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A SYMPLECTIC RESOLUTION FOR THE BINARY TETRAHEDRAL GROUP

Keywords: 

We describe an explicit symplectic resolution for the quotient singularity arising from the four-dimensional symplectic represenation of the binary tetrahedral group.

Let G be a finite group with a complex symplectic representation V . The symplectic form σ on V descends to a symplectic form σ on the open regular part of V /G. A proper morphism f : Y → V /G is a symplectic resolution if Y is smooth and if f * σ extends to a symplectic form on Y . It turns out that symplectic resolutions of quotient singularities are a rare phenomenon.

By a theorem of Verbitsky [START_REF] Verbitsky | Holomorphic symplectic geometry and orbifold singularities[END_REF], a necessary condition for the existence of a symplectic resolution is that G be generated by symplectic reflections, i.e. by elements whose fix locus on V is a linear subspace of codimension 2.

Given an arbitrary complex representation V 0 of a finite group G, we obtain a symplectic representation on V 0 ⊕ V * 0 , where V * 0 denotes the contragradient representation of V 0 . In this case, Verbitsky's theorem specialises to an earlier theorem of Kaledin [START_REF] Kaledin | On crepant resolutions of symplectic quotient singularities[END_REF]: For V 0 ⊕ V * 0 /G to admit a symplectic resolution, the action of G on V 0 should be generated by complex reflections, in other words, V 0 /G should be smooth. The complex reflection groups have been classified by Shephard and Todd [START_REF] Shephard | Finite unitary reflection groups[END_REF], the symplectic reflection groups by Cohen [START_REF] Cohen | Finite quaternionic reflection groups[END_REF]. The list of Shephard and Todd contains as a sublist the finite Coxeter groups.

The question which of these groups G ⊂ Sp(V ) admits a symplectic resolution for V /G has been solved for the Coxeter groups by Ginzburg and Kaledin [START_REF] Ginzburg | Poisson deformations of symplectic quotient singularities[END_REF] and for arbitrary complex reflection groups most recently by Bellamy [START_REF] Bellamy | On singular Calogero-Moser spaces[END_REF]. His result is as follows:

Theorem 1. (Bellamy) -If G ⊂ GL(V 0 ) is a finite complex reflection group, then V 0 ⊕ V *
0 /G admits a symplectic resolution if and only if (G, V 0 ) belongs to the following cases:

1. (S n , h), where the symmetric group S n acts by permutations on the 

hyperplane h = {x ∈ C n | i x i = 0}. 2. ((Z/m) n ⋊ S n , C n ),

Applied to a minimal resolution of the

A m-1 -singularity C 2 /G, G ∼ = Z/m, this construction yields a small resolution Hilb n ( C 2 /G) → Sym n ( C 2 /G) → Sym n (C 2 /G). Similarly, (h ⊕ h * )/S n is the fibre over the origin of the barycentric map Sym n (C 2 ) → C 2 . Thus (h ⊕ h * )/S n is resolved symplecti- cally by the null-fibre of the morphism Hilb n (C 2 ) → Sym n (C 2 ) → C 2 .
It is the purpose of this note to describe an explicit symplectic resolution for the binary tetrahedral group.

The binary tetrahedral group

Let T 0 ⊂ SO(3) denote the symmetry group of a regular tetrahedron.

The preimage of T 0 under the standard homomorphism SU(2) → SO(3) is the binary tetrahedral group T . As an abstract group, T is the semidirect product of the quaternion group Q 8 = {±1, ±I, ±J, ±K} and the cyclic group Z/3. As a subgroup of SU(2) it is generated by the elements

I = i 0 0 -i and τ = - 1 2 1 + i -1 + i 1 + i 1 -i
The binary tetrahedral group has 7 irreducible complex representations: A three-dimensional one arising from the quotient T → T 0 ⊂ SO 3 , three onedimensional representations C j arising from the quotient T → Z/3 with τ acting by e 2πij/3 , and three two-dimensional representations S 0 , S 1 and 

W 1 ∩ W 2 .
For j = 1, 2, let α j : Z ′ j → Z denote the blow-up along W j . Next, let W ′ j be the reduced singular of locus Z ′ j , and let

β j : Z ′′ j → Z ′ j denote the blow-up along W ′ j .
Theorem 2. -The morphisms σ j = α j β j : Z ′′ j → Z, j = 1, 2, are symplectic resolutions.

Proof. As all data are explicit, the assertion can be checked by brute calculation. To cope with the computational complexity we use the free computer algebra system SINGULAR 1 [START_REF] Greuel | Singular 3-0-4. A Computer Algebra System for Polynomial Computations[END_REF]. It suffices to treat one of the two cases of the theorem. We indicate the basic steps for j = 2. In order to improve the readability of the formulae we write q = √ -3.

Let C[x 1 , x 2 , x 3 , x 4 ] denote the ring of polynomial functions on S 1 ⊕ S 2 .

The invariant subring C[x 1 , x 2 , x 3 , x 4 ] T is generated by eight elements, listed in table 1. The kernel I of the corresponding ring homomorphism

C[z 1 , . . . , z 8 ] → C[x 1 , x 2 , x 3 , x 4 ] T
is generated by nine elements, listed in table 2. The curve C 2 is given by the

semiinvariant x 4 3 + 2qx 2 3 x 2 4 + x 4 4 .
In order to keep the calculation as simple as possible, the following observation is crucial: Modulo I, the Weil divisor W 2 can be described by 6 equations, listed in table 3. This leads to a comparatively 'small' embedding Z ′ 2 → P 5 Z of Z-varieties. Off the origin, the effect of blowing-up of W 2 is easy to understand even without any calculation:

1 A documented SINGULAR file containing all the calculations is available from the authors upon request.

Table 1: generators for the invariant subring C[x 1 , x 2 , x 3 , x 4 ] T :

z 1 = x 1 x 3 + x 2 x 4 , z 4 = x 2 x 3 3 -qx 1 x 2 3 x 4 + qx 2 x 3 x 2 4 -x 1 x 3 4 , z 2 = x 4 3 -2qx 2 3 x 2 4 + x 4 4 , z 5 = x 3 2 x 3 -qx 2 1 x 2 x 3 + qx 1 x 2 2 x 4 -x 3 1 x 4 , z 3 = x 4 1 + 2qx 2 1 x 2 2 + x 4 2 , z 6 = x 5 1 x 2 -x 1 x 5 2 , z 7 = x 5 3 x 4 -x 3 x 5 4 z 8 = x 1 x 2 2 x 3 3 -x 3 2 x 2 3 x 4 -x 3 1 x 3 x 2 4 + x 2 1 x 2 x 3 4 .
Table 2: generators for

I = ker(C[z 1 , . . . , z 8 ] → C[x 1 , . . . , x 4 ] T ). qz 3 1 z 5 -z 1 z 3 z 4 -2z 2 z 6 -z 5 z 8 , z 1 z 2 5 + 2z 4 z 6 + z 3 z 8 , qz 3 1 z 4 + z 1 z 2 z 5 -2z 3 z 7 -z 4 z 8 , z 1 z 2 4 -2z 5 z 7 -z 2 z 8 , -z 4 1 + z 2 z 3 -z 4 z 5 -3qz 1 z 8 , qz 2 1 z 3 z 5 -2z 3 1 z 6 -z 2 3 z 4 + z 3 5 -6qz 6 z 8 , z 2 1 z 4 z 5 + qz 3 1 z 8 + 4z 6 z 7 -z 2 8 , qz 2 1 z 2 z 4 -2z 3 1 z 7 -z 3 4 + z 2 2 z 5 -6qz 7 z 8 , 4z 2 1 z 4 z 5 + qz 3 z 2 4 -qz 2 z 2 5 + 4z 6 z 7 + 8z 2 8
Table 3: generators for the ideal of the Weil divisor

W 2 ⊂ Z. b 1 = z 3 z 7 + 2z 4 z 8 , b 2 = z 2 z 4 + 2qz 1 z 7 , b 3 = z 2 z 3 -4qz 1 z 8 , b 4 = z 3 2 + 12qz 2 7 , b 5 = z 1 z 2 2 -6z 4 z 7 , b 6 = z 2 1 z 2 -qz 2 4 .
the action of the quaternion normal subgroup

Q 8 ⊂ T on S 1 ⊕ S 2 \ {0} is free. The action of Z/3 = T /Q 8 on S 1 ⊕ S 2 /Q 8 produces transversal A 2 -
singularities along a smooth two-dimensional subvariety. Blowing-up along W 1 or W 2 is a partial resolution: it introduces a P 1 fibre over each singular point, and the total space contains a transversal A 1 -singularity.

The homogeneous ideal I ′ 2 ⊂ C[z 1 , . . . , z 8 , b 1 , . . . , b 6 ] that describes the subvariety Z ′ 2 ⊂ P 5 Z is generated by I and 39 additional polynomials. In order to understand the nature of the singularities of Z ′ 2 we consider the six affine charts U ℓ = {b ℓ = 1}. The result can be summarised like this:

The singular locus of Z ′ 2 is completely contained in U 2 ∪ U 3 , so only these charts are relevant for the discussion of the second blow-up. In fact, the corresponding affine coordinate rings have the following description:

R 2 = C[z 1 , b 3 , b 4 , b 5 , b 6 ]/(b 5 b 6 -2qz 1 ) 2 + b 4 (3qb 3 -b 3 6 ) is a transversal A 1 -singularity. R 3 = C[z 1 , z 3 , z 5 , z 6 , b 1 , b 2 , b 6 ]/J,
where J is generated by five elements, listed in table 4. Inspection of these generators shows that Spec(R 2 ) is isomorphic to the singularity (h 3 ⊕h * 3 )/S 3 , the symplectic singularity of Coxeter type A 2 that appears as case 1 in Table 4: generators for the ideal sheaf J of Z ′ 2 ⊂ C 7 in the third chart:

4z 1 b 1 + qz 3 b 2 + z 5 b 6 , z 1 z 5 + z 3 b 1 + qz 6 b 6 , z 2 1 b 6 -z 3 b 2 6 -4qb 2 1 -3z 5 b 2 , z 2 1 z 3 -z 2 3 b 6 -qz 2 5 -12z 6 b 1 , z 3 1 -z 1 z 3 b 6 + qz 5 b 1 + 3qz 6 b 2
Bellamy's theorem. It is well-known that blowing up the singular locus yields a small resolution. For arbitrary n, this is a theorem of Haiman [6, Prop. 2.6], in our case it is easier to do it directly. Thus blowing-up the reduced singular locus of Z ′ 2 produces a smooth resolution Z ′′ 2 → Z. It remains to check that the morphism α 2 : Z 2 → Z is semi-small. For this it suffices to verify that the fibre E = (α -1 2 (0)) red over the origin is two-dimensional and not contained in the singular locus of Z ′ 2 . Indeed, the computer calculation shows that E ⊂ P 5 is given by the equations 2 is irreducible and two-dimensional and dominates the singular locus of Z. Thus the second requirement is fulfilled, too.

The equivariant Hilbert scheme

Though the description of the resolution is simple and straight the method of proof is less satisfying. It is based on explicit calculation that given the complexity of the singularity we were able to carry out only by means of appropriate software. Remark that even for the classical ADE-singularities arising from finite subgroups G ⊂ SU(2) the actual resolutions of C 2 /G could only be described by explicit calculations. The difference to our case essentially is one of complexity: The dimension is four instead of two, there are 8 basic invariants satisfying 9 relations instead of Klein's three invariants with a single relation, and the singular locus is itself a complicated singular variety instead of an isolated point. The first construction that resolved the ADE-singularities in a uniform way was given by Kronheimer in [START_REF] Kronheimer | The construction of ALE spaces as hyper-Kähler quotients[END_REF] in terms of certain hyper-Kähler quotients. Later Ito and Nakamura [START_REF] Ito | McKay correspondence and Hilbert schemes[END_REF] used G-Hilbert schemes to the same effect.

Recall that given a scheme X with an action of a finite group G the equivariant Hilbert scheme G-Hilb(X) is the moduli scheme of zero-dimensional equivariant subschemes ξ ⊂ X such that H 0 (ξ, O ξ ) is isomorphic to the regular representation of G. There is a canonical morphism G-Hilb(X) → X/G which is an isomorphism over the open subset that corresponds to regular orbits. For a linear action G ⊂ SL(V ) it is known that G-Hilb(V ) is smooth if dim(V ) = 2 or 3 and provides a crepant resolution of V /G (see [START_REF] Bridgeland | The McKay correspondence as an equivalence of derived categories[END_REF]).

Thus ρ : H := T -Hilb(S 1 ⊕ S 2 ) → Z = (S 1 ⊕ S 2 )/T is a natural candidate for a resolution. As the generic singularity of Z is a transversal A 2 singularity that arises from a Z/3-action it is clear that ρ is a crepant resolution off the origin. However, it turns out that H has two irreducible components that are smooth and intersect transversely. One of them is the closure H orb of the locus of regular orbits, it dominates the quotient Z. This orbit component also appears as 'dynamical component' or 'coherent component' in the literature. Any other component of H must be contained in the fibre ρ -1 (0), though this is not true in general.

The two factors of the group C * × C * act on S 1 ⊕ S 2 via dilations on the first and second summand, respectively, and the polynomial ring C[S 1 ⊕ S 2 ] may accordingly be decomposed into irreducible T ×C * ×C * -representations, the first terms being An explicit calculation shows that the dimension of the tangent space is 4 in seven points (necessarily smooth points of H) and is 5 in six other points.

C[S 1 ⊕ S 2 ] = L 0 ⊕ (S 1 x ⊕ S 2 y) ⊕ R 0 x 2 ⊕ (R 0 ⊕ L 0 )xy ⊕ R 0 y 2 ⊕(S 1 ⊕ S 2 )(x 3 ⊕ y 3 ) ⊕ (S 0 ⊕ S 1 ⊕ S 2 )(x 2 y ⊕ xy 2 ) ⊕ . . .

The calculation of the quadratic component of the analytic obstruction or

Kuranishi map Hom

T (I i , C[S 1 ⊕ S 2 ]/I i ) → Ext 1 T (I i , C[S 1 ⊕ S 2
]/I i ) yields in all cases a reducible quadric with two distinct factors. This suffices to conclude that there are no further components of H, that H orb is smooth and that the two components H orb and P 2 × P 2 intersect transversely. By the universal property of the blow-up there is a commuting diagram

H orb ւ ց Z ′′ 1 Z ′′ 2 ց ւ Z ,
which conjecturely relates the two-resolutions by a Mukai-flop. In fact, we found the two resolutions first by contracting local models of H that are given as subschemes of a relative Grassmannian over Z. The calculations so far described are insufficient to formally prove that H orb and P 2 ×P 2 intersect along the incidence variety and that this intersection is the exceptional locus for the two contractions. However, recall that equivariant Hilbert schemes can be seen as special cases of quiver varieties ( [START_REF] Nakajima | Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras[END_REF], [START_REF] King | Moduli of representations of finite dimensional algebras[END_REF]) for the McKay quiver [START_REF] Mckay | Graphs, singularities and finite groups[END_REF] 

  the action being given by multiplication with m-th roots of unity and permutations of the coordinates.

3 .

 3 (T, S 1 ), where S 1 denotes a two-dimensional representation of the binary tetrahedral group T (see below). However, the technique of Ginzburg, Kaledin and Bellamy does not provide resolutions beyond the statement of existence. Case 1 corresponds to Coxeter groups of type A and Case 2 with m = 2 to Coxeter groups of type B. It is well-known that symplectic resolutions of h ⊕ h * /S n and C n ⊕ C n /(Z/m) n ⋊ S n ∼ = Sym n (C 2 /(Z/m)) are given as follows: For a smooth surface Y the Hilbert scheme Hilb n (Y ) of generalised ntuples of points on Y provides a crepant resolution Hilb n (Y ) → Sym n (Y ).

S 2 .

 2 Here S 0 denotes the standard representation of T arising from the embedding T ⊂ SU 2 . This representation is symplectic, its quotient S 0 /T being the well-known Klein-DuVal singularity of type E 6 . The two other representations can be written as S j = S 0 ⊗ C j , j = 1, 2. They are dual to each other. It is as the subgroup of ⊂ GL(S 1 ) that T appears in the list of Shephard and Todd under the label "No. 4". The diagonal action of T on S 1 ⊕ S 2 provides the embedding of T to Sp 4 that is of interest in our context.Whereas the action of T on S 0 is symplectic, the action of T on S 1 and S 2 is generated by complex reflections of order 3. Overall, there are 8 elements of order 3 in T or rather 4 pairs of inverse elements, forming 2 conjugacy classes. To these correspond 4 lines in S 1 of points with nontrivial isotropy groups. Let C 1 ⊂ S 1 and C 2 ⊂ S 2 denote the union of these lines in each case. Then C 1 × S 2 and S 1 × C 2 are invariant divisors in S 1 ⊕ S 2 . However, the defining equations are invariant only up to a scalar. Consequently, their images W 1 and W 2 in the quotient Z = S 1 ⊕ S 2 /T are Weil divisors but not Cartier. The reduced singular locus sing(Z) is irreducible and off the origin a transversal A 2 singularity. It forms one component of the intersection

  b 1 , b 3 b 5 , b 3 b 4 , b 2 5 -b 4 b 6 and hence is the union of two irreducible surfaces. The singular locus of Z ′

  where x and y are formal symbols indicating the weight with respect to the C * × C * action. Using this decomposition one can see that H contains a further component isomorphic to P 2 ×P 2 : if I ∈ H is to be an ideal contained in the square of the maximal ideal generated by S 1 x⊕S 2 y, of the respectively three copies of S 1 and S 2 of total weight 3 two have to be contained in I.The possible choices amount to picking a line in a three-dimensional space for each of S 1 and S 2 . Of course, one still needs to check that every choice really leads to an admissable ideal.As the map ρ is proper, each equivariant closed subset of H must contain fixed points for the C * × C * -action. These correspond to T -equivariant bihomogeneous ideals I ⊂ C[S 1 ⊕ S 2 ]. Using the given decomposition of the coordinate ring it is not difficult to see that there are 13 such fixed points I i ∈ H. The tangent space to H at I i ist given by Hom T (I i , C[S 1 ⊕ S 2 ]/I i ).

  associated to the given action. As the referee suggests one might try to obtain the diagram above and resolutions of Z in a single stroke by a variation of the stability condition in the construction of the quiver variety. As the McKay quiver for the action of T on S 0 is the Dynkin graph of type E 6 , it is easy to deduce the graph underlying the McMay quiver for the action of T on S 1 ⊕ S 2 :