A symplectic resolution for the binary tetrahedral group

Manfred Lehn, Christoph Sorger

To cite this version:

Manfred Lehn, Christoph Sorger. A symplectic resolution for the binary tetrahedral group. 2008. hal-00331839v1

HAL Id: hal-00331839
https://hal.science/hal-00331839v1
Preprint submitted on 17 Oct 2008 (v1), last revised 21 Mar 2010 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A SYMPLECTIC RESOLUTION FOR THE BINARY TETRAHEDRAL GROUP

MANFRED LEHN \& CHRISTOPH SORGER

Abstract

We describe an explicit symplectic resolution for the quotient singularity arising from the four-dimensional symplectic represenation of the binary tetrahedral group.

Let G be a finite group with a complex symplectic representation V. The symplectic form σ on V descends to a symplectic form $\bar{\sigma}$ on the open regular part of V / G. A proper morphism $f: Y \rightarrow V / G$ is a symplectic resolution if Y is smooth and if $f^{*} \bar{\sigma}$ extends to a symplectic form on Y. It turns out that symplectic resolutions of quotient singularities are a rare phenomenon. By a theorem of Verbitsky [9], a necessary condition for the existence of a symplectic resolution is that G be generated by symplectic reflections, i.e. by elements whose fix locus on V is a linear subspace of codimension 2. Given an arbitrary complex representation V_{0} of a finite group G, we obtain a symplectic representation on $V_{0} \oplus V_{0}^{*}$, where V_{0}^{*} denotes the contragradient representation of V_{0}. In this case, Verbitsky's theorem specialises to an earlier theorem of Kaledin [7]: For $V_{0} \oplus V_{0}^{*} / G$ to admit a symplectic resolution, the action of G on V_{0} should be generated by complex reflections, in other words, V_{0} / G should be smooth. The complex reflection groups have been classified by Shephard and Todd [8], the symplectic reflection groups by Cohen [2]. The list of Shephard and Todd contains as a sublist the finite Coxeter groups.

The question which of these groups $G \subset \operatorname{Sp}(V)$ admits a symplectic resolution for V / G has been solved for the Coxeter groups by Ginzburg and Kaledin [3] and for arbitrary complex reflection groups most recently by Bellamy [1]. His result is as follows:

Theorem 1. (Bellamy) - If $G \subset \mathrm{GL}\left(V_{0}\right)$ is a finite complex reflection group, then $V_{0} \oplus V_{0}^{*} / G$ admits a symplectic resolution if and only if $\left(G, V_{0}\right)$ belongs to the following cases:

Date: 6 October 2008.
1991 Mathematics Subject Classification. Primary 14B05; Secondary 14E15, 13P10.

1. $\left(S_{n}, \mathfrak{h}\right)$, where the symmetric group S_{n} acts by permutations on the hyperplane $\mathfrak{h}=\left\{x \in \mathbb{C}^{n} \mid \sum_{i} x_{i}=0\right\}$.
2. $\left((\mathbb{Z} / m)^{n} \rtimes S_{n}, \mathbb{C}^{n}\right)$, the action being given by multiplication with m-th roots of unity and permutations of the coordinates.
3. $\left(T, S_{1}\right)$, where S_{1} denotes a two-dimensional representation of the binary tetrahedral group T (see below).

However, the technique of Ginzburg, Kaledin and Bellamy does not provide resolutions beyond the statement of existence. Case 1 corresponds to Coxeter groups of type A and Case 2 with $m=2$ to Coxeter groups of type B. It is well-known that symplectic resolutions of $\mathfrak{h} \oplus \mathfrak{h}^{*} / S_{n}$ and $\mathbb{C}^{n} \oplus \mathbb{C}^{n} /(\mathbb{Z} / m)^{n} \rtimes S_{n} \cong \operatorname{Sym}^{n}\left(\mathbb{C}^{2} /(\mathbb{Z} / m)\right)$ are given as follows:

For a smooth surface Y the Hilbert scheme $\operatorname{Hilb}^{n}(Y)$ of generalised n tuples of points on Y provides a crepant resolution $\operatorname{Hilb}^{n}(Y) \rightarrow \operatorname{Sym}^{n}(Y)$. Applied to a minimal resolution of the A_{m-1}-singularity $\mathbb{C}^{2} / G, G \cong \mathbb{Z} / m$, this construction yields a small resolution $\operatorname{Hilb}^{n}\left(\widetilde{\mathbb{C}^{2} / G}\right) \rightarrow \operatorname{Sym}^{n}\left(\widetilde{\mathbb{C}^{2} / G}\right) \rightarrow$ $\operatorname{Sym}^{n}\left(\mathbb{C}^{2} / G\right)$. Similarly, $\left(\mathfrak{h} \oplus \mathfrak{h}^{*}\right) / S_{n}$ is the fibre over the origin of the barycentric map $\operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right) \rightarrow \mathbb{C}^{2}$. Thus $\left(\mathfrak{h} \oplus \mathfrak{h}^{*}\right) / S_{n}$ is resolved symplectically by the null-fibre of the morphism $\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right) \rightarrow \operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right) \rightarrow \mathbb{C}^{2}$.

It is the purpose of this note to describe an explicit symplectic resolution for the binary tetrahedral group.

1. The binary tetrahedral group

Let $T_{0} \subset \mathrm{SO}(3)$ denote the symmetry group of a regular tetrahedron. The preimage of T_{0} under the standard homomorphism $\mathrm{SU}(2) \rightarrow \mathrm{SO}(3)$ is the binary tetrahedral group T. As an abstract group, T is the semidirect product of the quaternion group $Q_{8}=\{ \pm 1, \pm I, \pm J, \pm K\}$ and the cyclic group $\mathbb{Z} / 3$. As a subgroup of $\mathrm{SU}(2)$ it is generated by the elements

$$
I=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right) \quad \text { and } \quad \tau=-\frac{1}{2}\left(\begin{array}{cc}
1+i & -1+i \\
1+i & 1-i
\end{array}\right)
$$

The binary tetrahedral group has 5 irreducible complex representations: A three-dimensional one arising from the quotient $T \rightarrow T_{0} \subset \mathrm{SO}_{3}$, three onedimensional representations \mathbb{C}_{j} arising from the quotient $T \rightarrow \mathbb{Z} / 3$ with τ acting by $e^{2 \pi i j / 3}$, and three two-dimensional representations S_{0}, S_{1} and S_{2}. Here S_{0} denotes the standard representation of T arising from the embedding $T \subset \mathrm{SU}_{2}$. This representation is itself symplectic, its quotient S_{0} / T being the well-known Klein-DuVal singularity of type E_{6}. The two other representations can be written as $S_{j}=S_{0} \otimes \mathbb{C}_{j}, j=1,2$. They
are dual to each other, and the diagonal action of T on $S_{1} \oplus S_{2}$ provides the embedding of T to Sp_{4} that is of interest in our context. It is as this subgroup of Sp_{4} that T appears in the list of Shephard and Todd under the label "No. 4".

Whereas the action of T on S_{0} is symplectic, the action of T on S_{1} and S_{2} is generated by complex reflections of order 3. Overall, there are 8 elements of order 3 in T or rather 4 pairs of inverse elements, forming 2 conjugacy classes. To these correspond 4 lines in S_{1} of points with nontrivial isotropy groups. Let $C_{1} \subset S_{1}$ and $C_{2} \subset S_{2}$ denote the union of these lines in each case. Then $C_{1} \times S_{2}$ and $S_{1} \times C_{2}$ are invariant divisors in $S_{1} \oplus S_{2}$. However, the defining equations are invariant only up to a scalar. Consequently, their images W_{1} and W_{2} in the quotient $Z=S_{1} \oplus S_{2} / T$ are Weil divisors but not Cartier. The reduced singular locus $\operatorname{sing}(Z)$ is irreducible and off the origin a transversal A_{2} singularity. It forms one component of the intersection $W_{1} \cap W_{2}$.

For $j=1,2$, let $\alpha_{j}: Z_{j}^{\prime} \rightarrow Z$ denote the blow-up along W_{j}. Next, let W_{j}^{\prime} be the reduced singular of locus Z_{j}^{\prime}, and let $\beta_{j}: Z_{j}^{\prime \prime} \rightarrow Z_{j}^{\prime}$ denote the blow-up along W_{j}^{\prime}.

Theorem 2. - The morphisms $\sigma_{j}=\alpha_{j} \beta_{j}: Z_{j}^{\prime \prime} \rightarrow Z, j=1,2$, are symplectic resolutions.

Proof. As all data are explicit, the assertion can be checked by brute calculation. To cope with the computational complexity we use the free computer algebra system SINGULAR ${ }^{1}$ [4]. It suffices to treat one of the two cases of the theorem. We indicate the basic steps for $j=2$. In order to improve the readability of the formulae we write $q=\sqrt{-3}$.

Let $\mathbb{C}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ denote the ring of polynomial functions on $S_{1} \oplus S_{2}$. The invariant subring $\mathbb{C}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]^{T}$ is generated by eight elements, listed in table 1. The kernel I of the corresponding ring homomorphism

$$
\mathbb{C}\left[z_{1}, \ldots, z_{8}\right] \rightarrow \mathbb{C}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]^{T}
$$

is generated by nine elements, listed in table 2 . The curve C_{2} is given by the semiinvariant $x_{3}^{4}+2 q x_{3}^{2} x_{4}^{2}+x_{4}^{4}$. In order to keep the calculation as simple as possible, the following observation is crucial: Modulo I, the Weil divisor W_{2} can be described by 6 equations, listed in table 3 . This leads to a comparatively 'small' embedding $Z_{2}^{\prime} \rightarrow \mathbb{P}_{Z}^{5}$ of Z-varieties. Off the origin, the effect

[^0]Table 1: generators for the invariant subring $\mathbb{C}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]^{T}$:

$$
\begin{array}{ll}
z_{1}=x_{1} x_{3}+x_{2} x_{4}, & z_{4}=x_{2} x_{3}^{3}-q x_{1} x_{3}^{2} x_{4}+q x_{2} x_{3} x_{4}^{2}-x_{1} x_{4}^{3} \\
z_{2}=x_{3}^{4}-2 q x_{3}^{2} x_{4}^{2}+x_{4}^{4}, & z_{5}=x_{2}^{3} x_{3}-q x_{1}^{2} x_{2} x_{3}+q x_{1} x_{2}^{2} x_{4}-x_{1}^{3} x_{4} \\
z_{3}=x_{1}^{4}+2 q x_{1}^{2} x_{2}^{2}+x_{2}^{4}, & z_{6}=x_{1}^{5} x_{2}-x_{1} x_{2}^{5} \\
z_{7}=x_{3}^{5} x_{4}-x_{3} x_{4}^{5} & z_{8}=x_{1} x_{2}^{2} x_{3}^{3}-x_{2}^{3} x_{3}^{2} x_{4}-x_{1}^{3} x_{3} x_{4}^{2}+x_{1}^{2} x_{2} x_{4}^{3}
\end{array}
$$

Table 2: generators for $I=\operatorname{ker}\left(\mathbb{C}\left[z_{1}, \ldots, z_{8}\right] \rightarrow \mathbb{C}\left[x_{1}, \ldots, x_{4}\right]^{T}\right)$.

$$
\begin{array}{ll}
q z_{1}^{3} z_{5}-z_{1} z_{3} z_{4}-2 z_{2} z_{6}-z_{5} z_{8}, & z_{1} z_{5}^{2}+2 z_{4} z_{6}+z_{3} z_{8} \\
q z_{1}^{3} z_{4}+z_{1} z_{2} z_{5}-2 z_{3} z_{7}-z_{4} z_{8}, & z_{1} z_{4}^{2}-2 z_{5} z_{7}-z_{2} z_{8} \\
-z_{1}^{4}+z_{2} z_{3}-z_{4} z_{5}-3 q z_{1} z_{8}, & q z_{1}^{2} z_{3} z_{5}-2 z_{1}^{3} z_{6}-z_{3}^{2} z_{4}+z_{5}^{3}-6 q z_{6} z_{8} \\
z_{1}^{2} z_{4} z_{5}+q z_{1}^{3} z_{8}+4 z_{6} z_{7}-z_{8}^{2}, & q z_{1}^{2} z_{2} z_{4}-2 z_{1}^{3} z_{7}-z_{4}^{3}+z_{2}^{2} z_{5}-6 q z_{7} z_{8} \\
4 z_{1}^{2} z_{4} z_{5}+q z_{3} z_{4}^{2}-q z_{2} z_{5}^{2}+4 z_{6} z_{7}+8 z_{8}^{2}
\end{array}
$$

Table 3: generators for the ideal of the Weil divisor $W_{2} \subset Z$.

$$
\begin{array}{ll}
b_{1}=z_{3} z_{7}+2 z_{4} z_{8}, & b_{2}=z_{2} z_{4}+2 q z_{1} z_{7}, \\
b_{4}=b_{3}^{3}+12 q z_{7}^{2}, & b_{5}=z_{2} z_{2}^{2}-6 z_{4} z_{7}, \\
b_{6}=z_{1}^{2} z_{2}-q z_{1} z_{8}
\end{array}
$$

of blowing-up of W_{2} is easy to understand even without any calculation: the action of the quaternion normal subgroup $Q_{8} \subset T$ on $S_{1} \oplus S_{2} \backslash\{0\}$ is free. The action of $\mathbb{Z} / 3=T / Q_{8}$ on $S_{1} \oplus S_{2} / Q_{8}$ produces transversal $A_{2^{-}}$ singularities along a smooth two-dimensional subvariety. Blowing-up along W_{1} or W_{2} is a partial resolution: it introduces a \mathbb{P}^{1} fibre over each singular point, and the total space contains a transversal A_{1}-singularity.

The homogeneous ideal $I_{2}^{\prime} \subset \mathbb{C}\left[z_{1}, \ldots, z_{8}, b_{1}, \ldots, b_{6}\right]$ that describes the subvariety $Z_{2}^{\prime} \subset \mathbb{P}_{Z}^{5}$ is generated by I and 39 additional polynomials. In order to understand the nature of the singularities of Z_{2}^{\prime} we consider the six affine charts $U_{\ell}=\left\{b_{\ell}=1\right\}$. The result can be summarised like this: The singular locus of Z_{2}^{\prime} is completely contained in $U_{2} \cup U_{3}$, so only these charts are relevant for the discussion of the second blow-up. In fact, the corresponding affine coordinate rings have the following description:

$$
R_{2}=\mathbb{C}\left[z_{1}, b_{3}, b_{4}, b_{5}, b_{6}\right] /\left(b_{5} b_{6}-2 q z_{1}\right)^{2}+b_{4}\left(3 q b_{3}-b_{6}^{3}\right)
$$

is a transversal A_{1}-singularity.

$$
R_{3}=\mathbb{C}\left[z_{1}, z_{3}, z_{5}, z_{6}, b_{1}, b_{2}, b_{6}\right] / J
$$

where J is generated by five elements, listed in table 4 . Inspection of these generators shows that $\operatorname{Spec}\left(R_{2}\right)$ is isomorphic to the singularity $\left(\mathfrak{h}_{3} \oplus \mathfrak{h}_{3}^{*}\right) / S_{3}$,

Table 4: generators for the ideal sheaf J of $Z_{2}^{\prime} \subset \mathbb{C}^{7}$ in the third chart:

$$
\begin{array}{ll}
4 z_{1} b_{1}+q z_{3} b_{2}+z_{5} b_{6}, & z_{1} z_{5}+z_{3} b_{1}+q z_{6} b_{6}, \\
z_{1}^{2} b_{6}-z_{3} b_{6}^{2}-4 q b_{1}^{2}-3 z_{5} b_{2}, & z_{1}^{2} z_{3}-z_{3}^{2} b_{6}-q z_{5}^{2}-12 z_{6} b_{1}, \\
z_{1}^{3}-z_{1} z_{3} b_{6}+q z_{5} b_{1}+3 q z_{6} b_{2} &
\end{array}
$$

the symplectic singularity of Coxeter type A_{2} that appears as case 1 in Bellamy's theorem. It is well-known that blowing up the singular locus yields a small resolution. For arbitrary n, this is a theorem of Haiman [5, Prop. 2.6], in our case it is easier to do it directly. Thus blowing-up the reduced singular locus of Z_{2}^{\prime} produces a smooth resolution $Z_{2}^{\prime \prime} \rightarrow Z$.

It remains to check that the morphism $\alpha_{2}: Z_{2} \rightarrow Z$ is semi-small. For this it suffices to verify that the fibre $E=\left(\alpha_{2}^{-1}(0)\right)_{\text {red }}$ over the origin is two-dimensional and not contained in the singular locus of Z_{2}^{\prime}. Indeed, the computer calculation shows that $E \subset \mathbb{P}^{5}$ is given by the equations $b_{1}, b_{3} b_{5}$, $b_{3} b_{4}, b_{5}^{2}-b_{4} b_{6}$ and hence is the union of two irreducible surfaces. The singular locus of Z_{2}^{\prime} is irreducible and two-dimensional and dominates the singular locus of Z. Thus the second requirement is fulfilled, too.

Though the theorem admits an almost conceptual formulation the proof does not: in fact, we do explicit calculations that given the complexity of the singularity we were able to carry out only by means of appropriate software. Remark that even in the case of the classical ADE-singularities arising from finite subgroups $G \subset \mathrm{SU}(2)$ the actual resolutions of \mathbb{C}^{2} / G could only be described by explicit calculations. The difference to our case essentially is one of complexity: The dimension is four instead of two, there are 8 basic invariants satisfying 9 relations instead of Klein's three invariants with a single relation, and the singular locus is itself a complicated singular variety instead of an isolated point. It is only rather recently and after several decades that Nakamura gave us a conceptual tool resolving all Kleinian singularities in one stroke: the G-Hilbert scheme, known to be smooth in dimensions 2 and 3 , but which is actually singular in our case of dimension 4 , as we will see in the next paragraph.

2. The equivariant Hilbert scheme

Following Nakamura, we denote by T - $\operatorname{Hilb}\left(\mathbb{C}^{4}\right)$ the Hilbert scheme of all T-equivariant zero-dimensional subschemes $\xi \subset \mathbb{C}^{4}=S_{1} \oplus S_{2}$ with the
property that \mathcal{O}_{ξ} is isomorphic as a T-representation to the regular representation of T. There is a canonical morphism $T-\operatorname{Hilb}\left(\mathbb{C}^{4}\right) \rightarrow \mathbb{C}^{4} / T$ that resolves the singularities off the origin.

The two factors of the group $\mathbb{C}^{*} \times \mathbb{C}^{*}$ act on $S_{1} \oplus S_{2}$ via dilations on the first and second summand, respectively, and the polynomial ring may accordingly be decomposed into irreducible $T \times \mathbb{C}^{*} \times \mathbb{C}^{*}$-representations. Using this decomposition one can see that T - $\operatorname{Hilb}\left(\mathbb{C}^{4}\right)$ contains a component isomorphic to $\mathbb{P}^{2} \times \mathbb{P}^{2}$ and consisting entirely of subschemes ξ that are supported at the origin of \mathbb{C}^{4}. Thus a generic point of this component cannot be deformed to the T-orbit of a general point in \mathbb{C}^{4}, and T - $\operatorname{Hilb}\left(\mathbb{C}^{4}\right)$ is not irreducible. Our calculation shows that $T-\operatorname{Hilb}\left(\mathbb{C}^{4}\right)$ has only one more component, namely the closure of the points corresponding to general orbits and which we call for lack of a better name the dynamical Hilbert scheme T - $\mathrm{Hilb}\left(\mathbb{C}^{4}\right)^{\text {dyn }}$. Moreover, T - $\mathrm{Hilb}\left(\mathbb{C}^{4}\right)^{\text {dyn }}$ is smooth and intersects $\mathbb{P}^{2} \times \mathbb{P}^{2}$ transversally, and finally that there are morphisms

so that the two resolutions of Z discussed above are related by a Mukai-flop. However, the computations on which these assertions are based are far more involved than those referred to above, involving for example the calculation of the versal equivariant deformation spaces of all $\mathbb{C}^{*} \times \mathbb{C}^{*}$-fixed points on $T-\operatorname{Hilb}\left(\mathbb{C}^{4}\right)$. Due to their complexity these calculations might be prone to error, and the last claims are not water-proof.

References

[1] G. Bellamy, On singular Calogero-Moser spaces. July 2007. arXiv:0707.3694
[2] A. M. Cohen, Finite quaternionic reflection groups. J. Algebra 64 (1980), no. 2, 293324.
[3] V. Ginzburg, D. Kaledin, Poisson deformations of symplectic quotient singularities. Adv. Math. 186 (2004), no. 1, 1-57.
[4] G.-M. Greuel, G. Pfister, and H. Schönemann. Singular 3-0-4. A Computer Algebra System for Polynomial Computations. Centre for Computer Algebra, University of Kaiserslautern (2001). http://www.singular.uni-kl.de
[5] M. Haiman, t,q-Catalan numbers and the Hilbert scheme, Discrete Math. 193 (1998), no. 1-3, 201-224, Selected papers in honor of Adriano Garsia (Taormina, 1994).
[6] M. Haiman, Hilbert schemes, polygraphs, and the Macdonald positivity conjecture., J. Amer. Math. Soc. 14 (2001), 941-1006.
[7] D. Kaledin, On crepant resolutions of symplectic quotient singularities. Selecta Math. (N.S.) 9 (2003), no. 4, 529-555.
[8] G. C. Shephard, J. A Todd, Finite unitary reflection groups. Canadian J. Math. 6, (1954). 274-304.
[9] M. Verbitsky, Holomorphic symplectic geometry and orbifold singularities. Asian J. Math. 4 (2000), no. 3, 553-563.

Manfred Lehn, Fachbereich Mathematik und Informatik, Johannes Guten-Berg-Universität Mainz, D-55099 Mainz

E-mail address: lehn@mathematik.uni-mainz.de

Christoph Sorger, Laboratoire de Mathématiques Jean Leray (UMR 6629 du CNRS) \& Institut universitaire de France, Université de Nantes, BP 92208, 2, Rue de la Houssinière, F-44322 Nantes Cedex 03, France

E-mail address: christoph.sorger@univ-nantes.fr

[^0]: ${ }^{1}$ A documented SINGULAR file containing all the calculations is available from the authors upon request.

