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WEAK ERROR FOR STABLE DRIVEN SDES :
EXPANSION OF THE DENSITIES.

BY VALENTIN KONAKOV, STEPHANE MENOZZI

CEMI RAS, Moscow, Université Paris VII

Abstract Consider a multidimensional SDE of the form X; =
x—i—fot b(Xs_)ds—f—fOt f(Xs-)dZs where (Zs)s>0 is a symmetric stable
process. Under suitable assumptions on the coefficients the unique
strong solution of the above equation admits a density w.r.t. the
Lebesgue measure and so does its Euler scheme. Using a parametrix
approach, we derive an error expansion at order 1 w.r.t. the time step
for the difference of these densities.

1. Introduction. Consider the following R?valued Stochastic Differ-
ential Equation (SDE in short)

(1.1) X, —c+ /Otb(Xs_)ds + /Otf(XS_)dZS,

where b, f are respectively Lipschitz continuous mappings from R¢ to R¢
and R? to R? @ R? and (Zs)s>0 is a general Lévy process. The previous
assumptions guarantee the existence of a unique strong solution to (EI)
Also, this solution satisfies the strong Markov property, see e.g. Theorem
7 and 32 Chapter 5 in Protter [Pro04]. Let T' > 0 be a fixed time horizon
T >0 and (X})ien a given approximation scheme of (Xt)iejo,m associated
to the time step h := T'/N, N € N* on the grid A := {¢; := ih,i € [0, N]}.
When speaking about weak approximation of ([[.) two kind of quantities
are of interest. The first one writes

51(x7T7N) = EJC[Q(XT)] - Eﬂ&[g(X%V)]

for a suitable class of test functions g. The second one concerns, when it
exists, the approximation of the density p of the original SDE ([L.1). If the
approximation scheme (ng )ten admits as well a density p, the quantity
under study becomes

E(z,y,T,N) = (p— p")(T,2,y).

AMS 2000 subject classifications: Primary 60H10, 60H30; secondary 65C30, 60G52
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In both cases, the goal is to give a bound or an error expansion of these
quantities in terms of h. If p and p’V exist, the control & gives more infor-
mation than & . Anyhow, the typical assumptions and techniques associated
to the study of £ and & are quite of different nature.

In the continuous case, i.e. Z; = bs + oW, where (Ws)s>0 is a standard
d-dimensional Brownian motion, provided the test function g and the coef-
ficients b, f are sufficiently smooth, without any additional assumption on
the generator Talay and Tubaro [[[T9(] derive an error expansion at order
1 for & (x, T, N) when (X}¥)icp is the Euler approximation. Their proof is
based on standard stochastic analysis tools: Ito’s expansions and stochas-
tic flows. To obtain the same kind of result for bounded Borel functions ¢
some non degeneracy has to be assumed, namely hypoellipticity of the un-
derlying diffusion, and the proof relies on Malliavin calculus techniques, see
Bally and Talay [BT964]. The authors also manage to extend their results
to & (x,y, T, N) for a slightly modified Euler scheme [B ).

Anyhow, the most natural approach to handle the estimation of the quan-
tity (T, x,y ,N) consists in using the so called ”parametrix” technique
introduced to obtain existence and controls on the fundamental solutions of
PDEs, see e.g. Mc Kean and Singer [MS67| or Friedman [Fri64]. Roughly
speaking it consists in expressing the density of X7 in terms of a infinite
sum of suitable iterated kernels applied to the density of an SDE with con-
stant coefficients. This has been done successfully by Konakov and Mammen
[KMO0J] in a uniformly elliptic setting. The main advantage of this approach
is that the density of the solution X7 and the Euler approximation XQJY can
be expressed in the same form and therefore quite directly compared. Fur-
thermore this technique turns out to be quite robust and can be applied as
soon as good controls on the densities p,p”" and their derivatives are avail-
able, see e.g. [KMMOg] for an extension to a slight degenerate framework.

Consider now the general case, i.e. Elexp(i(u, Z;))] = exp (t1)(u)) where

Y(u) = {z’(u,y} — 02% +/ (exp(i(u, z)) — 1 —i(u, z>]I‘Z‘§1) V(dz)} )

For smooth functions f, g and under additional assumptions on the behavior
at infinity of v, that is integrability conditions of the large jumps, Protter
and Talay [PT97], manage to get a control at order one or even an error
expansion for & (z, T, N) with the same approach as in [[['T9(]. In this work
the approximation is the Euler scheme which for a general Lévy measure v
cannot always be simulated on a computer.

The quantity & (7, x,N) for a given simulatable approximation of the
Fuler scheme has also been studied by Jacod et al. who derived
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bounds at order 1. Moment conditions are also assumed.

In this article we manage to exploit the parametrix approach of [KMO0J] to
derive a precise error expansion, with leading term of order 1, for (T, z,y, N)
when (Z;)i>0 is an a-stable process, o € (0,2). The previous results cannot
be directly applied, even for the study of & (T, z, N), since stable laws have
large tails.

Under suitable non degeneracy assumptions on its coefficients specified
below (see (A-1)-(A-3)), equation ([.1]) is known to have a density p w.r.t.
the Lebesgue measure. This can be proved via a Malliavin calculus-Bismut
integration by parts approach, see e.g. Bichteller et al. [BGJST]. Also, a direct
construction of this density using a parametrix expansion has been obtained
by Kolokoltsov [[Kol0(] who derived as well ” Aronson’s like” bounds with
time singularity depending on the index « of the stable process 7.

Stable driven SDEs appear in various applicative fields, from mathemat-
ical physics to electrical engineering or financial mathematics, see [[[P0{],
[BK74] or PMW94], therefore their approximation becomes of interest. To
approximate equation ([.1]), setting ¢(t) := inf{t; : t; <t < t;;1}, we intro-
duce the Euler scheme

t t
(1.2) XN a4 /0 b(XLY))ds + /O FXY)dz,.

The computation of the above scheme only requires to be able to simulate
exactly the increments of Z, which up to a self similarity argument only
amounts to simulate a stable law. This aspect is for instance discussed in
Samorodnittsky and Taqqu [FT94], Weron and Weron [WR95] or Section
3 of [PT97. Under the same assumptions (A-1)-(A-3), the Euler scheme
defined in ([.J) also has a density p'.

We obtain, as one could expect an expansion with leading term of order
1in h for &(T,x,y, N). The main idea of the proof consists in comparing
the parametrix developments of p and p’V. The parametrix expansion of
p is discussed in [Kol0(], see also Section f] and Appendix, whereas the
parametrix expansion of pV can be related to the ideas developed in [KMO0(,
KMD0J] for the diffusive case corresponding to an index of stability equal to
2.

This result also emphasizes the robustness of the method that naturally
extends to a broad class of processes. Let us mention that, using a Malliavin
calculus approach, Hausenblas [[Hau0J], derived an upper bound of order
one w.r.t. h for the quantity & (T,x,N), g € L™ in the scalar case. Hence,
our result generalizes hers. Concerning functional limit theorems for the
approximation of stable driven SDEs we refer to the work of Jacod [Jac04].
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The paper is organized as follows. In Section | we state our standing
assumptions and main results. In Section J we prove the existence of the
densities for both the stable driven equation and its Euler scheme and also
give a parametrix representation of these densities. Section [ is dedicated
to the proof of the main results. Eventually we give some extensions in
Section [f], namely we state weaker assumptions under which our main result
holds and we also extend it to the case of a stable process perturbed by a
compound Poisson process.

2. Assumptions and Main results.

2.1. Assumptions. Since our arguments rely on techniques that involve
the generator of ([1), it is convenient to compute it before stating our
assumptions. Let (Z;);>0 be the process associated to the R? valued a-stable
law, a € (0,2), with characteristic function

(2.1) 7 (2 )—exp[ v, 2 —i—/Sd 1/ ( z,ps) _ _11<ip:2>)pilfax(d )]

where v € R? and s a (finite Borelian) measure on the unit sphere S41.
In the following we consider symmetric stable processes, that is for every A
in the Borel o-field B(S91), A(A) = A\(—A). Thus, for all ¢ > 0,

(22)  Blexplile, Z)] = explit(y.2) =t [ [(z5)["A(ds)),

with A := O, Cy := o} (F(l — )1y + T2 - a)(a - 1)’1Ha€(172))
x cos (%) +Z21,—1, see e.g. Theorem 2.3.1 in [FT94] and Lemma 2, Chapter
XVII.4 in [[Fel6d] for the expression of C,.

Recalling that Z is a pure jump semi-martingale, we deduce from It6’s
formula for semi-martingales that for every ¢ € CZ(R?)

V)~ 0l) = [ (0 (X 00X s + f (X,) d2) +
Z W) (Xsf + f(Xsf)AZs) - ¢ (Xsf) - <V7/) (Xsf) af(Xsf)AZs” :

0<s<t

In addition we have the componentwise canonical decomposition for Z; with
the truncation function h(z) = z1j,<; (see Theorem 2.43 Chapter II in
Jacod and Shiryaev [JS87])

(2.3) Z; = // p(w,dz,ds) — v (dz) ds+// w(w,dz,ds)+~t
\Z\<1 | |>1
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where p(w, dt, dz) := 30 Iaz, ()£00s, A7, (w) (dt, dz) is the jump measure of
Z and v its Lévy measure. Hence,

0~ () = Myt [ (V6 (o) F(X )+ (X s +
D7 (Xem + FX)AZ) = (Xom) = (VY (X)), f(Xem)AZS a7, <1)]

s€(0,t]

where M, = [J [(Vi(Xs_), f(Xso)2l 5 <1) [u (w,dz,ds) — v (dz) ds]. Since
f is assumed to be bounded and ¥ € CZ(R 4), we deduce from equations
(B1)-(R-2) and corollary 3 p. 73 in Protter [Pro04] that (My):>o is a square
integrable martingale. Thus the generator of the unique strong solution of

(L)) writes:
Av(a) = lim BT (G0 g2y + b)) +
[ v @+ £@)2) = v @)~ (Vo) f@)2) ] v (d2) =
{ps,V(x))] dp 5
o v [T e - - S| S )
(2.4)

where y(z) = b(@) + f (@)1 + fya F(2)2 (fri7re —~ Tei<r) v (d2) = bla) +
f(z)y, recalling the symmetry. We denote for all A € BRY), v(x,A) :=
v({z € R? : f(z)z € A}). Then A(x,.) stands for the spherical part of
v(z,.).

We now introduce our assumptions. Fix now an integer ¢ > 2, we assume
that

(A-1) The spherical measure ) has a C7 surface density and 3(Cy,C9) €
(RY)2, vpe STL 0 < Cr < [gar [P, 8)|* A (ds) < Os.

(A-2) The coefficients b and f as well as their derivatives up to order ¢
are uniformly bounded in z. Thus, for 1 < a < 2, y(z) = b(x) + f(z)y is
uniformly bounded. We impose for 0 < a < 1, y(z) = 0 for all z € R4

Remark 2.1 The zero drift condition comes from the fact that for o € (0, 1]
the addition of a drift of order t does not correspond to a negligible term in
small time with respect to the natural scale tY/%, see Appendix A for details.

(A-3) There exist constants 0 < ¢ < ¢ s.t. for all x € R ¢ € RY,

clé]? < (f(2)€,€) <el¢”.
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Remark 2.2 The uniform ellipticity condition (A-3) allows to have good
controls on the measure X(z,-). In particular, a consequence of (A-1), (A-
3) one gets that there exist constants C; = Cy(c,d,a) < C1 = C1(¢,d, a)
s.t. Vpe 841z e RY,

(2.5) 0<C < /

Sd—

@, 5)|* Az, ds) < Co.

From now on we assume that Assumptions (A-1)-(A-3) are in force.

In the following we denote by C a positive generic constant that can
depend on «, d, the bounds appearing in the previous assumptions but nei-
ther on N nor on the spatial points involved. Other possible dependencies,
especially w.r.t. the final time 7" are explicitely specified.

2.2. Main results.

Proposition 2.1 For everyt > 0 the solution X; (resp. X}¥) of (L) (resp.
() has a density p(t,x,-) (resp. p™ (t,x,)) w.r.t. the Lebesque measure.

To state the theorem we first need some notation. Introduce for a smooth
function (¢, x, z) the integro-differential operators:

(2:6) ip(t,7,2) = (1(2), Valt, 2, 2)) +
/Sd_l /OOO (so(t,x +05,2) = p(t,3,2) — <ps’v’”‘p(t’x’z)>> pffai(x,dg),
(2.7)

1+ p?

@*gp(t,x,y) = iv)ygp(t,x,y) where for ¢ € R,
Bep(t z,2) = (1(&), Vaiplt, z,2)) +

(2.8)
o ~ s, Veo(t,z, z dop ~ B
/Sd_l /0 (gp(t,:ﬂ +ps8,2) —p(t,z,z) — {p : f(; )>> plfa)\(g,ds).

Define also, (5*)7” o(t,z,y) = (‘55)7” o(t,z,y) |¢e=z, Vm € N*. Note that we

have ®,p(t, z,y) = ®o(t, x,y) but in general (&)*)m o(t,x,y) # (D)™ p(t,z,y)
for m > 2.

Define now, for ¢ > 0, the kernel H(t,x,y) = (® — ‘Flsy)ﬁ(t,x,y) where
p(t, z,y) denotes the density at point y of X; = 24b(y)t+ f(y) Z;. Eventually
we introduce the discrete and continuous convolution operators

t
poultay) = [ ds[dup(s,z it - 5,zy) e 0.T)

pen ity = [ ds [dp(60s),0, 2000 — 65) 20 € (e n)
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Also o @ H") = (<p® H(T*U) ® H,o @ H® =  stands for the r-fold
convolution.

Theorem 2.1 Suppose ¢ > d — 4. Take M < (¢ — d — 4). There exists
a function R(z,y) with |R(z,y)| < C (W) = paly — x) for some
positive constant C' := C(T) such that

M—-1
o) = zzzl (l%)‘ [p o (@~ ‘T’*)mpd} (T,2,y)
M—
_ kzll . :L_kl)! [pd N (‘13* — &)*)k—f—lp]\[] (T, z,y) + WM R (z,)

where p(T, x,y) = 32, (ﬁ@N H(T)) (T, z,y). It holds that

Mil (p SN 5*)”11)(1) (T7x7y)’ < Cpaly — ),
=1
1\421 (pd QN (ff* — &)*)kﬂ pN) (T,x,y)‘ < Cpaly — o).

k=1
Remark 2.3 In the above expression, one writes for all | € [1, M],

+1
~ o\ N
(CD— i) ) o(t,x,y) = E Cﬁl@k(—@ )l+1 k(p(tamay)7
k=1

~ ~ \ k+1 ~ ~
wh’ereasy Vk € [[17 m]]7 ((b* - (b*) (,O(t, Z, y) = (@5 - (by)kJrl(p(ta €T, y)‘ﬁzzv

Remark 2.4 The terms in the previous expansion depend on N. Anyhow
using iteratively the Theorem and controls on @ — ® (see also Lemma[f.1)
it is possible to obtain an expansion with terms independent of N. For small
M explicit formulas are thus easily derived but in all generality the terms
become less transparent. For M = 2 one gets

(0~ p")(T2.5) = 5 (pon (@ = 8 —p o (&, — 8°)Y) (T,2,0)
+h? R(,y)

=L (pe @~ #)p—po (3. —3")) (T,2,)

HR(a,y) = (0 ® (8~ Bp)(T,0,9) + B2R(r,y),

where R(z,y) < Cpa(y — ).
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3. Stable driven equations and their Euler scheme: existence of
the density and associated parametrix expansion.

3.1. Stable driven equation.

3.1.1. Emzistence of the density. For X, Proposition R.1 derives from the
following result due to Kolokoltsov [Kol0(]. In our current framework, using
a parametrix approach he constructs a function p(¢, x, y) which is everywhere
non-negative, belongs to Co(R?) (continuous functions of R? vanishing at
infinity) for each t > 0, satisfies the semigroup identity (or the Chapman-
Kolmogorov equation) and [ p(t,z,n)dn = 1. Set now for an arbitrary ¢ €
C(RY) and t > 0, (Ri)(x) = [pa p(t, 7,€)(€)dE. Then the following result
holds true (Proposition 3.4 in [[Kol0(]).

Theorem 3.1 (i) (Ri)(x) tends to ¥(z) as t — 0 for each x and any
Y € C(RY).

(i) If « > 1, or o < 1, then Ry is a continuous operator from C(R?) into
CH(RY) with norm of order Ot for all 1 < q, or 1 < q — 1 respectively.
(i4i) If 1 € C(R?) and t > 0, the function (Ry))(z) satisfies equation

owu(t, ) = (y(x), Vyult,z)) +

(3.1)
/Sd_l /OOO <u(t,:ﬂ + ps) —u(t,z) — (ps, Yiu;,x») pilfax (z,ds).

(iv) The Cauchy problem for ([3.1) can have at most one solution in the
class of continuous functions belonging to Co(R?) for each t. This solution
18 necessary non-negative whenever the initial function is non-negative.

In other words p is a fundamental solution of the Cauchy problem associated
to (B.J]). From ) it is also a regularizing kernel.

It follows from (3.6) and (3.15) in [Kol0J that the transition function
P(t,z,T') = [pp(t, ,y)dy is stochastically continuous and, hence, is unique-
ly determined by its weak infinitesimal operator (see Dynkin [[Dyn6d], The-
orem 2.3, p. 56). Then p can be identified with the transition probability
density of the solution X; = (th, cees Xtd) of the equation ([L.1]) by comparison

of the r.h.s. of (B.1) and (2:4).

Remark 3.1 The existence of the density is discussed in Bichteler et al.
B G , where it is proved thanks to a Bismut-Malliavin approach. This
technique requires the computation of a tangent equation associated to the
gradient flow that involves the derivatives of the coefficients of equation ([L1])
implying some additional smoothness of those coefficients, see e.g. Theorem
6.48 of the above reference.
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3.1.2. Parametrixz expansion of the density. For the sake of complete-
ness we now specify how to get through a ”parametrix” approach a series
expansion for the density p(¢,z,y).

Introduce, for all z,y € R? the following stochastic ”frozen” stable driven
equation X = )Z'S,x,y defined for s <t by

(3.2) X =+ /: b(y)du + /: F(y) dZ,.

By computation of the Fourier transform of Z and Fourier inversion the
transition densities p¥ of X; explicitly write

1 4
Y (t—s,x,2) = /6*2<2*$*(t*8)’7(y),p>
P ) (2m)?

xep{~(t=5) [ 103" A0d9) fdp =5t - 5.2.2).

One can directly check that this transition density satisfies the equation

(33 O 1., 2) = (2. Vault, z,2) +
/S /Ooo (u(u R . vli(/tﬂx z>>) pffax@, d3).

Now, from equations (B.d) and (B.1]) and with the notations of Section fl, the
densities of the solutions of (B.3) and ([[.1) satisfy respectively

(3.4) % = ;ISyﬁ, for t > 0,p(0,2,2) = §(z — x),
% = ®p, forz € RLE>0,p(0,2,2) = 0(z — z).

We will speak about the operators appearing in (@) as the "frozen” and
”unfrozen” ones.
From (B-4), we derive a parametrix expansion for the density p(¢,z,-) of

the solution of ([L.1]).

Proposition 3.1 (Parametrix expansion of the density) With the no-
tations of Section [d, the following representation holds

[e.e]

(3.5) plt,z,y) =D (F® HD) (t,2,y).
r=0
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Proof. The function p, fundamental solution of (B.4), satisfies the equation

op ~
(3.6) 3—]Z (t,z,y) = Pup(t,z,y) — H(t, 2, y).

We have now from (B.4) and (B.6)
0= ) = [ ds | [psm2 50— sz de] =

/Ot ds/[(tglgzp) (s,2,2)p(t — s,2,y) —p(s,x,2) &)yﬁ(t —8,2,y)]dz
:p®H(t,1’,y)7

where @, stands for the adjoint of ®.. Note that we considered the solution
p(t,z,y) at the same point y where we "froze” the right hand side of the
equation. The representation (B.5) then follows by simple iteration. [J

Remark 3.2 Note that the previous expansion is ”formal”. The conver-
gence of the r.h.s. in (B.J) is investigated in the proof of Theorem 5.1 in
and can also be derived with the controls of Lemmas and [.3.

For the sake of completeness, a short proof of this convergence is also given
in Appendiz [A.

3.2. FEuler scheme. We consider now, for given N € N*, the Euler scheme
for equation () at the discretization times:
XY =z, x7

tit1

- Xt]zv + b(Xt]iV)h +f (thzv) (Zti+1 o Zti)

recalling h = T/N. For cach N € N*, (X}V);c[o.n7 is a Markov chain. Given
the past Xt]lv =z, | € [0,1], the conditional distribution of the innovations
(XY )b+ f (Xt]zv) (Zt;,, — Z4,) has conditional density p(h, -; A(@i, ), v(x3))-

Now, in order to give an expansion of the density of the Euler scheme
similar to equation (B.3), that will also be the starting point for our error
expansion, we need to define, for fixed j,k, 0 < j < k < N and z,y €
R¢ additional ”frozen” Markov chains (Xglv)le[[j,k]] = (ng@y)le[[j,k]]- Their
dynamics is described by

Xg = x’Xg+l - th]:/ +b(y)h+f(y) (Zti+1 - th’)’ S [[]’k - 1]]'

Given the past XglV = xy,1 € [j,1i], the conditional distribution of the inno-
vations b(y)h + f(y)(Zt,,, — Z,) has conditional density p(h,-; A(y,-),v(y))
and, hence, does not depend on the past. Note that for the grid points
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(ti)icpo,n the transition densities of the solution X,y of (B3 coincide
with the transition densities of the chain )?t]yxy for N € N*, 2,y € R? and
S = tj.

We denote by p (t; — t;,z,y) and

P (te — tj,2,y) = ptx — tj, y — 13 My, ), ¥(y))

the transition probability densities between times t; and ¢ of the chains
XN and XV respectively.

Before stating the parametrix expansion of p” in terms of p", we need
to introduce a kernel Hpy that is the "discrete” analogue of H:

(3.7) Hy ={Ly - Ln} 3",
with

Lt = t.) = b [ % (o 20t = ton,20)d = ol = ),
Lt =ty 2,9) = b4 [ 5V 20t — by, 2. 0)d = olte — s, 0)),

pNY(h,a, 2) = ph, 2 — 3 My, ), 7 (1))
Lemma 3.1 For 0 < j <k < N the following formula holds:

k—j

(3.8) PNty — tya,y) =3 (Y @n HY) (b — tj,2,y)
r=0

where in the calculation of p~ @y H](\}") (r-fold convolution) we define
P (0,2,y) = p™ (0, 2,y) = 6(z — y).

The proof of this lemma is given in [KMO(], Lemma 3.6 and does not rely
on the specific distribution of the innovations.

4. Proof of the main results. In this section, we state in Subsec-
tion [L.1] the various points needed to prove Theorem R.I. The proofs are
postponed to Subsection [L.J. As mentioned earlier, the key idea consists
in comparing the parametrix expansions of the densities p and p" respec-
tively given by (B.) and (B.§). In the whole section we suppose that the
assumptions of Theorem .1 hold.
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4.1. Proof of Theorem [2.]. For the previously mentioned comparison to
be possible we first need to estimate a difference between the transition
density p(t,z,y) and pd(t,x,y) which is defined analogously to p but with
® replaced by ®y (discrete time convolution).

Lemma 4.1 (Time discretization) One has:

( d)(T ) . N[Z_l h! < ® (‘1> (’IV)*)I-H d> (T )
p—=Dp » Ly Y - — (l+1)' PN p » Ly Y
+hMR1 (Ta €, y)
with
M—1

D

=1

(o (0 8)"6) ()| + 1B (T.9)] < Cpaly — 2)

for some constant C := C(T).
Then the comparison between p¢ and p'¥ is controlled with the following

Lemma 4.2 (Comparison of the discrete densities) The following ex-
pansion holds:

d_ Ny B =k d & _ 5\ N p
@ =p ) (Tya,y) = —kzlm[p on (B - 0*)  p }( 2, Y)
+hM Ry (T, 2, y)
where
1 1 ~ ~ M+1
Ry(T,z,y) = __/ (1—n)" {pd @n (B, — ) 1’5?] (T, 2, y)dr
M Jo
P2 (Toeyy) = S oy HY (T,2,y),55 =pV, and V7 € 0,1],
r=0
pr(t,z,y) = Dly—xt\(y,-) + TRAX (y, ), ty(y) + ThAY*(y))
= [ @ 5 M) A )P 3 TRAN (5., ThAY (3),

Also, there exists C := C(T') > 0 s.t.

M-1

>

=1

(o e (8- 8) ") (209) | + | Ra(To)| < Cpaly — )
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4.2. Proofs of the technical Lemmas.
Proof of Lemma [.]. We start from the recurrence relation for r € N*

pPH" —poyHT = [(ﬁ@H(”*”)@H—(ﬁ@H(“”)@NH}
+[(Fe ") - (Foy H' V)| @y H.

Summing up these terms over » € N* and using the linearity of ® and ®xn
weget p—pl=pRH —pon H+ (p - pd) ®n H. An iterative application
of this identity yields

(4.1) p_pd:Z[p(@H—P@NH]@NH(T)-
r=0
By definition
J+1
[p®H p®NH] tk,ﬁﬂy Z/ /[psxz S,Z,y)
(42) (g, 2) H (t — b, 2, y))d2

A Taylor expansion of the function (s, z) := p(s,x, 2)H (tx, — s,z,y) in the
interval [t;,t;41] gives

dz +

T=t;

/[0(3,2) —0(t),2)|dz = /8l (1,2)

s — \NM 1
(43) G e / OMO(r,2) sy 052,

where 7;(s,9) = t; + 6(s — t;). Note now that —0sp(t — s,z,2) = Pp(t —
s,,2), Oyp(t—s,m,2) =10, p(t —s,x,z), where '@, is the adjoint operator
of ®,, so that Op(t—s,z,2) = thZp(t— s,x, z). The same identity also holds
for p with ®,'® respectively replaced by ®* 1d*. We therefore derive

/ 0,0(r, )| rmr,dz = / O, (7,2, 2)] [yt H (1 — t, 2, )
+ / Pty 2, 2)0 [H (b — 7, 2,)] s, d2
= [tttz (2 ) Pt — t5, 2, y)dz
/ (tj, 2,2 ( <1>) —t,2,y)dz

= /p(tj,xz ( ) tk_t]aZy)d
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Iterating the differentiation we get
l ok +1
(4.4) /870(7', 2)|r=t;dz = /p(tj,x, z) (CD - ) Pty —tj,2,y)dz

where we recall that for two operators A and B we denote by (A — B)¥ the
following sum (A — B)* = Z;?:O Cl A (-B)l.
Plugging ([.J) and (f4) into (f.2) we get

M-1 g Nt
[p® H—pay H|(ty,z,y) = ; Tr ey (q)— q)*) Ptk 2,y)
(4.5) +hM Ry (te, ,y)
where
Ny pp—— kf/tm [h—l(s — tj)}M /1 (1—0)M " x
(M —1)! =0 0
(4.6) /3&4 [p(m,2,2) H (tk, — 7, 2,Y)] | 7=, (s,6)dsdzd.

Plugging ([£.) and (f.6) into (1)) we get

J M-—1 hl 0 =, 41 (r)
p—p)(Tzy) = Y F0— XD PON (‘1>—<I>) pon HY (T, z,y)
=1 (l+ 1) r=0
(4.7) +hM R, (T, z,y)

with Ry (T,z,y) = > o(Ry @n HOYT, z,y).
Now we apply that for a linear operator S and its adjoint S we have
p®@n Sp = tSp @y p. This gives

> ~ \I+1
Span (0-) poy HO(T,z,y) =
r=0

t {(‘I) — ‘T)*)IH] PN i (pon HO)(T,2,y) =poy (@ - ‘T’*)mpd(T’ 7 Y),
r=0

which plugged into (7) gives the desired expansion. The stated bound
follows by application of the estimates given in Lemma . below. We only
give the proof for the first summand, the other terms can be handled in a
similar way. Write

N—-1
pon (@ — ) (T,z,y) = > h/p(tzsx, 2)(® — @) pU(T — t;, 2,y)dz
1=0

= S1+ 95,
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where in S) (resp. Ss) the sum is taken over I; := {i € [0, 252 ]]} (resp.
Iy:={i € [[N —1/2] + 1, N —1]}). For Sy (resp. S2), pY(T —t;, 2,y) (resp.
p(t;,x,2)) is non singular. One could show from the proof of Lemma [£.3, see
also Appendix [A], using as well the proof of Proposition 2.5 in [[Kol0d] that
aC = C(T),

](@—CT)*)de(T—ti,z,y)] < Cﬁ(T_ti7Z7y)7Vi€Ih

~ 2
(4.8) ‘((@*)t—qﬁ) p(tiz,2)| < Cplty,x,2),Vi€ I

Thus the semi group property yields |S1| + |S2| < Cp(T, z,y). One eventu-
ally checks from Proposition [A.1] that (T, z,y) < Cpa(y — z). O

Proof of Lemma [£.4 Let us denote by F[](z) = [exp(i{z,p))v(p)dp
the Fourier transform of a function . Introduce now for all s,t, s < t,

s,t € {(t:)icpo.n}> P € RY,
) = h(Lg - LY)PV(E - s,2.p)
= [P (s b wpdw — 5~ s, p).

Note, that in particular according to (B-7), ¥(y) = hHn(t — s,2,y). We
obtain from (R.1]) and (B.7) that

FY)(z) == G.(1) — G»(0)
with
G=(0) = expli(z, 2) + i(t — 5){(y), 2) +i0h{AY" (y),2) +

/S . / ( “s) ifi ‘;‘?) pffa [(t—s)X(y,dg)HhAXr (y,dg)},

denoting A4 (y) = v(¢) — v(y), A% (y,ds) = &, d3) — Ay, ds). A Taylor
expansion yields F[¢)(z) = YpL; 4 a (0) + o fo (1 — T)MGgM+1)(T)dT.
From the previous expression of G, (5) one derives that for k € N*:

1
. k

) _ 2(z7ﬂ dp Xz o~

ih (A ( +h/5d / < ) AN (v.d5)

where G(0) = F[0](z), 0(p) := p(t — s,2,p; A(y,+),¥(y)). Using the well-
known properties of the Fourier transform one gets for all k € [1, M]

M) =F [h’“ (®. - iy)k e] (2),
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where the operators are applied w.r.t. the x component. Hence,

1
Z HOPO) + / (1= 7)M@M D (r)dr =

M
hM+1

it . u o o)

where V7 € (0,1}, 0-(p) = p(p — z; (t = $)A(y,-) + ThAN(y, ), (t — 5)v(y) +
ThA~*(y)). Taking the inverse Fourier transform at point y in the above
equation, observing that H(t — s, x,y) = (B, — ®*)p(t — s, 2,15 Ay, ), 7)),
we obtain

M- N e

k=1
hM 1 - ~., M+1 _
M/o (1-—1)M (q)*—Q) ) pr(t — s,y —x)dr.

Recall that for ¢ € {(¢;)icpi,ny}

k—l—l

(4.9)

0= )tz w) = S A(Fon HO) (bay) — ey HY) (a,y)
r=0

where we put (ﬁ@N H](\;)) (t,z,y) = 0 for hr > t. Summing over r € N in
the identity

oy HY —poy HY)(t z,y) =
(Fon HT D) @n (H - Hy)) (t,2,y) +
((eon HD —Foy HY V) @y Hy) (t2,y)
one gets
(Pd - pN)(t,x,y) = [pd ®n (H — Hy) + (pd - pN) N HN} (t,x,y).
By iterative application of the last identity we obtain

p?—p" = Z [pd @n (H — HN)} N H](\;).
r=0

We get from ([L.9))

(r" @ (H = Hy)) (t,2,9) = B S [pd @y (@, - %) p] (t,.y)
. i (B!
—hﬁMl /01 1-n" [pd N (513* - <I>*)M pr] (t,z,y)d
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Eventually,
M-1 k
h ~ ~ Nkl
d N d * N
— ™M)t = -y - b, —d t,
(" =)t 2,y) ;;(’Hl)![p o ( ) p}(ﬂcy)
+hM Ry (t,2,y) ,
1ot M| d = =\ ML A
Roltiy) = —=m [ (0=0" ooy (8.~ )" 52| twp)dr
M Jo
o0
PRty = S proyHY (ta,y), o =",
r=0

This proves the expansion part of the Lemma. The bound follows as in the
previous proof from Lemma .. O

We now state Lemma that allows to control the rests appearing in the
expansions of Lemmas [I.1] and .3

Lemma 4.3 For all multi-indices a,b s.t. |a|+|b| < ¢—(d+4), the following
inequalities hold:

(4.10)
_lal+]p]
Dy Dp (1, 2, y) | + [Dy DN (tx, )| < Ot * Bt w,y), k € [1,n],

la]+]b]
[e3

D3Pt 2, )| < 5 Bt 0, ),0 <t < T

To conclude the proof it remains to prove Lemma The first step is
to get bounds on partial derivatives of the transition densities p and p. The
following estimates generalize the ones obtained in [[Kol0(], Propositions 2.1-
2.3. From now on we assume w.l.o.g. that d > 3, the cases d € {1,2} can
be addressed more directly. To proceed with the computations, we need to
specify a useful change of coordinates. Namely, for a given direction ( €
R4\ {0} introduce for p € R? the spherical coordinates (p,d, 2, ,Pq_1),
p = |p| with first coordinate or main axis directed along (, that is

p1 = pcost, ps = psint cos s, p3 = psind sin s cos 3, ...
Pd—1 = psindsins...sin g9 CoS Y1,
(4.11) pg = psinVsings...sinpy_osingy 1,

v € (0,7, € [0,7],i € [2,d — 2], pa—1 € [0,27]. Consider then the
coordinates (v,7,¢) where 7 = cos? and v = p|(], with v € RT, 7 €
[-1,1], ¢ = (P2, ,p4-1) € [0,7]%3 x [0,27]. In the following we write
p(v, 7, ¢) for the previous r.h.s. in ({.11)) written in these new coordinates

and p(7, ¢) = p([¢], 7, ¢).
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Lemma 4.4 There exists a constant C' > 1 such that the following estimates
hold uniformly for v in any compact subset of the interval (0,2) and for all
0<t<T,z,z and |a| < q— (d+4)

_ C
(4.12) |Dep(t, x, z)| < 75‘6”/0{]9(15,36,2),
(413) DIt )] € ——— it 2),
2= ()t — x|

recalling p(t, z,z) == p(t,x, z; My, ), v(y)).

Proof. Without loss of generality we suppose v(y) = 0. The first step
consists in differentiating w.r.t z the inverse Fourier transform for p(¢, z, 2)

/Rd exp{—t /Sal_1 |(p, 5>|a)\(y,d5)} exp (—i (p,z — x)) dp.

p(t,x, z) = (27T)d

(4.14)

For z = z, (2.) and standard computations directly give estimate ([.13).
Thus, in the following we also assume z # z and use the previous spherical
coordinates (v, T, ¢) derived from ([.11]) setting ¢ = z — = as the main axis.
We obtain:

1 >
az _ |a|+d—1
Dip(t,x, 2) = Gz = ol /0 dv v X

1 e e
A R T L ey N RO

la]—a14+d—3

(4.15) (1= 7 hsa),

where = p/ |p|, a = (a1, ...,aq) € Nand ¥(v, 7, |a|) = (—1)lel/2 cos(v7)lja| event
(=) D2 gin(v7)L 4 odas

h(p,a) = {(cosp2)™ (sin gy cos p3)®® X ... X (Sin pa...sin g9 €os pg_1 )"
X (sin ... sin g9 singg 1)} x V()
V(g) = (singg)? 3 (sins)?™ x ... x (sing_3)% sin pg_o.

We consider, first the case |z — z| /t1/® < C, for a sufficiently small posi-
tive constant C'. In this case we expand the trigonometric function ¥ (v, 7, |a|)



EULER SCHEME FOR STABLE SDES 19

tt/ oy

to w in
|z—x]

in ({.15) in power series and change the variable of integration
each term. This gives for all £ € N,

a~ C\al i (—nm a |z — x|
sz(t,CC,Z) = ta_er{Z( )'6m|< tl/a

a m=0 2m + H\a| odd

‘a| (_1)(‘a|+l\a\ odd)/2
(416) +Rk+1}’ C|a‘ (27T)d )

>2m+ﬂa odd

where Ym € [1, k],

oo 1
da = [Taw[ o | dvesp{—ur [ 1.1 A (o)
0 -1 [0,7]4=3%[0,2n] St

la]—a;4+d—3

w|a|+2m+d_ﬂ\a\ even ¢ 7—@1+2m+]1\a\ odd (1 — 7—2) 2 h(QS, CL),
|al 2(k+1) 414 o
\R\al | k1 (\z—m\) (kD He] oaa
A (Q(k + 1) + H|a\ odd)! ti/e .

To simplify the notations we omit the dependence of the coefficients of our
expansions on the direction ( = z — 2. From (A-1), (A-2) and (R.§) one
then derives the following bound:

al

Ag_o lal +2m +d + Ljg| oaa
e|m S \a\+2m+d+]l‘a‘ odd F ( a
aCly «
a1 +1+1 — d—1
B (m 4 1 5 lal odd, |a| a12+ > ‘

Here A,_5 denotes the area of the unit sphere S?2 and B is the S-function.

Note that the modulus of each term in the expansion ({.1¢) serves as esti-
mate of the remainder in a finite Taylor expansion. From ({.1§) we have

_ C ‘Z _ x’ I\a\odd
Dgp(t7x7z) = ta% <60a| (W) + R\1a| .

By Proposition 3.1 from [KoI0g] for some C depending on C, C1—d/a <
p(t,z,2) < Ot~ Hence,

lal
o C _ cor o
(4.17) |sz(t,x,z)| < la] p(t,x,Z) = Wp(
zZ—x

ta

t,x,z).

To estimate D2p(t, z, z) for |z — x| /t1/* > (6)_1 we proceed as in Propo-
sition 2.3 of [Kol0(]. This gives the following representation D?p(t,x,z) =
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[D2pa(t,z, 2)]; + [DIP(t, z, 2)], with

1 > la|+d—1 !
— d _/ dr¥(p|z — x|, 7, ]a|) x
(2m)7 /0 PP » (pl A

(118) () [ A exp {~t0°ga(7,6,9)} h(6,0), § = 1,2

[0,7]4—3x[0,27]

[Dgﬁ(t’ €, Z)]j =

Here

la]—a;4+d—3 la]—a14+d—3

fi(r)=1% (1 - 7'2) ’ X(7), fa(T) =7 (1 — 7'2) ? (I—x(7))

where x(7) is a C* even truncation function R — [0, 1] that equals 1 for
|7 < 1—2¢, and 0 for |[7| > 1 — ¢ for some £ € (0,3). Because of the
symmetry in 7, it is easy to see that the integral in (Jl.1§) is non-zero only
if a; and |a| are both even or odd. Expanding the exponential at order 2 in

(E-1§) and making the change of variables p |z — z| = v we get

C m
(4.19) (Dt (t,z,2)], = ;Tal+d Z = plal ( _t a) ;

|2 m' bm x|

where for m € [0, 1],

blgb\ _ (_1)m/ FM\(U)U\aHma-i-d—ldU’
0
F?Lgl(v) = [H\a| evenR€ — H|a\ oddlm] |:/ eXp(—iUT)gDm(T)dT] )

on(r) = @) [ LRk,

and
1 o]
oyl = 2 / (1-9) / FJ(vyolelt2e+d=1 gy s,
0 0 ’
FZI:I(S‘(U) = [HIG\ evenRe - H|a\ oddIm] [/_ eXp(—Z'UT)(p275(T)dT:| 5

025(T) = fl(T)/

[0,7]4—3x[0,27]

gA(T, &, y) exp {—575 (ﬁ) NG y)}
wh(, a)de.

Now Assumption (A-1) implies that ¢,,(7),m = 0,1, and g9 5(7) are C?
functions of 7 with compact support. Indeed, for the unit vectors p(7+ AT, ¢)



EULER SCHEME FOR STABLE SDES 21

and P(T,¢), from elementary algebra there exists an orthogonal matrix
A = A(AT) s.t. p(T + A1, ¢) = Ap(T,¢). Hence, if \(z,ds) = O(x, s)ds
where © has the previous smoothness one can show

g)\(T + AT’ Qb, x) B g)\(T, Qb, x)

lim
AT—0 AT
— lim de—l |<p(7—’ ¢)5A*5>| |< (7' Qb) >| (CE dS)
AT—0 AT
. [O(z, As) — O(x, s)]
= [, B0, 8 Jim PRSI

= [ 1500, 1" Ol )80 6, )

where B(1,¢,s) is C* function in 7 uniformly bounded in (7, ¢, s) in our
region. The process can then be iterated other ¢ — 1 times.

Thus all coefficients b,,, are well defined.

Next, analogously to Proposition 2.3 in [Kol0(] (where the case |a| = 0
was considered) and with the same rotations of the integration contours for

€ (0,1], a € (1,2), we obtain for all k € N

a O Lt N\, gl
(4.20) [Dgp(t,z,2)]2 = x,laH-d Z —{Cm =z + Ry ki1 (s
- =0

E 7l

1
CLZI = 2[H\a| evenR€ — H|a\ oddlm] [/ dT/ d¢h(¢a a)(_gA (Ta ¢))m
1-2¢ [0,7]4—3%[0,27]

x exp(— o) (i) A DD (am 4 d + [a]) fo(7),

a RN, < Sl (Y Noge that the coefficients 2 are also well
and |Ry ) | G (e . Note that the coefficients ¢y, are also we

defined because 7 does not approach zero. Precisely ]c‘,%'] < 24,4 205 (1 —
2¢)~emtdtlalD (am + d + |al).

Now the sum of expansions ([L19) and (f.2Q) gives the expansion for
D?p(t,z, z). Note that by construction, the first coefficient b| ol 4 c| ol does
not depend on the spectral measure A(y, -) and it vanishes When the spectral
measure is uniform (that is C; = Co = 1 in (R.5)). This can be shown by
means of representations involving Bessel and Whittaker functions and the
same rotations of the integration contours as in Proposition 2.2 of [Kol0(],
see Appendix [B for details. Thus, for all & € N*, we get a representation

C‘a| 1

¢ Jal t N\, pldl
a a
|Z_:,3|m|+al{z:1 i m (\z—x!“) +Rk+1}v

(4.21)  Dip(t,x,z) =
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k+1
where dl?b‘ = bﬁ‘—l—c‘,ﬁ' with b,,, = 0 for m > 3 and |Rm| | < |d’“+1‘ (L) .

k+1 (41! \ |Jz—z]«
Now, from Proposition 3.1 in [Kol0(] df > 0. Equation ({.21)) yields
Clyddt [ d ESI
a 4 pldl plal 2
Deptton2) = e g H ) = S

~ C|a\ d(l)t 0 C‘a|d(1]t
p(t,x,z) = +Ry | > —————
( ) |z —z|4 \ |z — x| ? 2|z — x|t

for sufficiently small C. Hence, we have

CCy dft C
|z — x|l |z — 2|t 7|,
il
1l tlal/a

D2t . 2)| < .2

(4.22)

W.Lo.g. we can assume C < 1. It remains to consider the case |z — z|/t'/* €
1C, U_l[:: I(C). Tt follows from (JE13) that |z—x|%p(t, z, 2) and |z—z|*H1el DIp(t, z, 2)
are continuous functions of |z — z|/t'/®. Since the stable density is also

strictly posmve we deduce that there exists C s.t. on I(C), |[D*p(t,x, 2)| <
c

<
lz—allel = ]2 x\‘“

Dt x,2) << t\a\/a p(t x, z) which concludes the proof. [J

Lemma 4.5 For a constant C > 1 and for |a| + |b| < (¢ —d —4):

c min(1, |y — x
(4.23) ‘DZD:?:H(t,:U,y) < —t‘a‘+‘b‘ pt,z,y) (1 + %) )

in(1
Citt, -+ o) (14 2L,

¢ p(t
(y)t — x||a\+|b|p( ,xay)'

(4.24) |DEH(t, 2,3+ v)

IN

(4.25) ‘D“Dbp(t ,y)
ly —

Proof. Inequalities ([.23) and ({£.24) follow from the representation

H(t.2.9) = (0(2) =) Vo) + g [ 0l” [ 1G9

(Ao ds) ~ Aa.ds))exp { ~¢ pl” |

gd—1

7.5)1" My ds) |

(4.26) exp {—i(p,y —v(y)t — x)} dp
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analogously to the proof of Proposition 2.3 in [Kol0(]. Inequality ([£24)
contains in (3.23") p.748 of that reference. Inequality ({.23) can be derived
following the proof of Lemma 4. O

The proof of Lemma [.d can then be achieved from Lemmas [.4 and [L]
adapting the arguments in Appendix [] concerning the control in terms of

the frozen density for the "formal” series appearing in (B.f). See also the
proof of Theorem 2.3 in [[KM0Z] or Theorem 3.1 in [[Kol0(].

5. Extensions and conclusion. A careful examination of the previous
proofs shows that the absolute continuity of A w.r.t. to the Lebesgue measure
of S9! can be removed in (A-1) provided the function

)= g [ 1ol dnyexo (<1 [ 1091 N0.ds))

x exp(—i(p, x))dp

has bounded derivatives w.r.t. x up to order ¢ (see Appendix [f] and the
statement of Theorem 3.1 in [Kol0(]). Also up to a standard perturbative
argument, similar controls on the density can be obtained when we consider
(L)) driven by (Zs 4+ Ps)s>0 where (Ps)s>0 is a compound Poisson process
with Lévy measure vp(dz) = f(z)dz and |f(2)| < W,B > 0, see The-
orem 4.1 in [Kol0(]. In that case our main results remain valid up to a
modification of the remainder. Indeed, it is the smaller exponent that leads
the asymptotic behavior of p(¢, z, y) when |z —y| is large. Thus p,(y — ) has
to be replaced by ppin(a,s) in Theorem R.1. Eventually, good controls have
been obtained on p for stable-like processes, i.e. when the stability index in
the generator At (z) in (R.4) can depend on the spatial position z, i.e. «
turns to a(z) € [a, @] strictly included in (0,2] (see Section 5 in [KolO(]).
Anyhow the processes associated to those generators cannot be approxi-
mated by a usual Euler scheme and the previous analysis breaks down. The
approximation of such processes will concern further research.

APPENDIX A: CONTROL OF THE PARAMETRIX SERIES OF THE
DENSITY

For the sake of completeness we provide in this section a complete proof
of the control for the r.h.s of (B.J) under our standing Assumptions (A-1)-
(A-3).

We first sum up the various ingredients needed for the proof coming from
Section 3 in Kolokoltsov and that can also be directly obtained following
the computations of Appendix [B].
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Proposition A.1 For all K sufficiently large, there exists C' > 0 s.t. the
following estimates hold uniformly for a in any compact subset of (0,2).

't _ o .Gt
g = P(tﬁ?y)_ma’

IN

plt,z,y) < Ct~¥ |z —y| < Ktl/e,

x—y| > Kt'/*

Also, there exists C > 0 s.t. ¥(t,z,y) € [0,T] x (R%)2,
/dz min(1, [2))p(t, z; AM(y),v(y)) < Ct¥, w:=min(1,1/a).
For all s € (0,t)

/dZﬁ(t — 5,2 = 2;M(2),7(2)) min(1, [y — 2[)s™ Bls,y — 2 M), ¥ (y)

< C(t ' min(1, ly — =[) + s*7 Bty — 25 M), (1),

/dz min(L, |z — 2t — 5, 2 — 73 A(2), 7(2))

xmin(L, [y — z))s™'B(s, ¥ — 2 A®),7(y)) < Cs“'plt,y — 2 My),7(y))
[ deplt = 5,2 = 0,15,y — 5 A@). 1))

< Cplt,y — 3 My),7(y))-

)

)

Introduce now for a given bounded measure n on S~ ! the function

alt: 2 Ay)) = (—d/Rd dplp|”* / 1(ds)
cexp (<ol [ 15.5) X y,ds>) exp(-ilp,2))
With this notation and ({26]) we get
H(t,z,y) = (v(x) =v(), D(t, 2, 9)) + (Paw) = Pa@) Ly — 2 = 7(y)t Ay)):
Now Proposition 2.5 in [Kol0(] gives that for a bounded measure 7,
n(t, 2, My)) < CEP(E 2 A(y)).

From Lemmas 4, .§ and the above control one deduces |H(t,z,y)| <
Cp(t,y — 2;)(1 + ¢t 'min(1, |z — y|)) := Co(t,2,y) (which actually gives
(E23) for a = b =0).
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Introduce now (o )(t, s, z,y) = /dﬂ(t — s,x,2)U(s, z,y)dz, i.e. o is the
R

spatial part of the convolution operator ®, and set v(t,x,y) := tv(t,z,y).
From Propositon [A.1] one derives

pou(t,s,x,y) < C(u(t,z,y) + s 'plt,z,y))
vou(t,s,z,y) < C[E(t,z,y) + s 'B(t, z,y)).

Recalling |H (t, z,y)| < Cv(t,z,y), one gets:
[pRH|(t 2,y) < CO(t 2, 9)+tp(t,x,y)), [POHSH|(t,,y) < C** (p+0)(t, 2, y).
An induction yields, for all k£ € N*:

B CZktkw o
P HP|(t,2,y) < W(P*’”)(@%?/%

O2k+1pkw
<
= KNk +Tae0,1))

b HEHD|(t a2, y) H(tu(t,z,y) + (2, y)las1),

and the the required control, i.e. p(t,z,y) < Cp(t,z,y). The controls on the
derivatives can be proved in a similar way, up to suitable rearrangements
of the variable of integration, see p.747 and 748 in [[Kol0(]. Also the whole
proof can be carried out for p?, p’V. O

Remark A.1 7o conclude, note that by arguments similar to those used to
prove Proposition m, one gets
[H® H(t,z,y)| < Ct“"'p(t, 2,y),

which turns to be a useful estimate to derive ([L.§) following the above proof.

APPENDIX B: ADDITIONAL COMPUTATIONS CONCERNING THE
DERIVATIVES OF THE DENSITY

|al

In this section we prove that bga‘ +cy =0, justifying that the first index
in (f.21]) is one.

0Odd dimensions d. From the definitions in the proof of Lemma [£4 ,
it is enough to show

,U|a‘+d71d,v

[HM evenRe — I oddlm} {/OOO {/R exp (—ivr) fi(r)dr

o mrwwruﬂmhum}:a
1—2¢
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Note that by a rotation of angle —3 of our contour integration and Cauchy’s
theorem

(ir) "D (a4 |a]) = i*(dﬂal)/ exp(—rz)zlaiLgy
0

o
= / exp(—iTw)w! T4 dw.
0

Hence, the previous condition writes

B evenBe = Ty aatan] { [ [ exp (=ivr) u(r)ar

1
(B.1) +2/ eXp(—iTU)fQ(T)dT] v|a+d1dv} = 0.

1-2¢
Denote Fj(v) = [gexp (—ivT) fj(7)dr, j € {1,2}. Remind that |a| and a;
have the same parity, see proof of Lemma [£.4

a) For even |al,a1, (Fj(v))jeq1,2y are even and belong to a Schwartz space
of functions. Since d is odd, by inverse Fourier transform, Equation ([B.1])
reduces to

Z / Fy( Yol =1 gy, — Z /F Jolal+d=1g,

je{1,2} Je{l 2}
— |a|+d—1 27 aldd—
_ ( ) 5 ( ) Z f](I |+d 1)(0) =0.
je{1,2}

Now f2(|a‘+d71)(0) 0 by definition of fy and the equality f(‘aHd 1)(0) =

0 follows from the Leibniz differentiation rule for the product 7% x (1 —
la]—a14+d—3

T2 2 and the identity |a| +d—1 = a1 + (Ja| — a1 +d —3) +2]. Thus
(B:1)) holds in this case.
b) Analogously, for odd |a[, a1, -Im(F}(v));ef1,2y are odd and belong to a

Schwartz space of functions. The functions (—ImF}(v)vlal+d- 1) jeq1,2y is even.
‘)\a\«%d

_ - d—1
Thus e 1.0y Jy (~TmFj () do = S50,y 17170 (0) =
0 for the same previous reasons and equation ([B.1]) holds in thls case as well.

Even dimensions d. We assume in this section that the spectral mea-
sure is uniform. For |a| and a; = 2m even, equation ([.I§) can be rewritten
as

B.2 Do ( 1)|a‘/2Aa E 2mfjcj
( N ) p(t Zz Z) (27T)d|2 —$||a‘+d Z m

o) e 1
X / dvvl®Hd=1 exp (—t%) / (1 — 72)Ni=12 cos(vr)dr
0 Z =

x]“ 1
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Where A372 = f[077r]d*3><[0,27r} h(qb, )d¢ a,nd N M . [[0 m]]

Now recalling the definition of the Bessel function J,,(z) := T 12 NG s (1=

t2)"=1/2 cos(zt)dt which is well defined for n > 1/2 on C\(—00,0), we get

(DA, & 1)2m=icd oM, 1
(2m)d|z — x||a\+dz cy.2 JP(N]+§)\/7_T

oo la|+aq+d—2j5 @
X / v exp (—t%) JIn; (v)dv
0 |z — x| ’

(3.3) - S (PICHT(N; + )2

Dip(t,x, z)

o B P [ e
_ N — ) J
e ; exp P exp 5Ni+ 7 mi| Wo,n; (2iv)v 7 dv,
where Wy ,(z) = eXp 2/2) Joe[t(+t/2)]""Y2etdt, n > 1/2, 2 € C\(—o0,0),
is the Whittaker functlon and for z > 0,

Jo(2) = 2Re [ + l)m’)Wo,n(—Qiz)}

1 1
\/ﬁ eXp(§ (n 2
(velation (2.10) from [[Kol0(]) and N} = W#, j € [0,m]. For a €
(0,1], from Cauchy’s theorem we can change the integration path in (B.3)
to the negative imaginary half line. Setting then v = —i£ we obtain

(—1)|a‘/214a - 2m—j v LN +1/2
e Gy + 2

x(=1)""Re [—i /OOO exp (—t & 5 €Xp < 271'04)) Wo,n; (2£)§N1{d§ .

|z — x| 2
Recalling the definition of Wy y;, we conclude expanding the exponential in
power series that the first term is 0.
For « € (1,2), using the same arguments we can rotate the initial contour
through the angle —7/(2a). Setting then 7 = ¢’2av we get

Dip(t,x, z) =

(_1)|a\/2Aa m 2 i 1 N
§j m=i I T(N; + =)2Ni+1/2
(27r)d\z m\'aHd (; 2)

R /oo ('t i +<1N +1> : (N’+1)>
(] €exX 1 - 1 — Z—_
0 P |z — x|™ 277 Y 2cv

Dip(t,x,z) =
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(o — 1 /
xWo,n; (2n exp {%})n% dn.

Taylor’s formula for exp(it—_’iéaﬁ) yields for the first term, Vj € [0, m],

|
ILJ :=Re {exp K%Nj + %) mi — S5 (Nf + 1)} I Wo,n, (2n exp {L(O‘ L })77 i
dn}. At last, we rotate the contour through the angle —M Setting f =
7 exp (M) we obtain I} = Re {—z’(—l)j*m ' WO,NJ.(2§)§ Jd{} =

For |a| and a3 = 2m + 1 odd,

a ( 1)(\a|+1)/2Aa . 2m—‘ j
Dip(t,x, z) = @n)z g;||a\+d Z 1C

00 «a 1
X / dvvl 41 exp <_tv7) / (1 —72)Ni=1 27 gin(vr)dr
0

|z —al*) J

( 1)(|‘1H‘1)/2A‘1 m 2 i (S) 3 v
_ m CJ / d la|]+d—2 (—t7>
@)z — o] 2 Z m ), vt exp ( —t—g

1
X /_1(1 — )Nim122d(cos(vT))

(=1)(al+/2 g0 13 o0 _ v
_ m C_]/ d la|+d—2 (—ti)
@m)d)z - x“aHdZ mly T TP T e

1
X / cos(vT) X {(1 — 2N (1 — T)Ni=3/2 (1 — TQ)NJ'_l/Q} dr.

—1

The above integrals have the same form as in (B.]]) and can be estimated
similarly.
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