Theorem 21 hold.

Proof of Theorem 21

For the previously mentioned comparison to be possible we first need to estimate a difference between the transition density p(T, x, y) and p d (T, x, y) := r≥0 p ⊗ N H (r) (T, x, y) which is the analogous of (3.4) up to the discrete time convolution (i.e. ⊗ replaced by ⊗ N ). We refer to (2.2), (2.4), (2.5), (2.6) for the definition of operators and kernels.

Lemma 41 (Time discretization) One has:

(p -p d )(T, x, y) = M-1 l=1 h l (l + 1)! p ⊗ N Φ -Φ * l+1 p d (T, x, y) +h M R M,1 (T, x, y) with M-1 l=1 p ⊗ N Φ -Φ * l+1 p d (T, x, y) + |R M,1 (T, x, y)| ≤ ρ α,M (T, y -x).
Then the comparison between p d and p N is controlled with the following Lemma 42 (Comparison of the discrete convolutions) The following expansion holds:

(p d -p N )(T, x, y) = - M-1 k=1 h k (k + 1)! p d ⊗ N Φ * -Φ * k+1 p N (T, x, y) +h M R M,2 (T, x, y)
where

R M,2 (T, x, y) = - 1 M ! 1 0 (1 -τ ) M p d ⊗ N Φ * -Φ * M+1 p ∆ τ (T, x, y)dτ, ∀t ∈ {(t i ) i∈[[1,N ]] }, p ∆ τ (t i , x, y) = ∞ r=0 pτ ⊗ N H (r) N (t i , x, y) , p ∆ 0 = p N , and ∀τ ∈ [0, 1], pτ (t, x, y) = R d p x (τ h, x, z) p y (t -τ h, z, y)dz.
In particular p 0 (t, x, y) = p y (t, x, y). Also,

M-1 k=1 p d ⊗ N Φ * -Φ * k+1 p N (T, x, y) + |R M,2 (T, x, y)| ≤ ρ α,M (T, y -x).
Theorem 21 is then a direct consequence of Lemmas 41 and 42.

Proofs of the technical Lemmas

Proof of Lemma 41. We start from the recurrence relation for r

∈ N * p ⊗ H (r) -p ⊗ N H (r) = p ⊗ H (r-1) ⊗ H -p ⊗ H (r-1) ⊗ N H + p ⊗ H (r-1) -p ⊗ N H (r-1) ⊗ N H.
Summing up these terms over r ∈ N * and using the linearity of ⊗ and ⊗ N we get

p -p d = p ⊗ H -p ⊗ N H + p -p d ⊗ N H. An iterative application of this identity yields (p -p d )(T, x, y) = ∞ r=0 [p ⊗ H -p ⊗ N H] ⊗ N H (r) (T, x, y). (4.1) By definition, for all k ∈ [[1, N ]], [p ⊗ H -p ⊗ N H](t k , x, y) = k-1 j=0 tj+1 tj ds [p (s, x, z) H (t k -s, z, y) -p t j , x, z H t k -t j , z, y ]dz. (4.2)
A Taylor expansion of the function θ(s, z)

:= p(s, x, z)H(t k -s, z, y) in the interval [t j , s] ⊆ [t j , t j+1 ] gives [θ(s, z) -θ(t j , z)]dz = M-1 l=1 (s -t j ) l l! ∂ l τ θ(τ, z) τ =tj dz + (s -t j ) M (M -1)! 1 0 (1 -δ) M-1 ∂ M τ θ(τ, z)| τ =τj(s,δ) dzdδ, (4.3) 
where τ j (s, δ) = t j + δ(st j ). Note now that -∂sp(ts, x, z) = Φp(ts, x, z), ∂ t p(ts, x, z) = t Φp(ts, x, z). Here t Φ = t Φz is the adjoint operator of Φ where the derivatives have to be taken w.r.t. z. Hence, Φp(t-s, x, z) = t Φp(t-s, x, z). The same identity also holds for p with Φ, t Φ respectively replaced by Φ * , t Φ * . We therefore derive

∂τ θ(τ, z)| τ =tj dz = ∂τ [p(τ, x, z)] | τ =tj H(t k -t j , z, y)dz + p(t j , x, z)∂τ [H(t k -τ, z, y)] | τ =tj dz = t Φzp(t j , x, z) Φ -Φ * p(t k -t j , z, y)dz -p(t j , x, z) Φ -Φ * Φ * p(t k -t j , z, y)dz = p(t j , x, z) Φ -Φ * 2 p t k -t j , z, y dz.
Iterating the differentiation we get

∂ l τ θ(τ, z)| τ =tj dz = p(t j , x, z) Φ -Φ * l+1 p(t k -t j , z, y)dz, (4.4) 
where we recall that for two operators A and B we denote by (A -B) k the following sum (A -B) k = k j=0 C j k A k-j (-B) j . Plugging (4.3) and (4.4) into (4.2) we get

[p ⊗ H -p ⊗ N H](t k , x, y) = M-1 l=1 h l (l + 1)! p ⊗ N Φ -Φ * l+1 p (t k , x, y) +h M R M,1 (t k , x, y) (4.5)
where

R M,1 (t k , x, y) = 1 (M -1)! k-1 j=0 tj+1 tj h -1 (s -t j ) M 1 0 (1 -δ) M-1 × ∂ M τ [p (τ, x, z) H (t k -τ, z, y)] | τ =τj(s,δ) dsdzdδ. (4.6)
Plugging (4.5) and (4.6) into (4.1) we get y). Now we apply that for a linear operator S and its adjoint t S we have p ⊗ N S p = t Sp ⊗ N p. This gives

(p -p d )(T, x, y) = M-1 l=1 h l (l + 1)! × ∞ r=0 p ⊗ N Φ -Φ * l+1 p ⊗ N H (r) (T, x, y) +h M R M,1 (T, x, y) (4.7) with R M,1 (T, x, y) = ∞ r=0 ( R M,1 ⊗ N H (r) )(T, x,
∞ r=0 p ⊗ N Φ -Φ * l+1 p ⊗ N H (r) (T, x, y) = t Φ -Φ * l+1 p ⊗ N ∞ r=0 p ⊗ N H (r) (T, x, y) = p ⊗ N Φ -Φ * l+1 p d (T, x, y),
which plugged into (4.7) gives the desired expansion. The stated bound follows by application of the estimates given in Lemma 43 below. We only give the proof for the first summand, the other terms of the sum over l and the remainder R M,1 (T, x, y) can be handled in a similar way. Write

p ⊗ N (Φ -Φ * ) 2 p d (T, x, y) = N -1 j=0 h p(t j , x, z)(Φ -Φ * ) 2 p d (T -t j , z, y)dz := S 1 + S 2 ,
where in S 1 (resp. S 2 ) the sum is taken over

I 1 := {j ∈ [[0, ⌊ N -1 2 ⌋]]} (resp. I 2 := {j ∈ [[⌊ N -1 2 ⌋ + 1, N -1]]}).
For S 1 (resp. S 2 ), p d (Tt j , z, y) (resp. p(t j , x, z)) is non singular. From Lemma 43 below equation (4.12), there exists C := C(T ) s.t. for all (x, y, z)

∈ (R d ) 3 , p(s, x, z) ≤ C p y (s, x, z), p d (s, z, y) ≤ C p y (s, z, y), ∀s ∈]0, T ], |(Φ -Φ * ) 2 p d (T -t j , z, y)| ≤ C p y (T -t j , z, y), ∀j ∈ I 1 , t Φ -Φ * 2 p(t j , x, z) ≤ C p y (t j , x, z), ∀j ∈ I 2 . (4.8)
The semigroup property for py yields |S 1 | + |S 2 | ≤ C p(T, x, y). One eventually checks from Proposition B1 that p(T, x, y) := p y (T, x, y) ≤ ρ α,M (T, yx).

Proof of Lemma 42. Let us denote by F[ψ](z) = exp(i z, p )ψ(p)dp the Fourier transform of a function ψ. Introduce now for all u, t, u < t, u, t ∈ {(t

i ) i∈[[0,N ]] }, p ∈ R d , ψ(p) = h(L N -L y N ) p y (t -u, x, p) = p N (h, x, w) p y (t -(u + h), w, p)dw -p y (t -u, x, p).
Note that in particular according to (3.6), ψ(y) = hH N (tu, x, y). Taking the characteristic functions of the densities involved in the above equation, we obtain from (3.2) and (3.6) that

F[ψ](z) := Gz(1) -Gz(0)
with

Gz(τ ) = exp i x, z + i(t -u) B(y), z + iτ h ∆B x,y , z - S d-1 | z, s | α (t -u)λ f (y) (ds) + τ h∆λ x,y (ds) ,
where ∆B x,y = B(x) -B(y), ∆λ x,y (ds) = λ f (x) (ds)λ f (y) (ds). Note in particular that ∀τ ∈ [0, 1],

Gz(τ ) = Gz(0) × exp τ h i ∆B x,y , z - S d-1
| z, s | α ∆λ x,y (ds) .

(4.9)

A Taylor expansion yields

F[ψ](z) = M k=1 1 k! G (k) z (0) + 1 M! 1 0 (1 -τ ) M G (M+1) z (τ )dτ .
From (4.9), one derives that for k ∈ N * :

1 k! G (k) z (0) = h k k! Gz(0) i ∆B x,y , z - S d-1 | z, s | α ∆λ x,y (ds) k .
Observe now that Gz(0) = F[θ](z), θ(p) := p y (tu, x, p). Using the well-known properties of the Fourier transform one gets for all

k ∈ [[1, M ]] G (k) z (0) = h k F Φ ξ -Φy k θ ξ=x (z),
where the operators Φ. are applied w.r.t. the x component and the Fourier transform is applied w.r.t. the p component of p y (t-u, x, p). Also, in the above writing, we compute the Fourier transform for an arbitrary fixed ξ ∈ R d and we then put ξ = x.

Hence,

F[ψ](z) = M k=1 1 k! G (k) z (0) + 1 M! 1 0 (1 -τ ) M G (M+1) z (τ )dτ = M k=1 h k k! F Φ ξ -Φy k θ ξ=x (z) + h M +1 M! F 1 0 (1 -τ ) M Φ ξ -Φy M+1 θτ ξ=x dτ (z),
where ∀τ ∈ [0, 1], θτ (p) := R d p x (τ h, x, z) p y (tuτ h, z, p)dz. Taking the inverse Fourier transform and putting p = y in the above equation, observing that H(tu, x, y) = ( Φ * -Φ * ) p y (tu, x, y), we obtain

(H N -H)(t -u, x, y) = M-1 k=1 h k (k + 1)! Φ * -Φ * k+1 p(t -u, x, y) + h M M ! 1 0 (1 -τ ) M Φ * -Φ * M+1 pτ (t -u, x, y)dτ . (4.10) Recall now that (p d -p N )(T, x, y) = ∞ r=0 [ p ⊗ N H (r) -p ⊗ N H (r) N ](T, x, y)
where we put p ⊗ N H (r) N (T, x, y) = 0 for hr > T . Summing over r ∈ N in the identity

( p ⊗ N H (r) -p ⊗ N H (r) N )(T, x, y) = p ⊗ N H (r-1) ⊗ N (H -H N ) (T, x, y) + p ⊗ N H (r-1) -p ⊗ N H (r-1) N ⊗ N H N (T, x, y) one gets (p d -p N )(T, x, y) = p d ⊗ N (H -H N ) + p d -p N ⊗ N H N (T, x, y).
By iterative application of the last identity we obtain

(p d -p N )(T, x, y) = ∞ r=0 p d ⊗ N (H -H N ) ⊗ N H (r) N (T, x, y).
We get from (4.10) that for all t ∈ {(t i ) i∈[[1,N ]] }:

p d ⊗ N (H -H N ) (T, x, y) = - M-1 k=1 h k (k + 1)! p d ⊗ N Φ * -Φ * k+1 p (T, x, y) - h M M ! 1 0 (1 -τ ) M p d ⊗ N Φ * -Φ * M+1 pτ (T, x, y)dτ.
Eventually,

(p d -p N )(T, x, y) = - M-1 k=1 h k (k + 1)! p d ⊗ N Φ * -Φ * k+1 p N (T, x, y) +h M R M,2 (T, x, y) , R M,2 (T, x, y) = - 1 M ! 1 0 (1 -τ ) M p d ⊗ N Φ * -Φ * M+1 p ∆ τ (T, x, y) dτ ∀t ∈ {(t i ) i∈[[1,N ]] }, p ∆ τ (t, x, y) = ∞ r=0 pτ ⊗ N H (r) N (t, x, y) , p ∆ 0 = p N .
This proves the expansion part of the Lemma. The bound follows as in the previous proof from Lemma 43.

We now state Lemma 43 that allows to control the rests appearing in the expansions of Lemmas 41 and 42. Its proof is postponed to appendix A.

Lemma 43 Let q > d + 4. For all multi-indices a, b s.t. |a| + |b| < q -(d + 4), the following inequalities hold:

D a y D b x p d (t k , x, y) + D a y D b x p N (t k , x, y) ≤ Ct -|a|+|b| α k p(t k , x, y), k ∈ [[1, n]], (4.11) D a y D b x p(t, x, y) ≤ Ct -|a|+|b| α p(t, x, y), 0 < t ≤ T. Also, ∃C := C(T ) s.t. for all (x, y, z) ∈ (R d ) 3 , s ∈]0, T ],
p(s, x, z) ≤ C p y (s, x, z), p d (s, z, y) ≤ C p y (s, z, y),

|(Φ -Φ * ) k p d (s, z, y)| ≤ Cs -|k| α p y (s, z, y), t Φ -Φ * k p(s, x, z) ≤ Cs -|k| α p y (s, x, z).
(4.12)

Extensions and conclusion

A careful examination of the proofs in the Appendices shows that the absolute continuity of λ w.r.t. to the Lebesgue measure of S d-1 can be removed in (A-1) provided the function

ζ(t, x, y) := 1 (2π) d R d ( S d-1 | p, s | α λ f (x) (ds)) exp -t S d-1 | p, s | α λ f (y) (ds)
× exp(-i p, x )dp has bounded derivatives w.r.t. x up to order q (see Appendix B and the statement of Theorem 3.1 in [Kol00]). Also up to a standard perturbative argument, similar controls on the density can be obtained when we consider (1.1) driven by (Zs + Ps) s≥0 where (Ps) s≥0 is a compound Poisson process with Lévy measure ν P (dz) = f (z)dz and |f (z)| ≤ C 1+|z| d+β , β > 0, see Theorem 4.1 in [Kol00]. In that case our main results remain valid up to a modification of the remainder. Indeed, it is the smallest exponent (or equivalently the largest tail) that leads the asymptotic behavior of p(t, x, y) when |x -y| is large. Thus ρ α,M (T, yx) has to be replaced by ρ min(α,β),M (T, yx) in Theorem 21. Eventually, good controls have been obtained on p for stable-like processes, i.e. when the stability index in the generator Φψ(x) in (2.2) can depend on the spatial position x, i.e. α turns to α(x) ∈ [α, α] strictly included in (0, 2] (see Section 5 in [Kol00]). Anyhow the processes associated to those generators cannot be approximated by a usual Euler scheme and the previous analysis breaks down. The approximation of such processes will concern further research.

A Proof of the controls on the derivatives of the densities (Lemma 43)

To conclude the proof it remains to prove Lemma 43. The first step is to get bounds on partial derivatives of the transition densities p and p. The following estimates generalize the ones obtained in [Kol00], Propositions 2.1-2.3.

Lemma A1 Let q > d + 4. There exists a constant C > 1 such that the following estimates hold uniformly for α in any compact subset of the interval (0, 2) and for all 0 < t ≤ T, x, y, z ∈ R d and |a| < q -(d + 4)

|D a z p y (t, x, z)| ≤ C t |a|/α p y (t, x, z), (A.1) |D a z p y (t, x, z)| ≤ C |z -B(y)t -x| |a| p y (t, x, z). (A.2)
Remark A1 Equation (A.1) extends to the stable case what is widely known in the Gaussian framework. Namely, each derivation of the density in space remains homogeneous to a stable density up to a multiplicative additional singularity of order t -1/α .

Proof. From now on we assume w.l.o.g. that d ≥ 3, the cases d ∈ {1, 2} can be addressed more directly. To proceed with the computations, we need to specify a useful change of coordinates. Namely, for a given direction

ζ ∈ R d \{0} introduce for p ∈ R d the spherical coordinates (ρ, ϑ, ϕ 2 , • • • , ϕ d-1
), ρ = |p| with first coordinate or main axis directed along ζ, that is

p 1 = ρ cos ϑ, p 2 = ρ sin ϑ cos ϕ 2 , p 3 = ρ sin ϑ sin ϕ 2 cos ϕ 3 , ... p d-1 = ρ sin ϑ sin ϕ 2 ... sin ϕ d-2 cos ϕ d-1 , p d = ρ sin ϑ sin ϕ 2 ... sin ϕ d-2 sin ϕ d-1 , (A.3) ϑ ∈ [0, π] , ϕ i ∈ [0, π] , i ∈ [[2, d -2]], ϕ d-1 ∈ [0, 2π]. Consider then the coordinates (v, τ, φ) where τ = cos ϑ and v = ρ |ζ|, with v ∈ R + , τ ∈ [-1, 1], φ = (ϕ 2 , • • • , ϕ d-1 ) ∈ [0, π] d-3 × [0, 2π].
In the following we write p = p(v, τ, φ) for the previous r.h.s. in (A.3) written in these new coordinates that is

p 1 = |ζ| -1 vτ, p 2 = |ζ| -1 v(1 -τ 2 ) 1/2 cos ϕ 2 , p 3 = |ζ| -1 v(1 -τ 2 ) 1/2 sin ϕ 2 cos ϕ 3 , ... p d-1 = |ζ| -1 v(1 -τ 2 ) 1/2 sin ϕ 2 ... sin ϕ d-2 cos ϕ d-1 , p d = |ζ| -1 v(1 -τ 2 ) 1/2 sin ϕ 2 ... sin ϕ d-2 sin ϕ d-1 , (A.4)
and p(τ, φ) = p(|ζ|, τ, φ).

Without loss of generality we suppose B(y) = 0. The first step consists in differentiating w.r.t z the inverse Fourier transform for p y (t, x, z)

p y (t, x, z) = 1 (2π) d R d exp -t S d-1 | p, s | α λ f (y) (ds) exp (-i p, z -x ) dp.
(A.5)

For z = x, (2.3) and standard computations directly give estimate (A.1). Thus, in the following we also assume z = x and use the previous spherical coordinates (v, τ, φ) derived from (A.3) setting ζ = zx as the main axis. We obtain:

D a z p y (t, x, z) = 1 (2π) d |z -x| |a|+d ∞ 0 dv v |a|+d-1 × 1 -1 dτ [0,π] d-3 ×[0,2π] dφΨ(v, τ, |a|) exp -t v α |z -x| α S d-1 | p, s | α λ f (y) (ds) × τ a 1 1 -τ 2 |a|-a 1 +d-3 2 h(φ, a) , (A.6)
where p = p/ |p|, a = (a 1 , ..., a d ) ∈ N d and

Ψ(v, τ, |a|) = (-1) |a|/2 cos(vτ )I |a| even + (-1) (|a|+1)/2 sin(vτ )I |a| odd , h(φ, a) = {(cos ϕ 2 ) a 2 (sin ϕ 2 cos ϕ 3 ) a 3 × ... × (sin ϕ 2 ... sin ϕ d-2 cos ϕ d-1 ) a d-1 × (sin ϕ 2 ... sin ϕ d-2 sin ϕ d-1 ) a d } × V (φ), V (φ) = (sin ϕ 2 ) d-3 (sin ϕ 3 ) d-4 × ... × (sin ϕ d-3 ) 2 sin ϕ d-2 .
We consider, first the case |z -x| /t 1/α ≤ C, for a sufficiently small positive constant C. In this case we expand the trigonometric function Ψ(v, τ, |a|) in (A.6) in power series and change the variable of integration t 1/α v |z-x| to w in each term. This gives for all k ∈ N,

D a z p y (t, x, z) = C |a| t |a|+d α k m=0 (-1) m (2m + I |a| odd )! e |a| m |z -x| t 1/α 2m+I |a| odd +R |a| k+1 , C |a| = (-1) (|a|+I |a| odd )/2 (2π) d , (A.7) where ∀m ∈ [[1, k]], e |a| m = ∞ 0 dw 1 -1 dτ [0,π] d-3 ×[0,2π] dφ exp -w α S d-1 | p, s | α λ f (y) (ds) w |a|+2m+d-I |a| even × τ a 1 +2m+I |a| odd 1 -τ 2 |a|-a 1 +d-3 2 h(φ, a), |R |a| k+1 | ≤ |e |a| k+1 | (2(k + 1) + I |a| odd )! |z -x| t 1/α 2(k+1)+I |a| odd . (A.8)
To simplify the notations we omit the dependence of the coefficients of our expansions on the direction ζ = zx. From (A-1), (A-2) and (2.3) one then derives the following bound:

e |a| m ≤ A d-2 αC |a|+2m+d+I |a| odd α 1 Γ |a| + 2m + d + I |a| odd α B m + a 1 + 1 + I |a| odd 2 , |a| -a 1 + d -1 2 . (A.9)
Here A d-2 denotes the area of the unit sphere S d-2 and B is the β-function. Note that the modulus of each term in the expansion (A.7) serves as an estimate of the remainder in a finite Taylor expansion. From (A.7) we have

D a z p y (t, x, z) = C |a| t |a|+d α e |a| 0 |z -x| t 1/α I |a|odd + R |a| 1 . (A.10)
Recall that we are considering the case

|z-x| t 1/α ≤ C. By Proposition 3.1 (i) from [Kol00] for some C depending on C, C -1 t -d/α ≤ p y (t, x, z) ≤ Ct -d/α
. Hence, equations (A.10), (A.9), (A.8) yield

|D a z p y (t, x, z)| ≤ C t |a| α p y (t, x, z) ≤ CC |a| |z -x| |a| p y (t, x, z). (A.11)
To estimate D a z p y (t, x, z) for |z -x| /t 1/α ≥ (C) -1 we proceed as in Proposition 2.3 of [Kol00]. This gives the following representation

D a z p y (t, x, z) = [D a z p y (t, x, z)] 1 +[D a z p y (t, x, z)] 2 with [D a z p y (t, x, z)] j = 1 (2π) d ∞ 0 dρρ |a|+d-1 1 -1 dτ Ψ(ρ|z -x|, τ, |a|) × f j (τ ) [0,π] d-3 ×[0,2π]
dφ exp -tρ α g λ f (τ, φ, y) h(φ, a), j = 1, 2, (A.12)

g λ f (τ, φ, y) := S d-1 | p(τ, φ), s | α λ f (y) (ds),
using the notations introduced after (A.3). Here

f 1 (τ ) = τ a 1 1 -τ 2 |a|-a 1 +d-3 2 χ(τ ), f 2 (τ ) = τ a 1 1 -τ 2 |a|-a 1 +d-3 2 (1 -χ(τ ))
where

χ(τ ) is a C ∞ even truncation function R → [0, 1] that equals 1 for |τ | ≤ 1 -2ε, and 0 for |τ | ≥ 1 -ε for some ε ∈ (0, 1 2 ).
Because of the symmetry in τ , it is easy to see that the integral in (A.12) is non-zero only if a 1 and |a| are both even or odd. Expanding the exponential at order 2 in (A.12) and making the change of variables

ρ |z -x| = v we get [D a z p y (t, x, z)] 1 = C |a| |z -x| |a|+d 2 m=0 1 m! b |a| m t |z -x| α m , (A.13)
where C |a| is defined in (A.7) and for m ∈

[[0, 1]], b |a| m = (-1) m ∞ 0 F |a| m (v)v |a|+mα+d-1 dv, F |a| m (v) = [I |a| even Re -I |a| odd Im] ∞ -∞ exp(-ivτ )ϕm(τ )dτ , ϕm(τ ) = f 1 (τ ) [0,π] d-3 ×[0,2π] g m λ f (τ, φ, y)h(φ, a)dφ. and b |a| 2 = 2 1 0 (1 -δ) ∞ 0 F |a| 2,δ (v)v |a|+2α+d-1 dvdδ, F |a| 2,δ (v) = [I |a| even Re -I |a| odd Im] ∞ -∞ exp(-ivτ )ϕ 2,δ (τ )dτ , ϕ 2,δ (τ ) = f 1 (τ ) [0,π] d-3 ×[0,2π] g 2 λ f (τ, φ, y) exp -δt v |z -x| α g λ f (τ, φ, y) ×h(φ, a)dφ.
To extend the integration to R in the definition of (F ) m∈ [[0,2]] are well defined, we have to equilibrate at infinity the term in (v |a|+mα+d-1 ) m∈ [[0,2]] . This can be done computing iterated integration by parts in τ in the definition of (F

|a| m (v)) m∈[[0,1]] , F
|a| m (v)) m∈[[0,1]] , F |a| 2,δ (v).
Namely, if ϕm(τ ), m = 0, 1, and ϕ 2,δ (τ ) are C q functions of τ with compact support and q > |a|+4+d > |a|+2α+d, performing q integrations by parts w.r.t. τ one derives that the coefficients (b |a| m ) m∈ [[0,2]] are well defined. Let us now check that assumption (A-1) implies that ϕm(τ ), m = 0, 1, and ϕ 2,δ (τ ) are C q functions of τ with compact support. Indeed, for the unit vectors p(τ + △τ, φ) and p(τ, φ), from elementary algebra there exists an orthogonal matrix [Θ(x, As) -Θ(x, s)] ∆τ ds

A := A(∆τ ) s.t. p(τ + △τ, φ) = Ap(τ, φ). Hence, if λ f (x) (ds) = Θ(x,
= S d-1 | p(τ, φ), s | α Θ ′ s (x, s)β(τ, φ, s)ds,
where β(τ, φ, s) is C ∞ function in τ uniformly bounded in (τ, φ, s) in our region. The process can then be iterated other q -1 times. Thus all coefficients (b |a| m ) m∈ [[0,2]] are well defined. Next, analogously to Proposition 2.3 in [Kol00] (where the case |a| = 0 was considered) and with the same rotations of the integration contours for α ∈ (0, 1], α ∈ (1, 2), we obtain for all k ∈ N

[D a z p y (t, x, z)] 2 = C |a| |z -x| |a|+d k m=0 1 m! c |a| m t |z -x| α m + R |a| 2,k+1 , (A.14) c |a| m = 2[I |a| even Re -I |a| odd Im][ 1 1-2ε dτ [0,π] d-3 ×[0,2π] dφh(φ, a)(-g λ f (τ, φ)) m × exp(- iπαm 2 )(-i) |a|+d τ -(αm+d+|a|) Γ (αm + d + |a|) f 2 (τ )],
and

|R |a| 2,k+1 | ≤ |c |a| k+1 | (k+1)! t |x-z| α k+1
. Note that the coefficients c |a| m are also well defined because τ does not approach zero (recall that 1χ(τ

) = 0 ⇔ |τ | > 1 -2ε). Precisely |c |a| m | ≤ 2A d-2 C m 2 (1 -2ε) -αm+d+|a| Γ (αm + d + |a|)
. Now the sum of expansions (A.13) and (A.14) gives the expansion for D a z p y (t, x, z). Note that by construction, the first coefficient b |a| 0 + c |a| 0 does not depend on the spectral measure λ f (y) (•) and it vanishes when the spectral measure is uniform (that is

C 1 = C 2 = 1 in (2.3)).
This can be shown by means of representations involving Bessel and Whittaker functions and the same rotations of the integration contours as in Proposition 2.2 of [Kol00], see Appendix C for details. Thus, for all k ∈ N * , we get a representation 

D a z p y (t, x, z) = C |a| d 0 1 t |z -x| |a|+d+α d |a| 1 d 0 1 + R |a| 2 , | R |a| 2 | ≤ |d |a| 2 | 2d 0 1 t |x -z| α , p y (t, x, z) = C 0 |z -x| d d 0 1 t |z -x| α + R 0 2 ≥ C 0 d 0 1 t 2 |z -
H(t, x, y) = B(x) -B(y), ∇x p(t, x, y) + 1 (2π) d R d |p| α S d-1 | p, s | α × (λ f (y) (ds) -λ f (x) (ds)) exp -t |p| α S d-1 | p, s | α λ f (y) (ds) × exp {-i p, y -B(y)t -x } dp (A.20)
analogously to the proof of Proposition 2.3 in [Kol00], see also Appendix B where (A.17) is proved for |a| = |b| = 0. Inequality (A.18) contains in (3.23') p.748 of that reference. Inequality (A.19) can be derived following the proof of Lemma A1.

The proof of Lemma 43 can then be achieved from Lemmas A1 and A2 adapting the arguments in Appendix B concerning the control in terms of the frozen density for the "formal" series appearing in (3.4). See also the proof of Theorem 2.3 in [KM02] or Theorem 3.1 in [Kol00].

B Control of the parametrix series of the density

For the sake of completeness we provide in this section a complete proof of the control for the r.h.s of (3.4) under our standing Assumptions (A-1)-(A-3).

We first sum up in Proposition B1 the various estimates needed to control the convergence of (3.4) following the proof of Theorem 3.1 in [Kol00], namely Proposition 3.1 and its corollary, Lemma 3.1 and Propositions 3.2-3.3 of that reference. These estimates can also be directly derived from the computations of Appendix C.

Proposition B1 For all K sufficiently large, there exists C > 0 s.t. the following estimates hold uniformly for α in any compact subset of (0, 2), for all x, y, z ∈ R d and for all t ∈ (0, T ].

C -1 t -d/α ≤ p y (t, x, z) ≤ Ct -d/α , |x -z| ≤ Kt 1/α , C -1 t |x -z| d+α ≤ p y (t, x, z) ≤ Ct |x -z| d+α , |x -z| ≥ Kt 1/α , p z (t, x, z) ≤ C p y (t, x, z). Also, there exists C > 0 s.t. ∀(t, x, y) ∈ [0, T ] × (R d ) 2 , dz min(1, |z|) p y (t, 0, z) ≤ Ct ω , ω := min(1, 1/α).
For all s ∈ (0, t) dz p z (ts, x, z) min(1, |y -z|)s -1 p y (s, z, y)

≤ C t -1 min(1, |y -x|) + s ω-1 p y (t, x, y), dz min(1, |z -x|) p z (t -s, x, z)
× min(1, |y -z|)s -1 p y (s, z, y) ≤ Cs ω-1 p y (t, x, y), dz p z (ts, x, z) p y (s, z, y) ≤ C p y (t, x, y).

Introduce now for a given bounded measure η on S d-1 the function

ϕη(t, z, λ f (y) ) := 1 (2π) d R d dp|p| α S d-1 | p, s | α η(ds) × exp -t|p| α S d-1 | p, s | α λ f (y) (ds) exp(-i p, z ).
With this notation and (A.20) we get

H(t, x, y) = B(x) -B(y), ∇x p(t, x, y) + (ϕ λ f (y) -ϕ λ f (x) )(t, y -x -B(y)t, λ f (y) ).
Under our standing assumptions, the mean value theorem yields

|ϕ λ f (y) -ϕ λ f (x) )(t, y -x - B(y)t, λ f (y) )| ≤ min(1, |y -x|)ϕη x,y (t, y -x -B(y)t, λ f (y) )
, where ηx,y is a bounded measure. Now Proposition 2.5 in [Kol00] states that for a bounded measure η, ϕη(t, z, λ f (y) ) ≤ Ct -1 p y (t, 0, z).

From Lemmas A1, A2 and the above controls one deduces |H(t, x, y)| ≤ C p y (t, x, y) 1 + t -1 min(1, |x -y|) := Cv(t, x, y) (which actually gives (A.17) for a = b = 0).

Introduce now β • ψ(t, s, x, y) = R d β(ts, x, z)ψ(s, z, y)dz, i.e. • is the spatial part of the convolution operator ⊗, and set v(t, x, y) := tv(t, x, y). From Propositon B1 one derives

p • v(t, s, x, y) ≤ C(v(t, x, y) + s ω-1 p(t, x, y)) v • v(t, s, x, y) ≤ C( v(t, x, y) + (s ω-1 + (t -s) ω ) p(t, x, y)).
Recalling |H(t, x, y)| ≤ Cv(t, x, y), integrating the above inequalities one gets:

| p ⊗ H|(t, x, y) ≤ C( v(t, x, y) + t ω p(t, x, y)), | p ⊗ H ⊗ H|(t, x, y) ≤ C 2 t ω ( p + v)(t, x, y).
An induction yields, for all k ∈ N * :

| p ⊗ H (2k) |(t, x, y) ≤ C 2k t kω (k!) 2 ( p + v)(t, x, y), | p ⊗ H (2k+1) |(t, x, y) ≤ C 2k+1 t kω k!(k + I α∈(0,1] )! (tv(t, x, y) + t ω p(t, x, y)I α>1 ),
and the the required control, i.e. p(t, x, y) ≤ C p(t, x, y). The controls on the derivatives can be proved in a similar way, up to suitable rearrangements of the variable of integration, see p.747 and 748 in [Kol00]. Also the whole proof can be carried out for p d , p N .

Remark B1

To conclude, note that by arguments similar to those used to prove Proposition B1, one gets |H ⊗ H(t, x, y)| ≤ Ct ω-1 p(t, x, y), which turns to be a useful estimate to derive (4.8) following the above proof.

C Additional computations concerning the derivatives of the density

In this section we prove that b |a| 0 + c |a| 0 = 0, justifying that the first index in (A.15) is one.

Odd dimensions d

From the definitions in the proof of Lemma A1 , it is enough to show

I |a| even Re -I |a| odd Im ∞ 0 R exp (-ivτ ) f 1 (τ )dτ v |a|+d-1 dv +2 1 1-2ε (iτ ) -(d+|a|) Γ (d + |a|) f 2 (τ )dτ = 0. (C.1)
Note that since d is odd, if |a| is odd i -(d+|a|) = (-1) 

Even dimensions d

We assume in this section that the spectral measure is uniform with C 1 = C 2 = 1 in (A-1).

For |a| and a 1 = 2m even, equation (A.6) can be rewritten as Recalling the definition of W 0,N j , we conclude expanding the exponential in power series that the first term is 0. For α ∈ (1, 2), using the same arguments we can rotate the initial contour through the angle -π/(2α). Setting then η = e i π 2α v we get At last, we rotate the contour through the angle -π(α-1)

2α

. Setting ξ = η exp iπ(α-1) 2α we obtain I j α = Re -i(-1) j-m ∞ 0 W 0,N j (2ξ)ξ N ′ j dξ = 0. cos(vτ ) × (1 -2N j )τ 2 (1τ 2 ) N j -3/2 + (1τ 2 ) N j -1/2 dτ.

The above integrals have the same form as in (C.3) and can be estimated similarly.

  |a| 2,δ (v), we simply use that the functions (ϕm) m∈[[0,1]] , ϕ 2,δ have compact support in τ . However, to check that the coefficients (b |a| m

  s)ds where Θ has the previous smoothness one can show lim ∆τ →0g λ f (τ + ∆τ, φ, x)g λ f (τ, φ, x) ∆τ = lim ∆τ →0 S d-1 {| p(τ, φ), A * s | α -| p(τ, φ), s | α }λ f (x) (ds) ∆τ = S d-1 | p(τ, φ), s | α lim ∆τ →0

.

  Hence, the contribution of the second term in (C.1) vanishes and the condition writesI |a| even Re -I |a| odd Im ∞ 0 R exp (-ivτ ) f 1 (τ )dτ v |a|+d-1 dv = 0. (C.2) Denote G 1 (v) = R exp (-ivτ ) f 1 (τ )dτ .Remind that |a| and a 1 have the same parity, see proof of Lemma A1.a) For even |a|, a 1 , G 1 is even and belongs to a Schwartz space of functions. Since d is odd, by inverse Fourier transform, Equation (C.2) reduces to from the Leibniz differentiation rule for the productτ a 1 × (1τ 2 )|a|-a 1 +d-3 2and the identity |a|+ d -1 = a 1 + (|a|a 1 + d -3) + 2]. Thus (C.2) holds in this case. b) Analogously, for odd |a|, a 1 , -Im(G 1 (v)) is odd and belongs to a Schwartz space of functions. The function (-ImG 1 (v)v |a|+d-1 ) is even. Thus previous reasons and equation (C.2) holds in this case as well.

  τ 2 ) N j -1/2 cos(vτ )dτ where A a d-2 = [0,π] d-3 ×[0,2π] h(φ, a)dφ and N j = |a|-a 1 +d-2+2j 2 , j ∈ [[0, m]]. Now recalling the definition of the Bessel function Jn(z) 1t 2) n-1/2 cos(zt)dt which is well defined for n > 1/2 on C\(-∞, 0), we getD a z p y (t, x, z) t/z)] n-1/2 e -t dt, n > 1/2, z ∈ C\(-∞, 0), is the Whittaker function and for z > 0, 10) from[Kol00]) andN ′ j = |a|+a 1 +d-2j-1 2 , j ∈ [[0, m]].For α ∈ (0, 1], from Cauchy's theorem we can change the integration path in (C.4) to the negative imaginary half line. Setting then v = -iξ we obtain D a z p y (t, x, z) N j (2ξ)ξ N ′ j dξ .

  N j (2η exp iπ(α -1) 2α )η N ′ j dη.Taylor's formula for exp(it η α |z-x| α ) yields for the first term, ∀j ∈ [[0, m]],

For |a| and a 1 =

 1 τ 2 ) N j -1/2 τ sin(vτ )

  x| d+α for sufficiently small C. Hence, we have C for the last inequality. W.l.o.g. we can assume C < 1. It remains to consider the case |x -z|/t 1/α ∈]C, C -1 [:= I(C). It follows from (A.6) that |z -x| d p y (t, x, z) and |z -x| d+|a| D a z p y (t, x, z) are continuous functions of |x-z|/t 1/α . Since the stable density is also strictly positive, we deduce that there exists C s.t. on I(C), |D a z p y (t, x, z)| ≤

	|D a z p y (t, x, z)| ≤ ≤	CC |a| |z -x| |a| CC |a| t |a|/α p y (t, x, z), d 0 1 t |z -x| d+α ≤	C |z -x| |a| p y (t, x, z)	(A.16)
	recalling that t 1/α |z-x| ≤ C |z-x| |a|+d ≤ C |z-x| |a| p y (t, x, z) ≤ CC |a| t |a|/α p y (t, x, z) which concludes the proof.
	Lemma A2 Let q > d + 4. There exists a constant C > 1 s.t. the following estimates hold
	uniformly for α in any compact subset of the interval (0, 2) and for all 0 < t ≤ T, x, y, v ∈ R d and |a| + |b| < q -(d + 4):
	D a y D b x H(t, x, y) ≤	t	C |a|+|b| α	p(t, x, y) 1 +	min(1, |y -x| t	,	(A.17)
	D b x H(t, x, x + v) ≤ C p(t, x, x + v) 1 +	min(1, |v| t	,	(A.18)
	D a y D b x p(t, x, y) ≤	C |y -B(y)t -x| |a|+|b| p(t, x, y).	(A.19)
	Proof. Inequalities (A.17) and (A.18) follow from the representation