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A SYMPLECTIC RESOLUTION FOR THE BINARY

TETRAHEDRAL GROUP

MANFRED LEHN & CHRISTOPH SORGER

Abstract. We describe an explicit symplectic resolution for the quo-

tient singularity arising from the four-dimensional symplectic represen-

ation of the binary tetrahedral group.

Let G be a finite group with a complex symplectic representation V . The

symplectic form σ on V descends to a symplectic form σ̄ on the open regular

part of V/G. A proper morphism f : Y → V/G is a symplectic resolution

if Y is smooth and if f∗σ̄ extends to a symplectic form on Y . It turns out

that symplectic resolutions of quotient singularities are a rare phenomenon.

By a theorem of Verbitsky [9], a necessary condition for the existence of a

symplectic resolution is that G be generated by symplectic reflections, i.e.

by elements whose fix locus on V is a linear subspace of codimension 2.

Given an arbitrary complex representation V0 of a finite group G, we obtain

a symplectic representation on V0 ⊕ V ∗

0 , where V ∗

0 denotes the contragradi-

ent representation of V0. In this case, Verbitsky’s theorem specialises to an

earlier theorem of Kaledin [7]: For V0 ⊕ V ∗

0 /G to admit a symplectic reso-

lution, the action of G on V0 should be generated by complex reflections, in

other words, V0/G should be smooth. The complex reflection groups have

been classified by Shephard and Todd [8], the symplectic reflection groups

by Cohen [2]. The list of Shephard and Todd contains as a sublist the finite

Coxeter groups.

The question which of these groups G ⊂ Sp(V ) admits a symplectic res-

olution for V/G has been solved for the Coxeter groups by Ginzburg and

Kaledin [3] and for arbitrary complex reflection groups most recently by

Bellamy [1]. His result is as follows:

Theorem 1. (Bellamy) — If G ⊂ GL(V0) is a finite complex reflection

group, then V0 ⊕ V ∗

0 /G admits a symplectic resolution if and only if (G,V0)

belongs to the following cases:
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1. (Sn, h), where the symmetric group Sn acts by permutations on the

hyperplane h = {x ∈ Cn | ∑i xi = 0}.
2. ((Z/m)n ⋊Sn, Cn), the action being given by multiplication with m-th

roots of unity and permutations of the coordinates.

3. (T, S1), where S1 denotes a two-dimensional representation of the bi-

nary tetrahedral group T (see below).

However, the technique of Ginzburg, Kaledin and Bellamy does not pro-

vide resolutions beyond the statement of existence. Case 1 corresponds

to Coxeter groups of type A and Case 2 with m = 2 to Coxeter groups

of type B. It is well-known that symplectic resolutions of h ⊕ h∗/Sn and

Cn ⊕ Cn/(Z/m)n ⋊ Sn
∼= Symn(C2/(Z/m)) are given as follows:

For a smooth surface Y the Hilbert scheme Hilbn(Y ) of generalised n-

tuples of points on Y provides a crepant resolution Hilbn(Y ) → Symn(Y ).

Applied to a minimal resolution of the Am−1-singularity C2/G, G ∼= Z/m,

this construction yields a small resolution Hilbn(C̃2/G) → Symn(C̃2/G) →
Symn(C2/G). Similarly, (h ⊕ h∗)/Sn is the fibre over the origin of the

barycentric map Symn(C2) → C2. Thus (h ⊕ h∗)/Sn is resolved symplecti-

cally by the null-fibre of the morphism Hilbn(C2) → Symn(C2) → C2.

It is the purpose of this note to describe an explicit symplectic resolution

for the binary tetrahedral group.

1. The binary tetrahedral group

Let T0 ⊂ SO(3) denote the symmetry group of a regular tetrahedron.

The preimage of T0 under the standard homomorphism SU(2) → SO(3) is

the binary tetrahedral group T . As an abstract group, T is the semidirect

product of the quaternion group Q8 = {±1,±I,±J,±K} and the cyclic

group Z/3. As a subgroup of SU(2) it is generated by the elements

I =

(

i 0

0 −i

)

and τ = −1

2

(

1 + i −1 + i

1 + i 1 − i

)

The binary tetrahedral group has 5 irreducible complex representations: A

three-dimensional one arising from the quotient T → T0 ⊂ SO3, three one-

dimensional representations Cj arising from the quotient T → Z/3 with

τ acting by e2πij/3, and three two-dimensional representations S0, S1 and

S2. Here S0 denotes the standard representation of T arising from the

embedding T ⊂ SU2. This representation is itself symplectic, its quotient

S0/T being the well-known Klein-DuVal singularity of type E6. The two

other representations can be written as Sj = S0 ⊗ Cj, j = 1, 2. They
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are dual to each other, and the diagonal action of T on S1 ⊕ S2 provides

the embedding of T to Sp4 that is of interest in our context. It is as this

subgroup of Sp4 that T appears in the list of Shephard and Todd under the

label “No. 4”.

Whereas the action of T on S0 is symplectic, the action of T on S1 and S2

is generated by complex reflections of order 3. Overall, there are 8 elements

of order 3 in T or rather 4 pairs of inverse elements, forming 2 conjugacy

classes. To these correspond 4 lines in S1 of points with nontrivial isotropy

groups. Let C1 ⊂ S1 and C2 ⊂ S2 denote the union of these lines in each

case. Then C1 × S2 and S1 ×C2 are invariant divisors in S1 ⊕S2. However,

the defining equations are invariant only up to a scalar. Consequently, their

images W1 and W2 in the quotient Z = S1 ⊕S2/T are Weil divisors but not

Cartier. The reduced singular locus sing(Z) is irreducible and off the origin

a transversal A2 singularity. It forms one component of the intersection

W1 ∩ W2.

For j = 1, 2, let αj : Z ′

j → Z denote the blow-up along Wj. Next, let

W ′

j be the reduced singular of locus Z ′

j , and let βj : Z ′′

j → Z ′

j denote the

blow-up along W ′

j .

Theorem 2. — The morphisms σj = αjβj : Z ′′

j → Z, j = 1, 2, are sym-

plectic resolutions.

Proof. As all data are explicit, the assertion can be checked by brute calcu-

lation. To cope with the computational complexity we use the free computer

algebra system SINGULAR1 [4]. It suffices to treat one of the two cases of

the theorem. We indicate the basic steps for j = 2. In order to improve the

readability of the formulae we write q =
√
−3.

Let C[x1, x2, x3, x4] denote the ring of polynomial functions on S1 ⊕ S2.

The invariant subring C[x1, x2, x3, x4]
T is generated by eight elements, listed

in table 1. The kernel I of the corresponding ring homomorphism

C[z1, . . . , z8] → C[x1, x2, x3, x4]
T

is generated by nine elements, listed in table 2. The curve C2 is given by the

semiinvariant x4
3 +2qx2

3x
2
4 +x4

4. In order to keep the calculation as simple as

possible, the following observation is crucial: Modulo I, the Weil divisor W2

can be described by 6 equations, listed in table 3. This leads to a compar-

atively ’small’ embedding Z ′

2 → P5
Z of Z-varieties. Off the origin, the effect

1A documented SINGULAR file containing all the calculations is available from the

authors upon request.
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Table 1: generators for the invariant subring C[x1, x2, x3, x4]
T :

z1 = x1x3 + x2x4, z4 = x2x
3
3 − qx1x

2
3x4 + qx2x3x

2
4 − x1x

3
4,

z2 = x4
3 − 2qx2

3x
2
4 + x4

4, z5 = x3
2x3 − qx2

1x2x3 + qx1x
2
2x4 − x3

1x4,

z3 = x4
1 + 2qx2

1x
2
2 + x4

2, z6 = x5
1x2 − x1x

5
2,

z7 = x5
3x4 − x3x

5
4 z8 = x1x

2
2x

3
3 − x3

2x
2
3x4 − x3

1x3x
2
4 + x2

1x2x
3
4.

Table 2: generators for I = ker(C[z1, . . . , z8] → C[x1, . . . , x4]
T ).

qz3
1z5 − z1z3z4 − 2z2z6 − z5z8, z1z

2
5 + 2z4z6 + z3z8,

qz3
1z4 + z1z2z5 − 2z3z7 − z4z8, z1z

2
4 − 2z5z7 − z2z8,

−z4
1 + z2z3 − z4z5 − 3qz1z8, qz2

1z3z5 − 2z3
1z6 − z2

3z4 + z3
5 − 6qz6z8,

z2
1z4z5 + qz3

1z8 + 4z6z7 − z2
8 , qz2

1z2z4 − 2z3
1z7 − z3

4 + z2
2z5 − 6qz7z8,

4z2
1z4z5 + qz3z

2
4 − qz2z

2
5 + 4z6z7 + 8z2

8

Table 3: generators for the ideal of the Weil divisor W2 ⊂ Z.

b1 = z3z7 + 2z4z8, b2 = z2z4 + 2qz1z7, b3 = z2z3 − 4qz1z8,

b4 = z3
2 + 12qz2

7 , b5 = z1z
2
2 − 6z4z7, b6 = z2

1z2 − qz2
4 .

of blowing-up of W2 is easy to understand even without any calculation:

the action of the quaternion normal subgroup Q8 ⊂ T on S1 ⊕ S2 \ {0} is

free. The action of Z/3 = T/Q8 on S1 ⊕ S2/Q8 produces transversal A2-

singularities along a smooth two-dimensional subvariety. Blowing-up along

W1 or W2 is a partial resolution: it introduces a P1 fibre over each singular

point, and the total space contains a transversal A1-singularity.

The homogeneous ideal I ′2 ⊂ C[z1, . . . , z8, b1, . . . , b6] that describes the

subvariety Z ′

2 ⊂ P5
Z is generated by I and 39 additional polynomials. In

order to understand the nature of the singularities of Z ′

2 we consider the

six affine charts Uℓ = {bℓ = 1}. The result can be summarised like this:

The singular locus of Z ′

2 is completely contained in U2 ∪ U3, so only these

charts are relevant for the discussion of the second blow-up. In fact, the

corresponding affine coordinate rings have the following description:

R2 = C[z1, b3, b4, b5, b6]/(b5b6 − 2qz1)
2 + b4(3qb3 − b3

6)

is a transversal A1-singularity.

R3 = C[z1, z3, z5, z6, b1, b2, b6]/J,

where J is generated by five elements, listed in table 4. Inspection of these

generators shows that Spec(R2) is isomorphic to the singularity (h3⊕h∗3)/S3,
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Table 4: generators for the ideal sheaf J of Z ′

2 ⊂ C7 in the third chart:

4z1b1 + qz3b2 + z5b6, z1z5 + z3b1 + qz6b6,

z2
1b6 − z3b

2
6 − 4qb2

1 − 3z5b2, z2
1z3 − z2

3b6 − qz2
5 − 12z6b1,

z3
1 − z1z3b6 + qz5b1 + 3qz6b2

the symplectic singularity of Coxeter type A2 that appears as case 1 in

Bellamy’s theorem. It is well-known that blowing up the singular locus

yields a small resolution. For arbitrary n, this is a theorem of Haiman [5,

Prop. 2.6], in our case it is easier to do it directly. Thus blowing-up the

reduced singular locus of Z ′

2 produces a smooth resolution Z ′′

2 → Z.

It remains to check that the morphism α2 : Z2 → Z is semi-small. For

this it suffices to verify that the fibre E = (α−1
2 (0))red over the origin is

two-dimensional and not contained in the singular locus of Z ′

2. Indeed, the

computer calculation shows that E ⊂ P5 is given by the equations b1, b3b5,

b3b4, b2
5−b4b6 and hence is the union of two irreducible surfaces. The singular

locus of Z ′

2 is irreducible and two-dimensional and dominates the singular

locus of Z. Thus the second requirement is fulfilled, too. �

Though the theorem admits an almost conceptual formulation the proof

does not: in fact, we do explicit calculations that given the complexity of the

singularity we were able to carry out only by means of appropriate software.

Remark that even in the case of the classical ADE-singularities arising from

finite subgroups G ⊂ SU(2) the actual resolutions of C2/G could only be

described by explicit calculations. The difference to our case essentially is

one of complexity: The dimension is four instead of two, there are 8 basic

invariants satisfying 9 relations instead of Klein’s three invariants with a

single relation, and the singular locus is itself a complicated singular variety

instead of an isolated point. It is only rather recently and after several

decades that Nakamura gave us a conceptual tool resolving all Kleinian

singularities in one stroke: the G−Hilbert scheme, known to be smooth in

dimensions 2 and 3, but which is actually singular in our case of dimension

4, as we will see in the next paragraph.

2. The equivariant Hilbert scheme

Following Nakamura, we denote by T -Hilb(C4) the Hilbert scheme of

all T -equivariant zero-dimensional subschemes ξ ⊂ C4 = S1 ⊕ S2 with the
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property that Oξ is isomorphic as a T–representation to the regular repre-

sentation of T . There is a canonical morphism T -Hilb(C4) → C4/T that

resolves the singularities off the origin.

The two factors of the group C∗ × C∗ act on S1 ⊕ S2 via dilations on

the first and second summand, respectively, and the polynomial ring may

accordingly be decomposed into irreducible T × C∗ × C∗–representations.

Using this decomposition one can see that T -Hilb(C4) contains a compo-

nent isomorphic to P2 × P2 and consisting entirely of subschemes ξ that are

supported at the origin of C4. Thus a generic point of this component can-

not be deformed to the T -orbit of a general point in C4, and T -Hilb(C4) is

not irreducible. Our calculation shows that T -Hilb(C4) has only one more

component, namely the closure of the points corresponding to general orbits

and which we call for lack of a better name the dynamical Hilbert scheme

T -Hilb(C4)
dyn

. Moreover, T -Hilb(C4)
dyn

is smooth and intersects P2 × P2

transversally, and finally that there are morphisms

T -Hilb(C4)
dyn

ւ ց
Z ′′

1 Z ′′

2

ց ւ
Z

,

so that the two resolutions of Z discussed above are related by a Mukai-flop.

However, the computations on which these assertions are based are far more

involved than those referred to above, involving for example the calculation

of the versal equivariant deformation spaces of all C∗ × C∗-fixed points on

T -Hilb(C4). Due to their complexity these calculations might be prone to

error, and the last claims are not water-proof.
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