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Weak error for stable driven SDEs : expansion of the

densities.

Valentin Konakov · Stéphane Menozzi
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Abstract Consider a multidimensional SDE of the form Xt = x +
∫ t
0 b(Xs−)ds +∫ t

0 f(Xs−)dZs where (Zs)s≥0 is a symmetric stable process. Under suitable assump-

tions on the coefficients the unique strong solution of the above equation admits a

density w.r.t. the Lebesgue measure and so does its Euler scheme. Using a parametrix

approach, we derive an error expansion w.r.t. the time step for the difference of these

densities.

Keywords Symmetric stable processes · parametrix · Euler scheme

Mathematics Subject Classification (2000) 60H30 · 65C30 · 60G52

1 Introduction

Consider the following R
d-valued Stochastic Differential Equation (SDE in short)

Xt = x+

∫ t

0

b(Xs−)ds+

∫ t

0

f(Xs−)dZs, (1.1)

where b, f are respectively Lipschitz continuous mappings from R
d to R

d and R
d to

R
d ⊗ R

d and (Zs)s≥0 is a general Lévy process. The previous assumptions guarantee

the existence of a unique strong solution to (1.1). Also, this solution satisfies the strong

Markov property, see e.g. Theorem 7 and 32 Chapter 5 in Protter [Pro04]. Let T > 0

be a fixed time horizon and (XN
t )t∈Λ a given approximation scheme of (Xt)t∈[0,T ]

associated to the time step h := T/N, N ∈ N
∗ on the grid Λ := {ti := ih, i ∈

[[0, N ]]}. When speaking about weak approximation of (1.1) two kinds of quantities are

of interest. The first one writes

E1(x, T,N) := Ex[g(XT )]− Ex[g(X
N
T )]
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for a suitable class of test functions g. The second one concerns, when it exists, the

approximation of the transition density p of the original SDE (1.1). If the approximation

scheme (XN
t )t∈Λ admits as well a transition density pN , the quantity under study

becomes

E2(x, y, T, N) := (p− pN )(T, x, y).

In both cases, the goal is to give a bound or an error expansion of these quantities

in terms of h. The error expansions are particularly useful for practical simulation.

For E1, the expansion allows to use the Romberg Richardson extrapolation to improve

the convergence of the discretization error, see e.g. Talay and Tubaro [TT90]. On the

other hand, if p and pN exist, and a suitable expansion of E2 holds, it can be useful to

estimate the sensitivity of E1 w.r.t. to the spatial variable x and it also allows to get a

control on E1 for a wider class of test functions g than those considered by the direct

methods used to control this quantity, see e.g. Guyon [Guy06]. Indeed, the typical

assumptions and techniques associated to the study of E1 and E2 are quite of different

nature.

In the continuous case, i.e. Zs = bs + σWs where (Ws)s≥0 is a standard d-

dimensional Brownian motion, provided the test function g and the coefficients b, f

are sufficiently smooth and g has polynomial growth, without any additional assump-

tion on the generator Talay and Tubaro [TT90] derive an error expansion at order 1

for E1(x, T,N) when (XN
t )t∈Λ is the Euler approximation. Their proof is based on

standard stochastic analysis tools: Itô’s expansions and stochastic flows. To obtain the

same kind of result for bounded Borel functions g some non degeneracy has to be

assumed, namely hypoellipticity of the underlying diffusion, and the proof relies on

Malliavin calculus techniques, see Bally and Talay [BT96a]. The authors also manage

to extend their results to E2(x, y, T, N) for a slightly modified Euler scheme [BT96b].

Anyhow, in the uniformly elliptic case, the most natural approach to handle the

estimation of the quantity E2(x, y, T,N) consists in using the so called ”parametrix”

technique introduced to obtain existence and controls on the fundamental solutions of

PDEs, see e.g. Mc Kean and Singer [MS67] or Friedman [Fri64]. Roughly speaking it

consists in expressing the density of XT in terms of an infinite sum of suitable iterated

kernels applied to the density of an SDE with constant coefficients. This has been done

successfully by Konakov and Mammen [KM02].The main advantage of this approach is

that the density of the solution XT and the Euler approximation XN
T can be expressed

in the same form and therefore quite directly compared. Furthermore this technique

turns out to be quite robust and can be applied as soon as good controls on the densities

p, pN and their derivatives are available, see e.g. [KMM08] for an extension to a slightly

degenerate framework.

For a general Lévy process Z and suitable smooth functions b, f , g, under additional

assumptions on the behavior at infinity of the Lévy measure ν of Z, that is integrability

conditions of the large jumps, Protter and Talay [PT97], manage to get a control at

order one or even an error expansion for E1(x, T,N) with the same approach as in

[TT90]. In that work the approximation is the Euler scheme which for a general Lévy

measure ν cannot always be exactly simulated on a computer.

The quantity E1(x, T,N) for approximations of the Euler scheme that can be sim-

ulated has also been studied by Jacod et al. [JKMP05] who derived bounds at order 1.

Moment conditions are also assumed. We finally refer to the work of Hausenblas and

Marchis [HM06] for approximations of Poisson jump measures that are easy to simulate.
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In this work, we consider the case where (Zt)t≥0 is an α-stable symmetric process,

α ∈ (0, 2). Under suitable non degeneracy assumptions on its coefficients specified below

(see (A-1)-(A-3)), equation (1.1) is known to have a density p w.r.t. the Lebesgue

measure. This can be proved via a Malliavin calculus-Bismut integration by parts

approach, see e.g. Bichteller et al. [BGJ87]. Also, a direct construction of this density

using a parametrix expansion has been obtained by Kolokoltsov [Kol00] who derived

as well ”Aronson’s like” bounds with time singularity depending on the index α of the

stable process (Zt)t≥0.

Analogoulsy to the ”diffusion case” the first step of the parametrix is to consider

that the density p(T, x, y) of (1.1) can be approximated by the density of the process

X̃y
t = x + b(y)t+ f(y)Zt at time T . Namely, we freeze the coefficients in (1.1) at the

final spatial point. The next crucial point is to obtain sharp estimates of the stable

density p̃y(T, x, .) of X̃y
T and its derivatives in order to solve the parametrix integral

equations.

Stable driven SDEs appear in various applicative fields, from mathematical physics

to electrical engineering or financial mathematics, see [IP06], [SK74] or [JMW96], there-

fore their approximation becomes of interest. To approximate equation (1.1), setting

φ(t) := inf{ti : ti ≤ t < ti+1}, we introduce the Euler scheme

XN
t = x+

∫ t

0

b(XN
φ(s))ds+

∫ t

0

f(XN
φ(s))dZs. (1.2)

The computation of the above scheme only requires to be able to simulate exactly the

increments of (Zt)t≥0, which up to a self similarity argument only amounts to simulate

a stable law. This aspect is for instance discussed in Samorodnitsky and Taqqu [ST94],

Weron and Weron [WR95] or Section 3 of [PT97]. Under the same assumptions (A-

1)-(A-3), the Euler scheme defined in (1.2) also has a density pN .

Observe that the results of [PT97], [JKMP05] cannot be directly applied, even for

the study of E1(x, T,N), since stable laws have heavy tails. Comparing the parametrix

developments of p and pN we obtain an expansion with leading term of order 1 in h for

E2(x, y, T,N). The parametrix expansion of p is discussed in [Kol00], see also Section

3 and Appendix, whereas the parametrix expansion of pN can be related to the ideas

developed in [KM00,KM02] for the diffusive case corresponding to an index of stability

equal to 2.

This result also emphasizes the robustness of the method that naturally extends to

a broad class of processes. Let us mention that, using a Malliavin calculus approach,

Hausenblas [Hau02], derived an upper bound of order one w.r.t. h for the quantity

E1(x, T, N), g ∈ L∞ in the scalar case. Concerning functional limit theorems for the

approximation of stable driven SDEs we refer to the work of Jacod [Jac04].

The paper is organized as follows. In Section 2 we state our standing assumptions

and main results. In Section 3 we prove the existence of the densities for both the

stable driven equation and its Euler scheme and also give a parametrix representation

of these densities. Section 4 is dedicated to the proof of the main results. Eventually,

we state in Section 5 weaker assumptions under which our main result holds and we

also briefly discuss how to extend it to the case of a stable process perturbed by a

compound Poisson process.
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2 Assumptions and Main results

2.1 Assumptions and Notation

In the following we consider symmetric stable processes, that is, for all t ≥ 0, u ∈ R
d,

E[exp(i〈u,Zt〉)] = exp(it〈γ, u〉+ t

∫

Sd−1

∫ +∞

0

(
eiρ〈u,s〉 − 1− i

〈u, ρs〉

1 + ρ2

)
dρ

ρ1+α
λ̃(ds))

= exp(it〈γ, u〉 − t

∫

Sd−1

|〈s, u〉|αλ(ds)), (2.1)

where λ̃ is a symmetric measure on the unit sphere Sd−1 (i.e. for every A in the

Borel σ-field B(Sd−1), λ̃(A) = λ̃(−A)). The second equality in equation (2.1) is then

obtained by direct integration over ρ and λ = Cαλ̃ with

Cα := Γ (1− α)α−1 cos
(
πα

2

)
Iα6=1 +

π

2
Iα=1.

We refer to the proof of Theorem 9.32 in Breiman [Bre68] and Lemma 2, Chapter

XVII.4 in Feller [Fel66] for the expression of Cα.

We now introduce our assumptions. Fix an integer q ≥ 2. We assume that

(A-1) For d ≥ 2, the spherical measure λ has a Cq(Sd−1) surface density and for all

d ≥ 1, there exist constants 0 < C1 ≤ C2 < +∞, ∀p ∈ R
d,

C1|p|
α ≤

∫

Sd−1

|〈p, s〉|α λ (ds) ≤ C2|p|
α.

(A-2) The coefficients b and f and their derivatives up to order q are uniformly

bounded in x. Thus, for 1 < α < 2, B(x) := b(x) + f(x)γ is uniformly bounded.

We impose for 0 < α ≤ 1, B(x) = 0 for all x ∈ R
d.

(A-3) There exist constants 0 < c ≤ c < +∞ s.t. for all x ∈ R
d, ξ ∈ R

d,

c|ξ|2 ≤ 〈f(x)ξ, ξ〉 ≤ c|ξ|2.

From now on we assume that Assumptions (A-1)-(A-3) are in force.

Remark 21 Note that for d = 1, with the convention S0 = {−1, 1}, we have C1 = C2

in (A-1) even without symmetry. The symmetry is actually not needed in that case,

see the beginning of Section 3 in [Kol00].

Remark 22 The zero drift condition in (A-2) comes from the fact that for α ∈ (0, 1]

the addition of a drift of order t does not correspond to a negligible term in small time

with respect to the natural scale t1/α, see Appendix B in [KM10] for details.

In the following we denote by C a positive generic constant that can depend on α, d,

the bounds appearing in the previous assumptions but neither on N nor on the spatial

points involved. Its value may change from line to line. Other possible dependencies,

especially w.r.t. the final time T are explicitely specified. Concerning functional spaces,

we denote by Ck
b (R

d), k ∈ N
∗, the Banach space of continuous bounded functions

having bounded derivatives up to and including the order k with the norm ‖f‖ :=

max0≤l≤k supx∈Rd |f (l)(x)|. Eventually Ck
0 (R

d) stands for the functions in Ck
b (R

d)

with compact support.
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2.2 Generator

From equation (2.1) and standard computations, see e.g. equation (5.11) in [JKMP05],

we derive that for every smooth function g ∈ C2
0 (R

d), the generator of (1.1) writes

Φg(x) = 〈B(x),∇xg(x)〉 −

∫

Rd

g(x+ f(x)y)− g(x)−
〈∇xg(x), f(x)y〉

1 + |y|2
ν(dy),

where B(x) = b(x) + f(x)γ and ν stands for the Lévy measure of Z. Introduce for all

A ∈ B(Rd), νf(x)(A) := ν({y ∈ R
d : f(x)y ∈ A}) and denote by λ̃f(x) its spherical

part (which is still a symmetric measure). Setting z = f(x)y in the above equation,

using the symmetry and the polar coordinates we derive:

Φg(x) = 〈B(x),∇xg(x)〉+
∫

Sd−1

∫ +∞

0

(
g(x+ ρs)− g(x)−

ρ〈∇xg(x), s〉

1 + ρ2

)
dρ

ρ1+α
λ̃f(x)(ds). (2.2)

Remark 23 Denote similarly to (2.1), λf(x) = Cαλ̃f(x). The uniform ellipticity con-

dition (A-3) allows to have good controls on the measure λf(x)(·). As a consequence

of (A-1), (A-3) one gets that there exist constants 0 < C1 = C1(c, d, α) ≤ C2 =

C2(c, d, α) < +∞ s.t. ∀p ∈ R
d, x ∈ R

d,

C1|p|
α ≤

∫

Sd−1

|〈p, s〉|α λf(x) (ds) ≤ C2|p|
α. (2.3)

2.3 Main results

Proposition 21 For every t > 0 the solution Xt (resp. XN
t ) of (1.1) (resp. (1.2))

has a density p(t, x, ·)(resp. pN (t, x, ·)) w.r.t. the Lebesgue measure. Additionally, as

a function of the space variables the density p is in Cq
b (R

d × R
d) if α > 1 and in

Cq−1
b (Rd × R

d) if α ≤ 1.

To state the theorem we first need some notation. Introduce for all ξ ∈ R
d and all

smooth function ϕ(t, x, y) the integro-differential operators:

Φ̃ξϕ(t, x, y) = 〈B(ξ),∇xϕ(t, x, y)〉+
∫

Sd−1

∫ +∞

0

(
g(x+ ρs)− g(x)−

ρ〈∇xg(x), s〉

1 + ρ2

)
dρ

ρ1+α
λ̃f(ξ)(ds). (2.4)

With this definition we write for given (x, y) ∈ R
d:

Φ̃∗ϕ(t, x, y) = Φ̃yϕ(t, x, y), ∀m ∈ N
∗,

(
Φ̃∗

)m
ϕ(t, x, y) =

(
Φ̃ξ

)m
ϕ(t, x, y) |ξ=x,

(2.5)

Note that we have Φ̃∗ϕ(t, x, y) = Φϕ(t, x, y) defined in (2.2) but in general, for m ≥ 2,(
Φ̃∗

)m
ϕ(t, x, y) 6= (Φ)m ϕ(t, x, y).

Define now, for t > 0, the kernel

H(t, x, y) := (Φ− Φ̃y)p̃
y(t, x, y) (2.6)



6

where p̃y(t, x, y) denotes the density at point y of X̃t = x+b(y)t+f(y)Zt. Note that the

variable y acts here twice: as the argument of the density and as a defining quantity of

the process X̃t(≡ X̃t,x,y), i.e. the coefficients are frozen in y. Eventually we introduce

the continuous and discrete convolution operators

ϕ⊗ ψ(t, x, y) =

∫ t

0

du

∫
dzϕ(u, x, z)ψ(t− u, z, y),∀t ∈ [0, T ],

ϕ⊗N ψ(t, x, y) =

∫ t

0

du

∫
dzϕ(φ(u), x, z)ψ(t− φ(u), z, y),∀t ∈ {(ti)i∈[[1,N ]]},

with φ(u) is defined just before (1.2) and denotes the largest discretization time lower

or equal to u. Also ϕ ⊗H(0) = ϕ and ϕ ⊗ H(r) =
(
ϕ⊗H(r−1)

)
⊗ H stands for the

r-fold convolution.

Theorem 21 Suppose q > d+ 4. Take 0 < M ≤ q − (d + 4). There exists a function

RM (T, x, y) with |RM (T, x, y)| ≤ CM (T )
(

1
1+|y−x|d+α

)
:= ρα,M (T, y − x) for some

positive constant CM (T ) such that

(p− pN )(T, x, y) =

M−1∑

l=1

hl

(l + 1)!

[
p⊗N

(
Φ− Φ̃∗

)l+1
pd
]
(T, x, y)−

−

M−1∑

k=1

hk

(k + 1)!

[
pd ⊗N

(
Φ̃∗ − Φ̃∗

)k+1
pN

]
(T, x, y) + hMRM (T, x, y)

with
∑0

l=1 · · · = 0 and ∀t ∈ {(ti)i∈[[1,N ]]}, p
d(t, x, y) :=

∑∞
r=0

(
p̃⊗N H(r)

)
(t, x, y).

It holds that

M−1∑

l=1

∣∣∣∣
(
p⊗N

(
Φ− Φ̃∗

)l+1
pd
)
(T, x, y)

∣∣∣∣ ≤ ρα,M (T, y − x),

M−1∑

k=1

∣∣∣∣
(
pd ⊗N

(
Φ̃∗ − Φ̃∗

)k+1
pN

)
(T, x, y)

∣∣∣∣ ≤ ρα,M (T, y − x).

Remark 24 In the above expression, one writes for all l ∈ [[1, M − 1]],

(
Φ− Φ̃∗

)l+1
ϕ(t, x, y) =

l+1∑

k=1

Ck
l+1Φ

k(−Φ̃∗)l+1−kϕ(t, x, y),

whereas, ∀k ∈ [[1, M − 1]],

(
Φ̃∗ − Φ̃∗

)k+1
ϕ(t, x, y) =

[
(Φ̃ξ − Φ̃y) · · · (Φ̃ξ − Φ̃y)︸ ︷︷ ︸

(k+1) times

]
ϕ(t, x, y)|ξ=x

= (Φ̃ξ − Φ̃y)
k+1ϕ(t, x, y)

∣∣∣
ξ=x

.
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Remark 25 The terms in the previous expansion depend on N . Anyhow using itera-

tively the Theorem and controls on ⊗N −⊗ (see also Lemma 41) it is possible to obtain

an expansion with terms independent of N . For small M explicit formulas are thus

easily derived but in all generality the terms become less transparent. For M = 2 one

gets

(p− pN )(T, x, y) =
h

2

(
p⊗N (Φ− Φ̃∗)2pd − pd ⊗N (Φ̃∗ − Φ̃∗)2pN

)
(T, x, y)

+h2R2(T, x, y)
=
h

2

(
p⊗ (Φ− Φ̃∗)2p− p⊗ (Φ̃∗ − Φ̃∗)2p

)
(T, x, y)

+h2R̃2(T, x, y) =
h

2
(p⊗ (Φ2 − Φ̃2

∗)p)(T, x, y) + h2R̃2(T, x, y),

where R̃2(T, x, y) ≤ C(T )ρα,2(T, y − x) for some positive constant C(T ).

From the above expansion and the controls on the density and its derivatives, see

e.g. Theorems 3.1, 3.2 and Proposition 3.1 in [Kol00] or Lemma 43, we can derive

the error expansion for E1(x, T,N) for measurable functions g satisfying the growth

condition ∃C > 0, |g(x)| ≤ C(1 + |x|β), β < α. In particular, we do not need the

smoothness assumption on g required in the approach of [TT90], [PT97]. We recall

that the expansion of E1(x, T,N) allows from a practical point of view to improve the

convergence rate of the discretization error using the Romberg Richardson extrapolation.

This simply consists in observing that the expansion yields E[g(XT )]− (E[2g(X2N
T )]−

E[g(XN
T )]) = O(h2). The associated Monte Carlo estimator, involving a refined scheme,

is then used for simulations see [TT90] for details.

Also, the expansion can be used to study the sensitivity of E1(T, x,N) w.r.t. x with-

out any additional assumption on g. This is crucial for financial applications (hedging),

see e.g. Guyon [Guy06] for further developments in the diffusive case.

3 Stable driven equations and their Euler scheme: existence of the density

and associated parametrix expansion

3.1 Stable driven equation

3.1.1 Proof of Proposition 21: existence of the density for the solution of (1.1)

For (Xt)t≥0, the existence of the density derives from Proposition 3.4 in [Kol00], where

some properties of the fundamental solution of ∂tp(t, x, y) = Φp(t, x, y), p(0, x, y) =

δ(y−x) are discussed, and a standard identification argument, see e.g. Dynkin [Dyn63],

Theorem 2.3, p. 56. The stated smoothness of the density is then a consequence of point

(ii) of the same Proposition.

Remark 31 The existence of the density is discussed in Bichteler et al. [BGJ87],

where it is proved thanks to a Bismut-Malliavin approach. This technique requires the

computation of a tangent equation associated to the gradient flow that involves the

derivatives of the coefficients of equation (1.1). Thus, some additional smoothness of the

coefficients is needed, see e.g. Theorem 6.48 of the above reference. We also mention the

result of Picard [Pic96], Theorem 4.1, that gives existence and smoothness of the density

for Lévy driven SDEs for very singular Lévy measures, provided there are sufficiently

small jumps. For smooth coefficients b, f , it includes in particular the case of (1.1)

where the spherical measure λ can be atomic.
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3.1.2 Parametrix expansion of the density

For the sake of completeness and also because it is crucial for the discrete model we

briefly recall how to get through a ”parametrix” approach a series expansion for the

density p(t, x, y).

Introduce, for all x, y ∈ R
d the following stochastic ”frozen” stable driven equation

X̃t ≡ X̃t,x,y defined for t ≥ 0 by

X̃t = x+

∫ t

0

b(y)du+

∫ t

0

f (y) dZu. (3.1)

By computation of the Fourier transform of Zt and Fourier inversion the transition

density p̃y(t, x, z) of X̃t at point z ∈ R
d explicitly writes

p̃y(t, x, z) =
1

(2π)d

∫
e−i〈z−x−tB(y),p〉 exp

{
−t

∫

Sd−1

|〈p, s〉|α λf(y) (ds)

}
dp, (3.2)

where λf(y) has been introduced in Section 2.2. The densities of the solutions of (3.1)

and (1.1) satisfy respectively

∂p̃y

∂t
(t, x, z) = Φ̃y p̃

y(t, x, z), for t > 0, (x, z) ∈ (Rd)2, p̃y(0, x, z) = δ(z − x),

∂p

∂t
(t, x, z) = Φp(t, x, z), for t > 0, (x, z) ∈ (Rd)2, p(0, x, z) = δ(z − x). (3.3)

Note carefully that the derivatives in Φ̃y are taken w.r.t. the x variable.

We will speak about the operators appearing in (3.3) as the ”frozen” and ”unfrozen”

ones. In the following ∀(t, x, z) ∈ R
+∗×(Rd)2, p̃(t, x, z) := p̃z(t, x, z). Hence, from (2.6)

∀(t, z, y) ∈ R
+∗ × (Rd)2, H(t, z, y) = (Φ− Φ̃y)p̃(t, z, y) = (Φ̃z − Φ̃y)p̃(t, z, y).

Proposition 31 (Parametrix expansion of the density) With the notations of Sec-

tion ??, the following representation holds

p(t, x, y) =

∞∑

r=0

(p̃⊗H(r)) (t, x, y) . (3.4)

Proof. Equations (3.3) correspond to the forward Kolmogorov equations. Consider now

the backward equation for p, namely, ∂sp(s, x, z) =
tΦ̃zp(s, x, z) where

tΦ̃z stands for

the adjoint operator of Φ̃z and the derivatives are taken w.r.t. z. Differentiating under

the integral we have from (3.3)

(p− p̃) (t, x, y) =

∫ t

0

ds
∂

∂s

[∫
p (s, x, z) p̃ (t− s, z, y) dz

]
=

∫ t

0

ds

∫
[
(
tΦ̃zp

)
(s, x, z)p̃ (t− s, z, y)− p (s, x, z) Φ̃y p̃ (t− s, z, y)]dz = p⊗H(t, x, y).

The representation (3.4) then follows by simple iteration. �

Remark 32 Note that the previous expansion is ”formal”. The convergence of the

r.h.s. in (3.4) is investigated in the proof of Theorem 3.1 in [Kol00] and can also be

derived with the controls of Lemmas A1 and A2 below. For the sake of completeness, a

short proof of this convergence is also given in Appendix B.
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3.2 Euler scheme

We consider now, for given N ∈ N
∗, the Euler scheme for equation (1.1) at the dis-

cretization times:

XN
0 = x,XN

ti+1
= XN

ti + b(XN
ti )h+ f

(
XN

ti

) (
Zti+1 − Zti

)

recalling h = T/N .

3.2.1 Proof of Proposition 21 for the Euler scheme: existence of the density

For each N ∈ N
∗, (XN

ti )i∈[[0,N ]] is a Markov chain. Given the past {XN
tl = xl, l ∈

[[0, i]]}, the conditional distribution of the innovations b(XN
ti )h+f

(
XN

ti

) (
Zti+1 − Zti

)

has conditional density p̃xi(h, 0, ·) (with the notation of (3.1), (3.2)). This proves the

existence of the density for the discretization scheme.

3.2.2 Parametrix expansion for the Euler scheme

To give for the Euler scheme an expansion similar to equation (3.4), that will also be the

starting point for our error expansion, we need to define, for fixed j, k, 0 ≤ j < k ≤ N

and x, y ∈ R
d additional ”frozen” Markov chains (X̃N

tl )l∈[[j,k]] = (X̃N
tl,x,y)l∈[[j,k]]. Their

dynamics is described by

X̃N
tj = x, X̃N

ti+1
= X̃N

ti + b(y)h+ f(y)
(
Zti+1 − Zti

)
, i ∈ [[j, k − 1]].

Given the past {X̃N
tl = xl, l ∈ [[j, i]]}, the conditional distribution of the innovations

b(y)h+f(y)(Zti+1−Zti) has conditional density p̃
y(h, 0, ·) and, hence, does not depend

on the past. Note that for the grid points (ti)i∈[[0,N ]] the transition densities of the

solution X̃s,x,y of (3.1) coincide with the transition densities of the chain X̃N
tj ,x,y for

N ∈ N
∗, x, y ∈ R

d and s = tj .

For all 0 ≤ j < k ≤ N, (x, y) ∈ (Rd)2, we denote by pN
(
tk − tj , x, y

)
and

p̃N (tk− tj , x, y) the transition probability densities between times tj and tk from point

x to y of the chains XN and X̃N respectively. In particular,

p̃N (tk − tj , x, y) = p̃y(tk − tj , x, y) = p̃(tk − tj , x, y). (3.5)

Before stating the parametrix expansion of pN in terms of p̃N , we need to introduce

a kernel HN that is the ”discrete” analogue of H defined in (2.6):

HN (tk − tj , x, y) =
{
LN − L̃y

N

}
p̃N (tk − tj , x, y), (3.6)

with

LNϕ(tk − tj , x, y) = h−1{

∫
pN (h, x, z)ϕ(tk − tj+1, z, y)dz − ϕ(tk − tj+1, x, y)},

L̃y
Nϕ(tk − tj , x, y) = h−1{

∫
p̃y(h, x, z)ϕ(tk − tj+1, z, y)dz − ϕ(tk − tj+1, x, y)}.

Note that the previous definitions yield pN (h, x, z) = p̃x(h, x, z). We also mention that,

because of the discretisation, there is a slight ”shift” in time in the definition of HN .

Namely we have tk − tj+1 instead of the somehow expected tk − tj .
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Lemma 31 For 0 ≤ j < k ≤ N the following formula holds:

pN (tk − tj , x, y) =

k−j∑

r=0

(p̃N ⊗N H
(r)
N )(tk − tj , x, y) (3.7)

where in the calculation of p̃N ⊗N H
(r)
N (r-fold convolution) we define

pN (0, x, y) = p̃N (0, x, y) = δ(x− y).

The proof of this lemma is given in [KM00], Lemma 3.6 and does not rely on the

specific distribution of the innovations.

Remark 33 With the convention that H
(r)
N = 0 for r > k − j, equation (3.7) also

writes pN (tk − tj , x, y) =
∑∞

r=0(p̃
N ⊗N H

(r)
N )(tk − tj , x, y). This expression will often

be used in the sequel.

4 Proof of the main results

In this section, we state in Subsection 4.1 the various points needed to prove Theorem

21. The proofs are postponed to Subsection 4.2. As mentioned earlier, the key idea

consists in comparing the parametrix expansions of the densities p and pN respectively

given by (3.4) and (3.7). In the whole section we suppose that the assumptions of

Theorem 21 hold.

4.1 Proof of Theorem 21

For the previously mentioned comparison to be possible we first need to estimate

a difference between the transition density p(T, x, y) and pd(T, x, y) :=
∑

r≥0

p̃ ⊗N

H(r)(T, x, y) which is the analogous of (3.4) up to the discrete time convolution (i.e.

⊗ replaced by ⊗N ). We refer to (2.2), (2.4), (2.5), (2.6) for the definition of operators

and kernels.

Lemma 41 (Time discretization) One has:

(p− pd)(T, x, y) =

M−1∑

l=1

hl

(l + 1)!

(
p⊗N

(
Φ− Φ̃∗

)l+1
pd
)
(T, x, y)

+hMRM,1 (T, x, y)

with

M−1∑

l=1

∣∣∣∣
(
p⊗N

(
Φ− Φ̃∗

)l+1
pd
)
(T, x, y)

∣∣∣∣+ |RM,1(T, x, y)| ≤ ρα,M (T, y − x).

Then the comparison between pd and pN is controlled with the following
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Lemma 42 (Comparison of the discrete convolutions) The following expansion

holds:

(pd − pN )(T, x, y) = −

M−1∑

k=1

hk

(k + 1)!

[
pd ⊗N

(
Φ̃∗ − Φ̃∗

)k+1
pN

]
(T, x, y)

+hMRM,2 (T, x, y)

where

RM,2(T, x, y) = −
1

M !

∫ 1

0

(1− τ )M
[
pd ⊗N

(
Φ̃∗ − Φ̃∗

)M+1
p̃∆τ

]
(T, x, y)dτ,

∀t ∈ {(ti)i∈[[1,N ]]}, p̃
∆
τ (ti, x, y) =

∞∑

r=0

p̃τ ⊗N H
(r)
N (ti, x, y) , p̃

∆
0 = pN ,

and ∀τ ∈ [0, 1], p̃τ (t, x, y) =

∫

Rd

p̃x(τh, x, z)p̃y(t− τh, z, y)dz.

In particular p̃0(t, x, y) = p̃y(t, x, y). Also,

M−1∑

k=1

∣∣∣∣
(
pd ⊗N

(
Φ̃∗ − Φ̃∗

)k+1
pN

)
(T, x, y)

∣∣∣∣+ |RM,2(T, x, y)| ≤ ρα,M (T, y − x).

Theorem 21 is then a direct consequence of Lemmas 41 and 42.

4.2 Proofs of the technical Lemmas

Proof of Lemma 41. We start from the recurrence relation for r ∈ N
∗

p̃⊗H(r) − p̃⊗N H(r) =
[(
p̃⊗H(r−1)

)
⊗H −

(
p̃⊗H(r−1)

)
⊗N H

]

+
[(
p̃⊗H(r−1)

)
−
(
p̃⊗N H(r−1)

)]
⊗N H.

Summing up these terms over r ∈ N
∗ and using the linearity of ⊗ and ⊗N we get

p− pd = p ⊗H − p⊗N H +
(
p− pd

)
⊗N H . An iterative application of this identity

yields

(p− pd)(T, x, y) =

∞∑

r=0

[p⊗H − p⊗N H ]⊗N H(r)(T, x, y). (4.1)

By definition, for all k ∈ [[1, N ]],

[p⊗H − p⊗N H ](tk, x, y) =

k−1∑

j=0

∫ tj+1

tj

ds

∫
[p (s, x, z)H (tk − s, z, y)

−p
(
tj , x, z

)
H

(
tk − tj , z, y

)
]dz. (4.2)
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A Taylor expansion of the function θ(s, z) := p(s, x, z)H(tk − s, z, y) in the interval

[tj , s] ⊆ [tj , tj+1] gives

∫
[θ(s, z)− θ(tj , z)]dz =

M−1∑

l=1

(s− tj)
l

l!

∫
∂lτθ(τ, z)

∣∣∣
τ=tj

dz +

(s− tj)
M

(M − 1)!

∫ 1

0

(1− δ)M−1
∫
∂Mτ θ(τ, z)|τ=τj(s,δ)dzdδ, (4.3)

where τj(s, δ) = tj + δ(s− tj). Note now that −∂sp(t−s, x, z) = Φp(t−s, x, z), ∂tp(t−

s, x, z) = tΦp(t− s, x, z). Here tΦ = tΦ̃z is the adjoint operator of Φ where the deriva-

tives have to be taken w.r.t. z. Hence, Φp(t−s,x, z) = tΦp(t−s, x, z). The same identity

also holds for p̃ with Φ, tΦ respectively replaced by Φ̃∗, tΦ̃∗. We therefore derive
∫
∂τθ(τ, z)|τ=tjdz =

∫
∂τ [p(τ, x, z)] |τ=tjH(tk − tj , z, y)dz

+

∫
p(tj , x, z)∂τ [H(tk − τ, z, y)] |τ=tjdz

=

∫
tΦzp(tj , x, z)

(
Φ− Φ̃∗

)
p̃(tk − tj , z, y)dz

−

∫
p(tj , x, z)

(
Φ− Φ̃∗

)
Φ̃∗p̃(tk − tj , z, y)dz

=

∫
p(tj , x, z)

(
Φ− Φ̃∗

)2
p̃
(
tk − tj , z, y

)
dz.

Iterating the differentiation we get
∫
∂lτθ(τ, z)|τ=tjdz =

∫
p(tj , x, z)

(
Φ− Φ̃∗

)l+1
p̃(tk − tj , z, y)dz, (4.4)

where we recall that for two operators A and B we denote by (A−B)k the following

sum (A−B)k =
∑k

j=0 C
j
kA

k−j(−B)j .

Plugging (4.3) and (4.4) into (4.2) we get

[p⊗H − p⊗N H ](tk, x, y) =

M−1∑

l=1

hl

(l + 1)!
p⊗N

(
Φ− Φ̃∗

)l+1
p̃ (tk, x, y)

+hM R̃M,1(tk, x, y) (4.5)

where

R̃M,1(tk, x, y) =
1

(M − 1)!

k−1∑

j=0

∫ tj+1

tj

[
h−1(s− tj)

]M ∫ 1

0

(1− δ)M−1 ×

∫
∂Mτ [p (τ, x, z)H (tk − τ, z, y)] |τ=τj(s,δ)dsdzdδ. (4.6)

Plugging (4.5) and (4.6) into (4.1) we get

(p− pd)(T, x, y) =

M−1∑

l=1

hl

(l + 1)!
×

∞∑

r=0

p⊗N

(
Φ− Φ̃∗

)l+1
p̃⊗N H(r) (T, x, y)

+hMRM,1 (T, x, y) (4.7)
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with RM,1 (T, x, y) =
∑∞

r=0(R̃M,1 ⊗N H(r))(T, x, y).

Now we apply that for a linear operator S and its adjoint tS we have p⊗N Sp̃ =
tSp⊗N p̃. This gives

∞∑

r=0

p⊗N

(
Φ− Φ̃∗

)l+1
p̃⊗N H(r)(T, x, y) =

t

[(
Φ− Φ̃∗

)l+1
]
p⊗N

∞∑

r=0

(
p̃⊗N H(r)

)
(T, x, y) = p⊗N

(
Φ− Φ̃∗

)l+1
pd(T, x, y),

which plugged into (4.7) gives the desired expansion. The stated bound follows by

application of the estimates given in Lemma 43 below. We only give the proof for the

first summand, the other terms of the sum over l and the remainder RM,1(T, x, y) can

be handled in a similar way. Write

p⊗N (Φ− Φ̃∗)2pd(T, x, y) =

N−1∑

j=0

h

∫
p(tj , x, z)(Φ− Φ̃∗)2pd(T − tj , z, y)dz

:= S1 + S2,

where in S1 (resp. S2) the sum is taken over I1 := {j ∈ [[0, ⌊N−1
2 ⌋]]} (resp. I2 :=

{j ∈ [[⌊N−1
2 ⌋ + 1, N − 1]]}). For S1 (resp. S2), p

d(T − tj , z, y) (resp. p(tj , x, z)) is non

singular. From Lemma 43 below equation (4.12), there exists C := C(T ) s.t. for all

(x, y, z) ∈ (Rd)3,

p(s, x, z) ≤ Cp̃y(s, x, z), pd(s, z, y) ≤ Cp̃y(s, z, y), ∀s ∈]0, T ],

|(Φ− Φ̃∗)2pd(T − tj , z, y)| ≤ Cp̃y(T − tj , z, y),∀j ∈ I1,∣∣∣∣
t

[(
Φ− Φ̃∗

)2
]
p(tj , x, z)

∣∣∣∣ ≤ Cp̃y(tj , x, z),∀j ∈ I2. (4.8)

The semigroup property for p̃y yields |S1|+ |S2| ≤ Cp̃(T, x, y). One eventually checks

from Proposition B1 that p̃(T, x, y) := p̃y(T, x, y) ≤ ρα,M (T, y − x). �

Proof of Lemma 42. Let us denote by F [ψ](z) =
∫
exp(i〈z, p〉)ψ(p)dp the Fourier

transform of a function ψ. Introduce now for all u, t, u < t, u, t ∈ {(ti)i∈[[0,N ]]}, p ∈ R
d,

ψ(p) = h(LN − L̃y
N )p̃y(t− u, x, p)

=

∫
pN (h, x, w)p̃y(t− (u+ h), w, p)dw − p̃y(t− u, x, p).

Note that in particular according to (3.6), ψ(y) = hHN (t−u, x, y). Taking the charac-

teristic functions of the densities involved in the above equation, we obtain from (3.2)

and (3.6) that

F [ψ](z) := Gz(1)−Gz(0)

with

Gz(τ ) = exp

[
i〈x, z〉+ i(t− u)〈B(y), z〉+ iτh〈∆Bx,y, z〉

−

∫

Sd−1

|〈z, s〉|α
[
(t− u)λf(y)(ds) + τh∆λx,y(ds)

]]
,
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where ∆Bx,y = B(x) − B(y), ∆λx,y(ds) = λf(x)(ds) − λf(y)(ds). Note in particular

that ∀τ ∈ [0, 1],

Gz(τ ) = Gz(0)× exp

(
τh

[
i〈∆Bx,y, z〉 −

∫

Sd−1

|〈z, s〉|α∆λx,y(ds)

])
.

(4.9)

A Taylor expansion yields F [ψ](z) =
∑M

k=1
1
k!G

(k)
z (0) + 1

M !

∫ 1
0 (1− τ )MG

(M+1)
z (τ )dτ .

From (4.9), one derives that for k ∈ N
∗:

1

k!
G

(k)
z (0) =

hk

k!
Gz(0)

[
i
〈
∆Bx,y, z

〉
−

∫

Sd−1

|〈z, s〉|α∆λx,y(ds)

]k
.

Observe now that Gz(0) = F [θ](z), θ(p) := p̃y(t − u, x, p). Using the well-known

properties of the Fourier transform one gets for all k ∈ [[1, M ]]

G
(k)
z (0) = hkF

[(
Φ̃ξ − Φ̃y

)k
θ

]∣∣∣∣
ξ=x

(z),

where the operators Φ̃. are applied w.r.t. the x component and the Fourier transform is

applied w.r.t. the p component of p̃y(t−u, x, p). Also, in the above writing, we compute

the Fourier transform for an arbitrary fixed ξ ∈ R
d and we then put ξ = x.

Hence,

F [ψ](z) =
∑M

k=1
1
k!G

(k)
z (0) + 1

M !

∫ 1
0 (1− τ )MG

(M+1)
z (τ )dτ =

∑M
k=1

hk

k! F

[(
Φ̃ξ − Φ̃y

)k
θ

]∣∣∣∣
ξ=x

(z) +

hM+1

M ! F

[
∫ 1
0 (1− τ )M

[(
Φ̃ξ − Φ̃y

)M+1
θτ

]∣∣∣∣
ξ=x

dτ

]
(z),

where ∀τ ∈ [0, 1], θτ (p) :=

∫

Rd

p̃x(τh, x, z)p̃y(t − u − τh, z, p)dz. Taking the inverse

Fourier transform and putting p = y in the above equation, observing that H(t −

u, x, y) = (Φ̃∗ − Φ̃∗)p̃y(t− u, x, y), we obtain

(HN −H)(t− u, x, y) =

M−1∑

k=1

hk

(k + 1)!

(
Φ̃∗ − Φ̃∗

)k+1
p̃(t− u, x, y) +

hM

M !

∫ 1

0

(1− τ )M
(
Φ̃∗ − Φ̃∗

)M+1
p̃τ (t− u, x, y)dτ . (4.10)

Recall now that

(pd − pN )(T, x, y) =

∞∑

r=0

[
(
p̃⊗N H(r)

)
−
(
p̃⊗N H

(r)
N

)
](T, x, y)
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where we put
(
p̃⊗N H

(r)
N

)
(T, x, y) = 0 for hr > T . Summing over r ∈ N in the

identity

(p̃⊗N H(r) − p̃⊗N H
(r)
N )(T, x, y) =

((
p̃⊗N H(r−1)

)
⊗N (H −HN )

)
(T, x, y) +

((
p̃⊗N H(r−1) − p̃⊗N H

(r−1)
N

)
⊗N HN

)
(T, x, y)

one gets

(pd − pN )(T, x, y) =
[
pd ⊗N (H −HN ) +

(
pd − pN

)
⊗N HN

]
(T, x, y).

By iterative application of the last identity we obtain

(pd − pN )(T, x, y) =

∞∑

r=0

[
pd ⊗N (H −HN )

]
⊗N H

(r)
N (T, x, y).

We get from (4.10) that for all t ∈ {(ti)i∈[[1,N ]]}:

(
pd ⊗N (H −HN )

)
(T, x, y) = −

M−1∑

k=1

hk

(k + 1)!

[
pd ⊗N

(
Φ̃∗ − Φ̃∗

)k+1
p̃

]
(T, x, y)

−
hM

M !

∫ 1

0

(1− τ )M
[
pd ⊗N

(
Φ̃∗ − Φ̃∗

)M+1
p̃τ

]
(T, x, y)dτ.

Eventually,

(pd − pN )(T, x, y) = −

M−1∑

k=1

hk

(k + 1)!

[
pd ⊗N

(
Φ̃∗ − Φ̃∗

)k+1
pN

]
(T, x, y)

+hMRM,2 (T, x, y) ,

RM,2(T, x, y) = −
1

M !

∫ 1

0

(1− τ )M
[
pd ⊗N

(
Φ̃∗ − Φ̃∗

)M+1
p̃∆τ

]
(T, x, y) dτ

∀t ∈ {(ti)i∈[[1,N ]]}, p̃
∆
τ (t, x, y) =

∞∑

r=0

p̃τ ⊗N H
(r)
N (t, x, y) , p̃∆0 = pN .

This proves the expansion part of the Lemma. The bound follows as in the previous

proof from Lemma 43. �

We now state Lemma 43 that allows to control the rests appearing in the expansions

of Lemmas 41 and 42. Its proof is postponed to appendix A.

Lemma 43 Let q > d + 4. For all multi-indices a, b s.t. |a| + |b| < q − (d + 4), the

following inequalities hold:

∣∣∣Da
yD

b
xp

d(tk, x, y)
∣∣∣+

∣∣∣Da
yD

b
xp

N (tk, x, y)
∣∣∣ ≤ Ct

− |a|+|b|
α

k p̃(tk, x, y), k ∈ [[1, n]], (4.11)

∣∣∣Da
yD

b
xp(t, x, y)

∣∣∣ ≤ Ct−
|a|+|b|

α p̃(t, x, y), 0 < t ≤ T.
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Also, ∃C := C(T ) s.t. for all (x, y, z) ∈ (Rd)3, s ∈]0, T ],

p(s, x, z) ≤ Cp̃y(s, x, z), pd(s, z, y) ≤ Cp̃y(s, z, y),

|(Φ− Φ̃∗)kpd(s, z, y)| ≤ Cs−
|k|
α p̃y(s, z, y),∣∣∣∣

t

[(
Φ− Φ̃∗

)k
]
p(s, x, z)

∣∣∣∣ ≤ Cs−
|k|
α p̃y(s, x, z). (4.12)

5 Extensions and conclusion

A careful examination of the proofs in the Appendices shows that the absolute conti-

nuity of λ w.r.t. to the Lebesgue measure of Sd−1 can be removed in (A-1) provided

the function

ζ(t, x, y) :=
1

(2π)d

∫

Rd

(

∫

Sd−1

|〈p, s〉|αλf(x)(ds)) exp

(
−t

∫

Sd−1

|〈p, s〉|αλf(y)(ds)

)

× exp(−i〈p, x〉)dp

has bounded derivatives w.r.t. x up to order q (see Appendix B and the statement

of Theorem 3.1 in [Kol00]). Also up to a standard perturbative argument, similar

controls on the density can be obtained when we consider (1.1) driven by (Zs+Ps)s≥0

where (Ps)s≥0 is a compound Poisson process with Lévy measure νP (dz) = f(z)dz

and |f(z)| ≤ C
1+|z|d+β , β > 0, see Theorem 4.1 in [Kol00]. In that case our main results

remain valid up to a modification of the remainder. Indeed, it is the smallest exponent

(or equivalently the largest tail) that leads the asymptotic behavior of p(t, x, y) when

|x − y| is large. Thus ρα,M (T, y − x) has to be replaced by ρmin(α,β),M (T, y − x) in

Theorem 21. Eventually, good controls have been obtained on p for stable-like processes,

i.e. when the stability index in the generator Φψ(x) in (2.2) can depend on the spatial

position x, i.e. α turns to α(x) ∈ [α, α] strictly included in (0, 2] (see Section 5 in

[Kol00]). Anyhow the processes associated to those generators cannot be approximated

by a usual Euler scheme and the previous analysis breaks down. The approximation of

such processes will concern further research.

A Proof of the controls on the derivatives of the densities (Lemma 43)

To conclude the proof it remains to prove Lemma 43. The first step is to get bounds on partial
derivatives of the transition densities p̃ and p. The following estimates generalize the ones
obtained in [Kol00], Propositions 2.1-2.3.

Lemma A1 Let q > d + 4. There exists a constant C > 1 such that the following estimates
hold uniformly for α in any compact subset of the interval (0, 2) and for all 0 < t ≤ T, x, y, z ∈
Rd and |a| < q − (d+ 4)

|Da
z p̃

y(t, x, z)| ≤ C

t|a|/α
p̃y(t, x, z), (A.1)

|Da
z p̃

y(t, x, z)| ≤ C

|z −B(y)t − x||a|
p̃y(t, x, z). (A.2)

Remark A1 Equation (A.1) extends to the stable case what is widely known in the Gaussian
framework. Namely, each derivation of the density in space remains homogeneous to a stable
density up to a multiplicative additional singularity of order t−1/α.
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Proof. From now on we assume w.l.o.g. that d ≥ 3, the cases d ∈ {1, 2} can be addressed more
directly. To proceed with the computations, we need to specify a useful change of coordinates.
Namely, for a given direction ζ ∈ Rd\{0} introduce for p ∈ Rd the spherical coordinates
(ρ, ϑ, ϕ2, · · · , ϕd−1), ρ = |p| with first coordinate or main axis directed along ζ, that is

p1 = ρ cosϑ, p2 = ρ sinϑ cosϕ2, p3 = ρ sinϑ sinϕ2 cosϕ3, ...

pd−1 = ρ sinϑ sinϕ2... sinϕd−2 cosϕd−1,

pd = ρ sinϑ sinϕ2... sinϕd−2 sinϕd−1, (A.3)

ϑ ∈ [0, π] , ϕi ∈ [0, π] , i ∈ [[2, d − 2]], ϕd−1 ∈ [0, 2π]. Consider then the coordinates (v, τ, φ)
where τ = cos ϑ and v = ρ |ζ|, with v ∈ R+, τ ∈ [−1, 1], φ = (ϕ2, · · · , ϕd−1) ∈ [0, π]d−3 ×
[0, 2π]. In the following we write p = p(v, τ, φ) for the previous r.h.s. in (A.3) written in these
new coordinates that is

p1 = |ζ|−1vτ, p2 = |ζ|−1v(1 − τ2)1/2 cosϕ2,

p3 = |ζ|−1v(1 − τ2)1/2 sinϕ2 cosϕ3, ...

pd−1 = |ζ|−1v(1 − τ2)1/2 sinϕ2... sinϕd−2 cosϕd−1,

pd = |ζ|−1v(1 − τ2)1/2 sinϕ2... sinϕd−2 sinϕd−1, (A.4)

and p̄(τ, φ) = p(|ζ|, τ, φ).
Without loss of generality we suppose B(y) = 0. The first step consists in differentiating

w.r.t z the inverse Fourier transform for p̃y(t, x, z)

p̃y(t, x, z) =
1

(2π)d

∫

Rd
exp

{
−t
∫

Sd−1
|〈p, s〉|α λf(y)(ds)

}
exp (−i 〈p, z − x〉) dp.

(A.5)

For z = x, (2.3) and standard computations directly give estimate (A.1). Thus, in the following
we also assume z 6= x and use the previous spherical coordinates (v, τ, φ) derived from (A.3)
setting ζ = z − x as the main axis. We obtain:

Da
z p̃

y(t, x, z) =
1

(2π)d|z − x||a|+d

∫ ∞

0
dv v|a|+d−1×

∫ 1

−1
dτ

∫

[0,π]d−3×[0,2π]
dφΨ(v, τ, |a|) exp

{
−t vα

|z − x|α
∫

Sd−1
|〈p, s〉|αλf(y)(ds)

}
×

τa1
(
1− τ2

) |a|−a1+d−3
2 h(φ, a) , (A.6)

where p = p/ |p|, a = (a1, ..., ad) ∈ Nd and

Ψ(v, τ, |a|) = (−1)|a|/2 cos(vτ)I|a| even + (−1)(|a|+1)/2 sin(vτ)I|a| odd,

h(φ, a) = {(cosϕ2)
a2 (sinϕ2 cosϕ3)

a3 × ...× (sinϕ2... sinϕd−2 cosϕd−1)
ad−1

× (sinϕ2... sinϕd−2 sinϕd−1)
ad} × V (φ),

V (φ) = (sinϕ2)
d−3 (sinϕ3)

d−4 × ...× (sinϕd−3)
2 sinϕd−2.

We consider, first the case |z − x| /t1/α ≤ C, for a sufficiently small positive constant C. In
this case we expand the trigonometric function Ψ(v, τ, |a|) in (A.6) in power series and change

the variable of integration t1/αv
|z−x| to w in each term. This gives for all k ∈ N,

Da
z p̃

y(t, x, z) =
C|a|

t
|a|+d

α

{ k∑

m=0

(−1)m

(2m + I|a| odd)!
e
|a|
m

( |z − x|
t1/α

)2m+I|a| odd

+R
|a|
k+1

}
, C|a| =

(−1)(|a|+I|a| odd)/2

(2π)d
, (A.7)
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where ∀m ∈ [[1, k]],

e
|a|
m =

∫ ∞

0
dw

∫ 1

−1
dτ

∫

[0,π]d−3×[0,2π]
dφ exp

{
−wα

∫

Sd−1
|〈p, s〉|α λf(y)(ds)

}

w|a|+2m+d−I|a| even × τa1+2m+I|a| odd
(
1− τ2

) |a|−a1+d−3
2 h(φ, a),

|R|a|
k+1| ≤

|e|a|k+1|
(2(k + 1) + I|a| odd)!

( |z − x|
t1/α

)2(k+1)+I|a| odd

.

(A.8)

To simplify the notations we omit the dependence of the coefficients of our expansions on the
direction ζ = z − x. From (A-1), (A-2) and (2.3) one then derives the following bound:

∣∣∣e|a|m

∣∣∣ ≤
Ad−2

αC

|a|+2m+d+I|a| odd
α

1

Γ

( |a|+ 2m+ d+ I|a| odd

α

)

B

(
m+

a1 + 1 + I|a| odd

2
,
|a| − a1 + d− 1

2

)
. (A.9)

Here Ad−2 denotes the area of the unit sphere Sd−2 and B is the β-function. Note that the
modulus of each term in the expansion (A.7) serves as an estimate of the remainder in a finite
Taylor expansion. From (A.7) we have

Da
z p̃

y(t, x, z) =
C|a|

t
|a|+d

α

(
e
|a|
0

( |z − x|
t1/α

)
I|a|odd

+ R
|a|
1

)
. (A.10)

Recall that we are considering the case
|z−x|
t1/α

≤ C. By Proposition 3.1 (i) from [Kol00] for

some C̃ depending on C, C̃−1t−d/α ≤ p̃y(t, x, z) ≤ C̃t−d/α. Hence, equations (A.10), (A.9),
(A.8) yield

|Da
z p̃

y(t, x, z)| ≤ C

t
|a|
α

p̃y(t, x, z) ≤ CC
|a|

|z − x||a|
p̃y(t, x, z). (A.11)

To estimate Da
z p̃

y(t, x, z) for |z − x| /t1/α ≥ (C)
−1

we proceed as in Proposition 2.3 of
[Kol00]. This gives the following representationDa

z p̃
y(t, x, z) = [Da

z p̃
y(t, x, z)]1+[Da

z p̃
y(t, x, z)]2

with

[Da
z p̃

y(t, x, z)]j =
1

(2π)d

∫ ∞

0
dρρ|a|+d−1

∫ 1

−1
dτΨ(ρ|z − x|, τ, |a|)×

fj(τ)

∫

[0,π]d−3×[0,2π]
dφ exp

{
−tραgλf

(τ, φ, y)
}
h(φ, a), j = 1, 2, (A.12)

gλf
(τ, φ, y) :=

∫

Sd−1
|〈p̄(τ, φ), s〉|αλf(y)(ds),

using the notations introduced after (A.3). Here

f1(τ) = τa1
(
1− τ2

) |a|−a1+d−3
2 χ(τ), f2(τ) = τa1

(
1− τ2

) |a|−a1+d−3
2 (1− χ(τ))

where χ(τ) is a C∞ even truncation function R → [0, 1] that equals 1 for |τ | ≤ 1−2ε, and 0 for
|τ | ≥ 1− ε for some ε ∈ (0, 1

2
). Because of the symmetry in τ , it is easy to see that the integral

in (A.12) is non-zero only if a1 and |a| are both even or odd. Expanding the exponential at
order 2 in (A.12) and making the change of variables ρ |z − x| = v we get

[Da
z p̃

y(t, x, z)]1 =
C|a|

|z − x||a|+d

2∑

m=0

1

m!
b
|a|
m

(
t

|z − x|α
)m

, (A.13)
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where C|a| is defined in (A.7) and for m ∈ [[0, 1]],

b
|a|
m = (−1)m

∫ ∞

0
F

|a|
m (v)v|a|+mα+d−1dv,

F
|a|
m (v) = [I|a| evenRe− I|a| oddIm]

[∫ ∞

−∞
exp(−ivτ)ϕm(τ)dτ

]
,

ϕm(τ) = f1(τ)

∫

[0,π]d−3×[0,2π]
gmλf

(τ, φ, y)h(φ, a)dφ.

and

b
|a|
2 = 2

∫ 1

0
(1− δ)

∫ ∞

0
F

|a|
2,δ(v)v

|a|+2α+d−1dvdδ,

F
|a|
2,δ(v) = [I|a| evenRe− I|a| oddIm]

[∫ ∞

−∞
exp(−ivτ)ϕ2,δ(τ)dτ

]
,

ϕ2,δ(τ) = f1(τ)

∫

[0,π]d−3×[0,2π]
g2λf

(τ, φ, y) exp

{
−δt

(
v

|z − x|

)α

gλf
(τ, φ, y)

}

×h(φ, a)dφ.

To extend the integration to R in the definition of (F
|a|
m (v))m∈[[0,1]] , F

|a|
2,δ(v), we simply use

that the functions (ϕm)m∈[[0,1]], ϕ2,δ have compact support in τ . However, to check that

the coefficients (b
|a|
m )m∈[[0,2]] are well defined, we have to equilibrate at infinity the term in

(v|a|+mα+d−1)m∈[[0,2]]. This can be done computing iterated integration by parts in τ in

the definition of (F
|a|
m (v))m∈[[0,1]] , F

|a|
2,δ(v). Namely, if ϕm(τ), m = 0, 1, and ϕ2,δ(τ) are Cq

functions of τ with compact support and q > |a|+4+d > |a|+2α+d, performing q integrations

by parts w.r.t. τ one derives that the coefficients (b
|a|
m )m∈[[0,2]] are well defined. Let us now

check that assumption (A-1) implies that ϕm(τ), m = 0, 1, and ϕ2,δ(τ) are Cq functions of τ
with compact support. Indeed, for the unit vectors p(τ +△τ, φ) and p(τ, φ), from elementary
algebra there exists an orthogonal matrix A := A(∆τ) s.t. p(τ + △τ, φ) = Ap(τ, φ). Hence, if
λf(x)(ds) = Θ(x, s)ds where Θ has the previous smoothness one can show

lim
∆τ→0

gλf
(τ +∆τ, φ, x)− gλf

(τ, φ, x)

∆τ

= lim
∆τ→0

∫
Sd−1{|〈p(τ, φ), A∗s〉|α − |〈p(τ, φ), s〉|α}λf(x)(ds)

∆τ

=

∫

Sd−1
|〈p(τ, φ), s〉|α lim

∆τ→0

[Θ(x,As)− Θ(x, s)]

∆τ
ds

=

∫

Sd−1
|〈p(τ, φ), s〉|αΘ′

s(x, s)β(τ, φ, s)ds,

where β(τ, φ, s) is C∞ function in τ uniformly bounded in (τ, φ, s) in our region. The process
can then be iterated other q − 1 times.

Thus all coefficients (b
|a|
m )m∈[[0,2]] are well defined.

Next, analogously to Proposition 2.3 in [Kol00] (where the case |a| = 0 was considered)
and with the same rotations of the integration contours for α ∈ (0, 1], α ∈ (1, 2), we obtain
for all k ∈ N

[Da
z p̃

y(t, x, z)]2 =
C|a|

|z − x||a|+d

{ k∑

m=0

1

m!
c
|a|
m

(
t

|z − x|α
)m

+R
|a|
2,k+1

}
, (A.14)

c
|a|
m = 2[I|a| evenRe− I|a| oddIm][

∫ 1

1−2ε
dτ

∫

[0,π]d−3×[0,2π]
dφh(φ, a)(−gλf

(τ, φ))m

× exp(− iπαm
2

)(−i)|a|+dτ−(αm+d+|a|)Γ (αm+ d+ |a|) f2(τ)],
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and |R|a|
2,k+1| ≤ |c|a|

k+1
|

(k+1)!

(
t

|x−z|α
)k+1

. Note that the coefficients c
|a|
m are also well defined

because τ does not approach zero (recall that 1 − χ(τ) 6= 0 ⇔ |τ | > 1 − 2ε). Precisely

|c|a|m | ≤ 2Ad−2C
m
2 (1− 2ε)−αm+d+|a|Γ (αm + d+ |a|).

Now the sum of expansions (A.13) and (A.14) gives the expansion for Da
z p̃

y(t, x, z). Note

that by construction, the first coefficient b
|a|
0 + c

|a|
0 does not depend on the spectral measure

λf(y)(·) and it vanishes when the spectral measure is uniform (that is C1 = C2 = 1 in (2.3)).
This can be shown by means of representations involving Bessel and Whittaker functions and
the same rotations of the integration contours as in Proposition 2.2 of [Kol00], see Appendix
C for details. Thus, for all k ∈ N∗, we get a representation

Da
z p̃

y(t, x, z) =
C|a|

|z − x||a|+d

{ k∑

m=1

1

m!
d
|a|
m

(
t

|z − x|α
)m

+ R
|a|
k+1

}
, (A.15)

where d
|a|
m = b

|a|
m + c

|a|
m with bm = 0 for m ≥ 3 and |R|a|

k+1| ≤
|d|a|

k+1
|

(k+1)!

(
t

|x−z|α
)k+1

. Now, from

Proposition 3.1 (ii) in [Kol00] d01 > 0. Equation (A.15) yields

Da
z p̃

y(t, x, z) =
C|a|d01t

|z − x||a|+d+α

(
d
|a|
1

d01
+ R̃

|a|
2

)
, |R̃|a|

2 | ≤ |d|a|2 |
2d01

t

|x− z|α
,

p̃y(t, x, z) =
C0

|z − x|d
(

d01t

|z − x|α
+ R0

2

)
≥ C0d01t

2 |z − x|d+α

for sufficiently small C. Hence, we have

|Da
z p̃

y(t, x, z)| ≤
CC|a|

|z − x||a|
d01t

|z − x|d+α
≤ C

|z − x||a|
p̃y(t, x, z)

≤ CC
|a|

t|a|/α
p̃y(t, x, z), (A.16)

recalling that t1/α

|z−x| ≤ C for the last inequality. W.l.o.g. we can assume C < 1. It remains to

consider the case |x− z|/t1/α ∈]C,C−1
[:= I(C). It follows from (A.6) that |z − x|dp̃y(t, x, z)

and |z−x|d+|a|Da
z p̃

y(t, x, z) are continuous functions of |x−z|/t1/α. Since the stable density is

also strictly positive, we deduce that there exists C̃ s.t. on I(C), |Da
z p̃

y(t, x, z)| ≤ C̃
|z−x||a|+d ≤

C
|z−x||a| p̃

y(t, x, z) ≤ CC
|a|

t|a|/α p̃
y(t, x, z) which concludes the proof. �

Lemma A2 Let q > d + 4. There exists a constant C > 1 s.t. the following estimates hold
uniformly for α in any compact subset of the interval (0, 2) and for all 0 < t ≤ T, x, y, v ∈ Rd

and |a|+ |b| < q − (d+ 4):

∣∣∣Da
yD

b
xH(t, x, y)

∣∣∣ ≤ C

t
|a|+|b|

α

p̃(t, x, y)

(
1 +

min(1, |y − x|
t

)
, (A.17)

∣∣∣Db
xH(t, x, x+ v)

∣∣∣ ≤ Cp̃(t, x, x+ v)

(
1 +

min(1, |v|
t

)
, (A.18)

∣∣∣Da
yD

b
xp̃(t, x, y)

∣∣∣ ≤
C

|y − B(y)t − x||a|+|b| p̃(t, x, y). (A.19)

Proof. Inequalities (A.17) and (A.18) follow from the representation

H(t, x, y) = 〈B(x) −B(y),∇xp̃(t, x, y)〉 +
1

(2π)d

∫

Rd
|p|α

∫

Sd−1
|〈p, s〉|α ×

(λf(y)(ds)− λf(x)(ds)) exp

{
−t |p|α

∫

Sd−1
|〈p, s〉|α λf(y)(ds)

}
×
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exp {−i〈p, y − B(y)t − x〉} dp (A.20)

analogously to the proof of Proposition 2.3 in [Kol00], see also Appendix B where (A.17) is
proved for |a| = |b| = 0. Inequality (A.18) contains in (3.23’) p.748 of that reference. Inequality
(A.19) can be derived following the proof of Lemma A1. �

The proof of Lemma 43 can then be achieved from Lemmas A1 and A2 adapting the
arguments in Appendix B concerning the control in terms of the frozen density for the ”formal”
series appearing in (3.4). See also the proof of Theorem 2.3 in [KM02] or Theorem 3.1 in [Kol00].

B Control of the parametrix series of the density

For the sake of completeness we provide in this section a complete proof of the control for the
r.h.s of (3.4) under our standing Assumptions (A-1)-(A-3).

We first sum up in Proposition B1 the various estimates needed to control the convergence
of (3.4) following the proof of Theorem 3.1 in [Kol00], namely Proposition 3.1 and its corollary,
Lemma 3.1 and Propositions 3.2-3.3 of that reference. These estimates can also be directly
derived from the computations of Appendix C.

Proposition B1 For all K sufficiently large, there exists C > 0 s.t. the following estimates
hold uniformly for α in any compact subset of (0, 2), for all x, y, z ∈ Rd and for all t ∈ (0, T ].

C−1t−d/α ≤ p̃y(t, x, z) ≤ Ct−d/α, |x− z| ≤ Kt1/α,

C−1t

|x− z|d+α
≤ p̃y(t, x, z) ≤ Ct

|x− z|d+α
, |x− z| ≥ Kt1/α,

p̃z(t, x, z) ≤ Cp̃y(t, x, z).

Also, there exists C > 0 s.t. ∀(t, x, y) ∈ [0, T ]× (Rd)2,

∫
dzmin(1, |z|)p̃y(t, 0, z) ≤ Ctω , ω := min(1, 1/α).

For all s ∈ (0, t)

∫
dzp̃z(t − s, x, z)min(1, |y − z|)s−1p̃y(s, z, y)

≤ C
(
t−1 min(1, |y − x|) + sω−1

)
p̃y(t, x, y),

∫
dzmin(1, |z − x|)p̃z(t− s, x, z)

×min(1, |y − z|)s−1p̃y(s, z, y) ≤ Csω−1p̃y(t, x, y),
∫
dzp̃z(t − s, x, z)p̃y(s, z, y)

≤ Cp̃y(t, x, y).

Introduce now for a given bounded measure η on Sd−1 the function

ϕη(t, z, λf(y)) :=
1

(2π)d

∫

Rd
dp|p|α

∫

Sd−1
|〈p̄, s〉|αη(ds)

× exp

(
−t|p|α

∫

Sd−1
|〈p̄, s〉|αλf(y)(ds)

)
exp(−i〈p, z〉).

With this notation and (A.20) we get

H(t, x, y) = 〈B(x) − B(y),∇xp̃(t, x, y)〉 + (ϕλf(y)
− ϕλf(x)

)(t, y − x− B(y)t, λf(y)).
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Under our standing assumptions, the mean value theorem yields |ϕλf(y)
− ϕλf(x)

)(t, y − x−
B(y)t, λf(y))| ≤ min(1, |y−x|)ϕηx,y (t, y−x−B(y)t, λf(y)), where ηx,y is a bounded measure.
Now Proposition 2.5 in [Kol00] states that for a bounded measure η,

ϕη(t, z, λf(y)) ≤ Ct−1p̃y(t, 0, z).

From Lemmas A1, A2 and the above controls one deduces |H(t, x, y)| ≤ Cp̃y(t, x, y)
(
1 +

t−1 min(1, |x− y|)
)
:= Cv(t, x, y) (which actually gives (A.17) for a = b = 0).

Introduce now β ◦ψ(t, s, x, y) =
∫

Rd
β(t− s, x, z)ψ(s, z, y)dz, i.e. ◦ is the spatial part of the

convolution operator ⊗, and set ṽ(t, x, y) := tv(t, x, y). From Propositon B1 one derives

p̃ ◦ v(t, s, x, y) ≤ C(v(t, x, y) + sω−1p̃(t, x, y))

ṽ ◦ v(t, s, x, y) ≤ C(ṽ(t, x, y) + (sω−1 + (t − s)ω)p̃(t, x, y)).

Recalling |H(t, x, y)| ≤ Cv(t, x, y), integrating the above inequalities one gets:

|p̃⊗H|(t, x, y) ≤ C(ṽ(t, x, y) + tω p̃(t, x, y)), |p̃⊗H ⊗H|(t, x, y) ≤ C2tω(p̃+ ṽ)(t, x, y).

An induction yields, for all k ∈ N∗:

|p̃⊗H(2k)|(t, x, y) ≤ C2ktkω

(k!)2
(p̃+ ṽ)(t, x, y),

|p̃⊗H(2k+1)|(t, x, y) ≤ C2k+1tkω

k!(k + Iα∈(0,1])!
(tv(t, x, y) + tω p̃(t, x, y)Iα>1),

and the the required control, i.e. p(t, x, y) ≤ Cp̃(t, x, y). The controls on the derivatives can be
proved in a similar way, up to suitable rearrangements of the variable of integration, see p.747
and 748 in [Kol00]. Also the whole proof can be carried out for pd, pN . �

Remark B1 To conclude, note that by arguments similar to those used to prove Proposition
B1, one gets

|H ⊗H(t, x, y)| ≤ Ctω−1p̃(t, x, y),

which turns to be a useful estimate to derive (4.8) following the above proof.

C Additional computations concerning the derivatives of the density

In this section we prove that b
|a|
0 + c

|a|
0 = 0, justifying that the first index in (A.15) is one.

Odd dimensions d

From the definitions in the proof of Lemma A1 , it is enough to show

[
I|a| evenRe− I|a| oddIm

]{∫ ∞

0

[∫

R

exp (−ivτ) f1(τ)dτ
]
v|a|+d−1dv

+2

∫ 1

1−2ε
(iτ)−(d+|a|) Γ (d+ |a|) f2(τ)dτ

}
= 0. (C.1)

Note that since d is odd, if |a| is odd i−(d+|a|) = (−1)
d+|a|

2 and if |a| is even i−(d+|a|) =

i−1(−1)
d−1+|a|

2 . Hence, the contribution of the second term in (C.1) vanishes and the condition
writes

[
I|a| evenRe− I|a| oddIm

]{∫ ∞

0

[∫

R

exp (−ivτ) f1(τ)dτ
]
v|a|+d−1dv

}
= 0. (C.2)

Denote G1(v) =
∫
R
exp (−ivτ) f1(τ)dτ . Remind that |a| and a1 have the same parity, see proof

of Lemma A1.
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a) For even |a|, a1, G1 is even and belongs to a Schwartz space of functions. Since d is odd, by
inverse Fourier transform, Equation (C.2) reduces to

∫ ∞

0
G1(v)v

|a|+d−1dv =
1

2

∫

R

G1(v)v
|a|+d−1dv

=
(−i)|a|+d−1(2π)d

2
f
(|a|+d−1)
1 (0) = 0.

The equality f
(|a|+d−1)
1 (0) = 0 follows from the Leibniz differentiation rule for the product

τa1 × (1 − τ2)
|a|−a1+d−3

2 and the identity |a| + d − 1 = a1 + (|a| − a1 + d − 3) + 2]. Thus
(C.2) holds in this case.

b) Analogously, for odd |a|, a1, -Im(G1(v)) is odd and belongs to a Schwartz space of functions.

The function (−ImG1(v)v|a|+d−1) is even. Thus

∫ ∞

0
(−ImG1(v))v

|a|+d−1dv =
(−i)|a|+d

2
f
(|a|+d−1)
1 (0) = 0

for the same previous reasons and equation (C.2) holds in this case as well.

Even dimensions d

We assume in this section that the spectral measure is uniform with C1 = C2 = 1 in (A-1).
For |a| and a1 = 2m even, equation (A.6) can be rewritten as

Da
z p̃

y(t, x, z) =
(−1)|a|/2Aa

d−2

(2π)d|z − x||a|+d

m∑

j=0

(−1)2m−jCj
m (C.3)

×
∫ ∞

0
dvv|a|+d−1 exp

(
−t vα

|z − x|α
)∫ 1

−1
(1− τ2)Nj−1/2 cos(vτ)dτ

where Aa
d−2 =

∫
[0,π]d−3×[0,2π] h(φ, a)dφ and Nj =

|a|−a1+d−2+2j
2

, j ∈ [[0,m]]. Now recalling

the definition of the Bessel function Jn(z) :=
(z/2)n

Γ (n+ 1
2
)
√

π

∫ 1
−1(1 − t2)n−1/2 cos(zt)dt which is

well defined for n > 1/2 on C\(−∞, 0), we get

Da
z p̃

y(t, x, z) =
(−1)|a|/2Aa

d−2

(2π)d |z − x||a|+d

m∑

j=0

(−1)2m−jCj
m2NjΓ (Nj +

1

2
)
√
π

×
∫ ∞

0
v

|a|+a1+d−2j
2 exp

(
−t vα

|z − x|α
)
JNj

(v)dv

=
(−1)|a|/2Aa

d−2

(2π)d |z − x||a|+d

m∑

j=0

(−1)2m−jCj
mΓ (Nj +

1

2
)2Nj+1/2 (C.4)

×Re

∫ ∞

0
exp

(
−t vα

|z − x|α
)
exp

[(
1

2
Nj +

1

4

)
πi

]
W0,Nj

(2iv)vN
′
j dv,

where W0,n(z) =
exp(−z/2)

Γ (n+ 1
2
)

∫∞
0 [t(1 + t/z)]n−1/2e−tdt, n > 1/2, z ∈ C\(−∞, 0), is the Whit-

taker function and for z > 0,

Jn(z) = 2Re

[
1√
2πz

exp(
1

2
(n+

1

2
)πi)W0,n(2iz)

]
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(relation (2.10) from [Kol00]) and N ′
j = |a|+a1+d−2j−1

2
, j ∈ [[0,m]]. For α ∈ (0, 1], from

Cauchy’s theorem we can change the integration path in (C.4) to the negative imaginary half
line. Setting then v = −iξ we obtain

Da
z p̃

y(t, x, z) =
(−1)|a|/2Aa

d−2

(2π)d |z − x||a|+d

m∑

j=0

(−1)2m−jCj
mΓ (Nj +

1

2
)2Nj+1/2

×(−1)j−mRe

[
−i
∫ ∞

0
exp

(
−t ξα

|z − x|α
exp

(
− iπα

2

))
W0,Nj

(2ξ)ξN
′
j dξ

]
.

Recalling the definition of W0,Nj
, we conclude expanding the exponential in power series that

the first term is 0.

For α ∈ (1, 2), using the same arguments we can rotate the initial contour through the

angle −π/(2α). Setting then η = ei
π
2α v we get

Da
z p̃

y(t, x, z) =
(−1)|a|/2Aa

d−2

(2π)d |z − x||a|+d

m∑

j=0

(−1)2m−jCj
mΓ (Nj +

1

2
)2Nj+1/2

×Re

∫ ∞

0
exp

(
it

ηα

|z − x|α
+

(
1

2
Nj +

1

4

)
πi− iπ

2α
(N ′

j + 1)

)

×W0,Nj
(2η exp

{
iπ(α− 1)

2α

}
)ηN

′
j dη.

Taylor’s formula for exp(it ηα

|z−x|α ) yields for the first term, ∀j ∈ [[0,m]],

Ijα := Re

{
exp

[(
1

2
Nj +

1

4

)
πi− iπ

2α
(N ′

j + 1)

] ∫ ∞

0
W0,Nj

(2η exp

{
iπ(α− 1)

2α

}
)ηN

′
j dη

}
.

At last, we rotate the contour through the angle −π(α−1)
2α

. Setting ξ = η exp
(

iπ(α−1)
2α

)
we

obtain Ijα = Re
{
−i(−1)j−m

∫∞
0
W0,Nj

(2ξ)ξN
′
j dξ
}

= 0.

For |a| and a1 = 2m+ 1 odd,

Da
z p̃

y(t, x, z) =
(−1)(|a|+1)/2Aa

d−2

(2π)d|z − x||a|+d

m∑

j=0

(−1)2m−jCj
m

×
∫ ∞

0
dvv|a|+d−1 exp

(
−t vα

|z − x|α
)∫ 1

−1
(1− τ2)Nj−1/2τ sin(vτ)dτ

=
(−1)(|a|+1)/2Aa

d−2

(2π)d|z − x||a|+d

m∑

j=0

(−1)2m+1−jCj
m

∫ ∞

0
dvv|a|+d−2 exp

(
−t vα

|z − x|α
)

×
∫ 1

−1
(1− τ2)Nj−1/2τd(cos(vτ))

=
(−1)(|a|+1)/2Aa

d−2

(2π)d|z − x||a|+d

m∑

j=0

(−1)2m−jCj
m

∫ ∞

0
dvv|a|+d−2 exp

(
−t vα

|z − x|α
)

×
∫ 1

−1
cos(vτ) ×

[
(1 − 2Nj)τ

2(1 − τ2)Nj−3/2 + (1 − τ2)Nj−1/2
]
dτ.

The above integrals have the same form as in (C.3) and can be estimated similarly.
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