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Abstract 

Due to economic and environmental constraints, many organizations have started to ship 
their products in reusable containers such as plastic pallets, boxes and crates. Minimizing the 
total flow cost arising from reusable containers is a major problem for these organizations. In 
this paper we will focus on the modeling of this problem as a network flow, and the proposal 
of an appropriate resolution method. This resolution method will allow us to better 
understand the system behavior and can be an important tool for studying related problems, 
such as dimensioning and purchasing policy. 

 
Keywords: Reusable transport packages, network flow, optimization, container management, 
supply chain. 

 
1. Introduction  
Since the mid-1980s, reusable containers have been adopted by many companies. In 1987, for 
example, the Bergen Brunswig Drug Company in California purchased 120,000 returnable 
plastic containers to replace one-use corrugated cartons. The company ships from its 37 
distribution centers to its 10,000 pharmacies, located in 40 states (D.Saphire, 1994). Many 
other manufacturers in electronic goods and the automobile industry  have also switched to 
reusable containers. This adoption is essentially due to potential economic benefits. It enables 
companies to save money by decreasing packaging material requirements: generally the cost 
of reusable containers is amortized over their lifecycle and the more the container is used the 
more the cost per trip is decreased. It reduces product damage due to shipping and handling 
because reusable containers are generally sturdier than one-way container and they are 
designed to withstand multiple uses thus providing better product protection. Other savings 
are possible.  Warehouse utilization can be improved by reducing storage space requirements 
since reusable containers can be stacked higher than one-way containers. Improvements in 
worker safety can reduce costs since their ergonomic design  reduces injuries from box 
cutters, staples, debris and stray packaging(D.Saphire, 1994). Furthermore, reusable 
containers are better for the environment since they reduce packaging waste. This can be a 
tool to meet the waste reduction requirements of government regulations, which are especially 
strict in EU countries (M.Kärkkäinen et al., 2004). However, reusing containers requires a 
more complex supply chain. The purchasing costs of reusable containers are significantly 
higher than those of one-way containers. A reusable container, such as a plastic box, can cost 
10 times more than a one-way container, such as a corrugated box (D.Saphire, 1994). 
Therefore, for reusable containers to be of benefit, efficient container-management is a top 
priority.  
Despite the importance of specific container management, there are few academic studies on 
the subject. Those that do exist can be classified under 4 headings: 
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- Organisational: these studies deal with the different issues related to the 
implementation of reusable container systems, like collaboration and cooperation 
between supply chain members. They, generally, stress the role of information 
systems(Chan et al., 2005; Chan, 2007; Eelco de Jong et al., 2004; M.Kärkkäinen et 
al., 2004) . 

- Environmental: These studies present the environmental advantages of reusable 
containers compared to one-way containers(Gassel and F.J.M., 1998; González-Torre 
et al., 2004; S. Paul Singh et al., 2006b).  

- Economic: in these studies, the economic benefits of reusable containers are shown 
compared to one-way containers. Often, these studies present the environmental 
advantages linked to economic benefits(Lerpong Jarupan et al., 2003; Martin, 1996; 
Orbis, 2004; Stopwaste and RPA, 2008). 

- Operational: these studies propose mathematical tools that can help companies 
optimize the different aspects of their reusable container systems. We can find studies 
that propose models which optimize the total cost generated by the use of reusable 
containers (transport storage, maintenance…). Others deal with the problem of 
container depot localisation(ED Castillo and Cochran, 1996; Erera Alan L et al., 
2005a; Erera Alan L et al., 2005b; I. A. Karimi et al., 2005; Leo Kroon and Gaby 
Vrijens, 1995).  

In this paper we will deal with the operational side of the problem. We will consider a system 
that contains three kinds of site: customer sites, supplier sites and depots: 
A customer site is a facility that receives the loaded containers from a supplier site. After the 
containers have been emptied the customer can return them to depots or supplier sites for 
storage and reuse.   
A supplier site is a facility that receives empty containers from depots or customer sites in 
order to load and send them to customers. 
A depot is a place in which we store empty containers after they have been used by 
customers. Depots can supply suppliers with empty containers. We suppose that storage is 
also possible at customer and supplier sites. 
Our purpose in this work is to propose a model that optimizes the total cost resulting from 
transportation between sites and storage and to propose an original resolution method for 
some particular cases. This method is based on simple recurring formulas that can be easily 
solved for the different decisions variables. This can help us to better understand the system 
behaviour and, in turn, can help us deal with other related problems, such as system 
dimensioning and purchasing policies for reusable containers.  
The remainder of this paper is organized as follows. In section 2, we will present a literature 
review of the container management problem from the operational side. In this review we will 
concentrate on the work presented by Kroon and Vrijens (1995). In this work the authors 
present a step-by-step analysis of the operating policies of container management systems. 
This work will be a reference for our paper. In section 3, a description of our problem will be 
presented in detail and an optimization model, in the form of a network flow problem, will be 
developed. This model is a basic formulation of the case with several customer sites, several 
supplier sites and several depots under some simplifying assumptions. In section 4, we will 
simplify the model and treat the case of one customer site, one supplier site and one depot. In 
this section an original resolution method will be developed. In section 5, a result analysis and 
interpretation will be presented. In the final section, we will outline our future intentions for 
extension and enhancement of the presented model. 
2. Literature Review  
Most of the existing works have focused on sea container management. This is due to their 
large cost. One of the problems which has been studied is container repositioning. Karimi et 
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al. (2005) presented a new linear programming methodology based on a continuous-time 
approach which they called the event-based “pull” approach. In this continuous-time 
representation, the principle is to fix all possible event times a priori, taking into account 
some simplifications and assumptions. Initially, a chronologically ordered superlist of 
possible instances is generated identifying which container movements (events) may occur 
and the types of movements that may occur at each such instance. This superlist of times and 
events is then used to develop a linear programming (LP) formulation whose solution will 
define the events that minimize the total logistic (flow) cost. Erera et al. (2005) proposed two 
different formulations, one deterministic(Erera Alan L et al., 2005a), one stochastic(Erera 
Alan L et al., 2005b), for the same problem. In the deterministic formulation, they integrated 
container booking and routing decisions with repositioning decisions in the same model. They 
believe that a container operator who uses this formulation via a global system may indeed be 
able to reduce costs and improve equipment utilization as compared to the standard 
approaches which ignore container routings. In the Stochastic formulation they presented a 
stochastic model in which uncertain parameters are assumed to fall within an interval around 
a nominal value and they established some conditions for robust flow under certain 
definitions. 
Similar work has been developed in the soft drinks field for the returnable bottle. Del Castillo 
and Cochran (1996) modelled the reusable bottle production and distribution activities of a 
Soft Drink Company. They optimized the problem in terms of increasing the number of empty 
bottles available in order to make the comany more competitive. This is an alternative to the 
total cost optimization when cost calculation is not possible.  
It is important to note that the majority of texts deal with the problem in specific cases (sea 
containers or returnable bottles). The only text that we found that considers the problem in the 
general case is the paper of Kroon and Vrijens (1995). In this paper, the authors classified 
returnable container systems into three groups depending on their operating policies: switch 
pool systems, systems with return logistics, and systems without return logistic. 
In a switch pool system, participants have their own allotments of containers. Thus the 
cleaning, maintenance and storage are the responsibility of each pool-participant. Pool-
participants may be the senders and recipients, or the senders, carriers, and recipients of the 
goods. If only the sender and the recipients are allotted containers, a transfer will take place 
when the goods are delivered to the recipient. In this case, the role of the carrier is to transport 
the loaded container to the recipients and to return the empty containers to the sender. 
Alternatively, the carrier is also allotted containers and replaces the loaded containers with 
empty containers when it picks up a load from a sender or recipient.  
In a system with return logistics, the containers are owned by a central agency. It is 
responsible for returning the containers after they are unloaded. There are two variants of this 
system. 

• Transfer system: the core of this system is that the sender always uses the same 
containers. He is responsible for tracking, tracing, maintaining, cleaning and storing 
them. 

• Depot system: Under the depot system, the empty containers that are not in use are 
stored at container depots, which can supply the senders with empty containers on demand. 

In the last system, the system without return logistics, the containers are owned by a central 
agency, and the sender rents them for fixed periods. The containers return to the agency after 
use. The sender is responsible for return logistics, cleaning, maintenance, storage and control. 
In the same paper, Kroon and Vrijens (1995) proposed a mathematical model for the design of 
a return logistics system for returnable containers with a depot system variant. The main 
purpose of the model is to determine the suitable number of containers, the appropriate 
number of container depots and their locations in order to minimize the total cost. 



 4

 The model considered in our paper assumes the operator is using a system with return 
logistics with the depot system variant. We suppose that the central agency can be both the 
customer (recipient), suppliers (sender) or third parties. 
3. Problem description  
We assume that the transportation network consists of depots, customer sites and supplier 
sites (see figure 1).  
For a period t, in order to satisfy customer demand, suppliers must have a sufficient number 
of empty containers at their disposal. These empty containers can be obtained from different 
customer sites, different depots or their own stocks. Once the containers are loaded they will 
be sent to their destinations (customers) during the same period. At customer sites the loaded 
containers will be emptied and can be returned to either depots or supplier sites as the best 
place for storage and reuse in subsequent periods. The different movements involved in this 
system generate large costs. Our purpose here is to optimize these costs and to propose the 
best plan for transportation and storage in each period. 
We will model the problem as a network flow (see figure 2) but first we will make some 
assumptions for simplification purposes and present the different decision variables.  
 

Customers

Suppliers
Loaded container
Empty container

Depots
 

Figure 1 : Flow of container  

Assumptions  
- The system is deterministic. The different costs for storing and moving the empty and 

loaded containers between sites and depots are known a priori. Similarly, the demands 
for each customer site are also known a priori. 

- There is no loss in the system   
- Container transition time between different sites and depots are negligible. Container 

loading and unloading times are also neglected.  
- There is one type of container. All containers are homogeneous 
- Two movements of empty containers can be done between each pair of sites/depots or 

customers sites/ suppliers sites during the same period. The first takes an empty 
container to be loaded and sent to customers. The second takes place when the 
containers are emptied and it attempts to return empty containers to suitable locations 
for the next usage. 

- There are two types of inventory in sites and depots. The principal inventory, which is 
the inventory before the first movement of empty containers for loading, and the 
temporary inventory, which is the inventory after the movement of empty containers 
for loading. Only the cost of the principal inventory is considered in our model.  

- The storage capacities of sites and depots are unlimited   
- All demands are nonzero and are different 

Decisions variables  
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Let D be the number of depots (d=1, …, D), I be the number of customers sites (i=1,…, I), F 
be the number of Suppliers sites (f=1,…, F) and T be the number of periods in the planning 
horizon (t=1,…, T).  
We define the different decisions variables as follows: 

• t
fix : Number of loaded containers transported from suppliers f to a customer i at 

period t  
• t

ix  :  Number of containers needed  in customer site i at period t 
• t

ify : Number of empty containers transported from customer i to supplier f at 
period t to be loaded and sent to customers.   

• t
ify 1 : Number of empty containers transported from customer i to supplier  f at 

period  t to be returned to the suitable location. 
• t

dfz : Number of empty containers transported from depot d to suppliers f at 
period t to be loaded and sent to customers.   

• t
dfz 1 : Number of empty containers transported from depot d to suppliers f at 

period t to be returned to the suitable location. 
• t

idu : Number of empty containers transported from customer i to depot d at 
period t to be loaded and sent to customers. 

• t
idu 1 : Number of empty containers transported from customer i to depot d at 

period t for them to be returned to the suitable location. 
• t

ia   : the principal inventory of  containers  in  customer site i at period  t. 
• t

ia 1 : the temporary inventory of  containers  in  customer site i at period  t. 
• t

dd   : the principal inventory of  containers  in depot  d at period  t.  
• t

dd 1  : the temporary inventory of  containers  in depot  d at period  t.  
• t

fb     : the principal inventory of  containers  in supplier site f at period  t. 

• t
fb1   : the temporary  inventory of  containers  in supplier site f at period t. 

t
fb

t
dd t

dd1

t
ia t

ia1

t
ix

t
fix

t
fb1

t
idu

t
dfz

t
ify

1+t
ia

1+t
fb

1+t
dd

t
ify1

t
dfz1

t
idu1

 
Figure 2 : Network flow  

Constraints  
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The constraints of the system are essentially the flow conservation constraints. They can be 
classified into four categories:  

• the first represents the conservation flow before sending the loaded containers to 
different sites and depots 

t
i

d

t
id

f

t
if

t
i auya 1++= ∑∑   ],0[,],0[ IiTt ∈∀∈∀      ( 1 ) 

∑∑∑ −−+=
d

t
df

i

t
if

t
f

i

t
fi

t
f zybxb 1   ],0[,],0[ FfTt ∈∀∈∀      ( 2 ) 

∑∑ −+=
i

t
id

t
d

f

t
df

t
d udzd 1    ],0[,],0[ DdTt ∈∀∈∀      ( 3 ) 

For example, constraint ( 1 ) represents the conservation flow at customer site i at period t; the 
principal inventory t

ia  is equal to the sum of departures from site i to depots ∑
d

t
idu  and 

supplier sites ∑
f

t
ify  plus the temporary inventory t

ia1 . 

• The second category of constraints represents the conservation flow after the emptying 
of loaded containers and their return to different sites. 

∑∑ −−+=+

d

t
id

f

t
if

t
i

t
i

t
i uyaxa 1111   ],0[,],0[ IiTt ∈∀∈∀    ( 4 ) 

t
f

d i

t
if

t
df

t
f byzb 111 111 ++=∑ ∑ −−+     ],0[,],0[ FfTt ∈∀∈∀   ( 5 ) 

∑∑ −+=+

f

t
df

t
d

i

t
id

t
d zdud 1111     ],0[,],0[ DdTt ∈∀∈∀    ( 6 ) 

• The third category represents the sum of containers arriving at a customer site i at 
period t. 

∑ =
if

t
i

t
fi xx

,

  ],0[,],0[ IiTt ∈∀∈∀        ( 7 ) 

• The last category of constraint is the lower band constraint, that is the sum of arriving 
containers must be greater than or equal to the demand at site i. 

t
i

t
i x≤δ  ],0[,],0[ IiTt ∈∀∈∀        ( 8 ) 

We suppose that there is no capacity constraint on storage and transportation.  
The objective function can be expressed as: 

t
f

ft

st
bf

t
d

dt

st
dd

t
i

it

st
ai

dit

t
id

t
id
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dft

t
df

t
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Trt
if

t
if

ift

Trt
fi

ift

Tr

bCdCaC

uuCzzCyyCxCC
uidzdfyifxfi

∑∑∑
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+++

++++++=

,,,

,,,,,,,,
)1()1()1(

 

where Tr
xfi

C , Tr
yif

C , Tr
zdf

C  and Tr
uid

C  are the transportation costs between sites and depots and 
st
aiC , st

ddC  and st
bfC are the storage cost in each site and depot.  

In the following sections, we will simplify the model; we will deal with the case with only 
one customer site, one supplier site and one depot. We will show that it is possible to 
determine all the decision variables with a simple recurring formula. 



 7

4. Studied case  
In this case we add the following assumptions to the system (see figure 3): 

• We have one customer site, one supplier site and one depot  
• We assume that the depot has the lowest cost, followed by the customer site and the 

supplier site being the most expensive. The configuration of cost is as follow 
st
b

st
a

st
d CCC <<  

• the initial stock of empty containers at the supplier site is equal to zero  
 

 

Customers

Suppliers
Loaded container
Empty container

Depots

xt

ta
tt yy 1+

tt uu 1+

tt zz 1+

td

tb

 
Figure 3 : Decision variables 

 
The different constraint can be simplified as follows 

tttt auya 1++=  
ttttt zybxb −−+= 1  

tttt udzd −−= 1  
ttttt uyaxa 1111 −−+=+  

tttt byzb 1111 ++=+  
tttt zdud 1111 −+=+  

ttx δ≥  
The objective function is given by  

t

t

st
b

t

t

st
d

t

t

st
a

t

tttr

t

tttrtt

t

trt
fi

t

tr bCdCaCuuCzzCyyCxCC
uzyx ∑∑∑∑∑∑∑ +++++++++= )1()1()1(  

Now we model the problem graphically as a network R=(X, U, a, b, c) for use in the different 
proofs. 
X:  Set of nodes that represents the three sites at each period t  
U: Set of arcs joining nodes. These arcs can be storage arcs or transportations arcs. Each arc 
represent a decision variable and takes the same notation but in the capital form. For example, 
the arc which correspond to ty  take the notation of tY . 

a (u) : represent the cost of an arc Uu∈ . For example, tr
y

t CYa =)(  
b(u) :  represent the lower band of arc Uu∈ . All arcs have a lower band equal to zero 

except tX arcs which have tδ  as lower bands. 
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],0[
)()(

)/(0)(
Tt

Xuub
XUuub
tt

t

∈
⎪⎩

⎪
⎨
⎧

=∀=

∈∀=

δ
 

 
c(u) : represents the capacity of an arc. We suppose that it is infinite on all arcs  

∞=∈∀ )(ucUu  
The different pairs of variables and arcs are shown with the corresponding arrow on figure 4 
below. 
In the remainder of this work, the majority of the properties will be demonstrated using the 
minimum cost network flow theorem. This theorem states that a necessary and sufficient 
condition for a feasible solution f to be optimal on a network R=(X, U, a, b, c) is that for each 
cycle −+ Γ∪Γ=Γ such that 

{ } 0)]()([;)]()([ >−−= −+ Γ∈Γ∈
ubufMinufucMinMin

uu
γ  

it is necessary that 0)()( ≥−∑∑ −+ Γ∈Γ∈ uu
uaua  

)1,1( 11 −− tt uU

)1,1( 11 −− tt zZ

)1,1( 11 −− tt yY

),( tt uU

),( tt zZ

),( tt yY

),( tt aA

),( tt bB

),( tt cC

)1,( tt bB

)1,1( 1 tcC

),( tt xX ),( 11 ++ tt xX

)1,1( tt aA

)1,( tt uU

)1,( tt zZ

)1,( tt yY

),( tt uU

),( tt zZ

),( tt yY

),( 11 ++ tt aA

),( 11 ++ tt bB

),1( 11 ++ tt cC

)1,1( 11 ++ tt bB

)1,1( 11 ++ tt cC

)1,1( 11 ++ tt aA

)1,1( 11 ++ tt uU

)1,1( 11 ++ tt zZ

)11( 11 ++ tt yY

 
Figure 4 : Network flow illustration  

Before resolving this problem we will define some new integer parameters, which will help us 
later when demonstrating properties. The first parameter is the principal threshold, a

dN . This 
parameter will help us to decide whether or not to send surplus empty containers from the 
customer to the depot for storage and reuse in the following a

dN  periods. The second 
parameter is the secondary threshold, a

dM . This parameter will show whether sending the 
container from the customer to the depot for storage without reuse is better then keeping it at 
the customer site in the following a

dM  periods. 
Definition 1. in the case when we have TrTrTr

zuy
CCC +< , we define the principal-storing-

threshold of the customer to the depot, the integer a
dN , such that:  

 
⎪⎩

⎪
⎨
⎧

+×++>+×+

+×+<+×
Trst

d
a
d

TrTrst
a

a
d

Trst
d

a
d

TrTrst
a

a
d

zuy

zuy

CCNCCCN

CCNCCCN

)1()1(
   

 
Remark  1. Figure 5 represent an illustration of definition 1. The first term of the first 
inequality Trst

a
a
d y

CCN +×  represents the cost of path ),,...,1,( 11
,

−+−++ =Γ
a
d

a
d

a
d

NtNttt
Nt

YAAA , in 
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other words this cost is the cost of storing one unit of container during a
dN  periods and 

transporting it from the customer to the supplier. The second term, Trst
c

a
d

Tr
zu

CCNC +×+ , 

corresponds to the cost of path ),,...,1,,1( 111
,

−+−+−− =Γ
a
d

a
d

a
d

NtNtttt
Nt

ZDDDU  which represents 

the total cost of sending one container from the customer to the depot, storing it during a
dN  in 

the depot and sending it on to the supplier.  
The intention here is to note that storing containers more than a

dN  at the customer site and 
transporting them subsequently to suppliers can be more expensive than transporting them to 
the depot, storing during more than a

dN , and sending them on. It is easy to remark that 
+− Γ∪Γ a

d
a
d NtNt ,,

 constitutes a cycle  

11 −tu

tu

ty

tz

ta ta1

tb1tb

td td1

11 −ty
tu1ty1

1−
a

dN

+Γ a
dNt ,

−Γ a
dNt ,

1−+ a
dNty

1−+ a
dNtz

1−+ a
dNta

1−+ a
dNtd

 
Figure 5 : Cycle +− Γ∪Γ a

d
a
d NtNt ,,

 

Remark  2. It is easy to verify that for all integers i, such that a
dNi ≤ , 

Trst
d

TrTrst
a zuy

CCiCCCi +×+<+×  and that for all a
dNi > , Trst

d
TrTrst

a zuy
CCiCCCi +×+>+× .  

This can be proved as follows: 
Let i be an integer such that a

dNi ≤ . i can be written in the form jNi a
d −= where j is an 

integer. Since st
d

st
a

st
d

st
a CjCjCjCj ×−<×−⇒×>×  summing this with 

Trst
d

a
d

TrTrst
a

a
d zuy

CCNCCCN +×+<+×  gives Trst
d

a
d

TrTrst
a

a
d zuy

CCjNCCCjN +×−+<+×− )()(   

which is exactly Trst
d

TrTrst
a zuy

CCiCCCi +×+<+× . 

Now suppose that 1+> a
dNi .  i can be written in the form jNi a

d ++= 1  where 0>j . Since 
st
d

st
a CjCj ×>×  summing this with Trst

c
a
d

TrTrst
a

a
d zuy

CCNCCCN +×++>+×+ )1()1(  gives 
Trst

d
a
d

TrTrst
a

a
d zuy

CCjNCCCjN +×+++>+×++ )1()1( which is exactly 
Trst

d
TrTrst

a zuy
CCiCCCi +×+>+× . 

 Remark  3. The first inequality ( Trst
c

a
d

TrTrst
a

a
d zuy

CCNCCCN +×+<+× ) is valid only if 
TrTrTr
zuy

CCC +< . In fact, the first inequality can be written as: 
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TrTrTrst
d

st
a

a
d yzu

CCCCCN −+<−× )( . Given that 0)( >−× st
d

st
a

a
d CCN  consequently  

TrTrTr
zuy

CCC +< . Otherwise, TrTrTr
zuy

CCC +>  would give Trst
d

Trst
a

Tr
zuy

CCCCC ++>+ . In this 
case it is simple to see that if we have stock at the customer site at the end of period t it will be 
better to send all of it to the depot for storage and reuse. 
 
Definition 2. We define the secondary-storing-threshold of  the customer to the depot, the 
integer a

dM , such that:  

⎪⎩

⎪
⎨
⎧

×++>×+
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d

Trst
a

a
d
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d
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Remark 4. This definition (see figure 6) shows that for a number of periods, i.e. greater 
than a

dM , storing stock at the customer site will be more expensive than sending it to the depot 
for storage without reuse. The two parameters a

dM  and a
dN  will help us to establish the 

different properties.  

11 −tu

tu

ty

tz

ta ta1

tb1tb

td td1

11 −ty
tu1ty1

1−
a

dM

+Γ a
dMt ,

−Γ a
dMt ,

1−+ a
dMty

1−+ a
dMtz

1−+ a
dMta

1−+ a
dMtd

 
Figure 6 : +Γ a

dMt ,
 and −Γ a

dMt ,
 

Property 1.   For all ],0[ Tt∈ , 011 == tt zy  

Proof. Suppose there exists a ],0[ Tt∈  such that 01 ≠tz , and hence 01 ≠+tb . Let 
−+ ΓΓ=Γ ttt U  be a cycle composed of 4 arcs (see Figure 7) such that:  

−Γt =( ),1 1+tt BZ  

 +Γt =( ), 11 ++ tt ZD  

ty1

1+ta

1+tb

1+td

tz1

tu1

1+ty

1+tz

1+tu

 
Figure 7 : Cycle −+ ΓΓ tt U  
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We have )]()([ ubufMin
tu

−−Γ∈
 because 01 >tz  and 01 >+tb . In addition, 

0)]()([ >−+Γ∈
ufucMin

tu
 because the capacities of arcs are unlimited. Therefore, 

{ } 0)]()([;)]()([ >−−= +− Γ∈Γ∈
ufucMinubufMinMin

tt uu
γ  and according to the minimum 

cost network flow theorem  we must have that 0)()( ≥−∑∑ −+ Γ∈Γ∈ tt uu
uaua . However, in this 

case ∑ +Γ∈
+=

tu
tr
z

st
d CCua )( < st

b
tr
zu

CCua
t

+=∑ −Γ∈
)(   which is absurd, therefore tz1  must 

equal zero, i.e. for all ],0[ Tt∈ ⇒ 01 =tz . 

The same reasoning can be applied to 
ty1 . 

Suppose there exists a ],0[ Tt∈  such that 01 ≠ty , and hence 01 ≠+tb . Let −+ ΓΓ=Γ ttt U  be a 
cycle composed of 4 arcs (see Figure 8) such that:  

−Γt =( ),1 1+tt BY  

 +Γt =( ), 11 ++ tt YA  

ty1

1+ta

1+tb

1+td

11 −tz

tu1

1+ty

1+tz

1+tu

 
Figure 8 : Cycle −+ ΓΓ tt U  

We have )]()([ ubufMin
tu

−−Γ∈
 because 01 >ty  et 01 >+tb . In addition, 

0)]()([ >−+Γ∈
ufucMin

tu
 because the capacities of arcs are unlimited. Therefore, 

{ } 0)]()([;)]()([ >−−= +− Γ∈Γ∈
ufucMinubufMinMin

tt uu
γ  and according to the minimum 

cost network flow theorem we must have that 0)()( ≥−∑∑ −+ Γ∈Γ∈ tt uu
uaua .  However, in this 

case tr
y

st
au

CCua
t

+=∑ +Γ∈
)( < st

b
tr
yu

CCua
t

+=∑ −Γ∈
)(   which is absurd, therefore 01 =ty  for all 

],0[ Tt∈ . 
Remark  5. Property 1 implies that the stock at the supplier site will remain equal to zero if 
we begin with a stock equal to zero at t=0 . 
Property 2. For ],0[ Tt∈ ,if 01 ≠tu  then ],1[ a

dNk∈∀ , 0=+ktz  

Proof. Suppose there exists a  ],0[ Tt∈  such that 01 ≠tu . 

Let kt ,Γ  be a cycle with  ],0[ Tt∈  and ],1[ a
dNk∈  (see figure 9). Suppose that 

−+ Γ∪Γ=Γ ktktkt ,,, , where ),,...,( 1
,

ktktt
kt YAA ++++ =Γ  , is the path composed of the storage arcs 

between t+1 and t+k  and the transportation arc between the customer and the supplier.  
),,..,,1( 1

,
ktkttt

kt ZDDU +++− =Γ is the path composed of the transportation arc from the customer 
to the depot at period t, the storage arcs at depot between t+1 and t+k  and the transportation 
arc from the depot to the supplier at period t+k . 
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+Γ kt ,

−Γ kt ,

tu1

1+tu

1+ty

1+tz

1+ta 11 +ta

11 +tb1+tb

1+td 11 +td

ktu +−11
ktu +

kty +

ktz +

kta + kta +1

ktb +1
ktb +

ktd + ktd +1

kty +−11

ktz +−11

ty1

tz1

 

Figure 9 : Cycle −+ Γ∪Γ ktkt ,,  

Suppose there exists a 0≠+ktz  which is the first non-zero occurrence, that is if 1>k then for 
all ]1,1[ −∈ ki  we have 0=+itz . For, the case when k=1, 1+tz  is the first and only non-zero 
occurrence.  Therefore, all itd +  and jtd +1  will be non-zero for ],1[ ki∈  for all k and 

]1,1[ −∈ kj  for k>1 because there are no units leaving the depot since, according to property 
1, 01 =tz  and  01 =ty for all t.  
Consequently, all arcs of path ),,...,,1( 1

,
ktkttt

kt ZDDU +++− =Γ  will have non-zero values, and 
thus 0)]()([

,
>−−Γ∈

ubufMin
ktu

 and since 0)]()([
,

>−+Γ∈
ufucMin

ktu
it follows that:  

{ } 0)]()([;)]()([
,,

>−−= +− Γ∈Γ∈
ufucMinubufMinMin

ktkt uu
γ . We Know that that 

∑
+Γ∈

=
ktu

ua
,

)( Trst
a y

CCk +× and  Trst
d

Tr
zu

ktu

CCkCua +×+=∑
−Γ∈ ,

)(  this implies that 

∑ ∑
+Γ∈

−Γ∈
<−

ktu ktu
uaua

,
,

0)()( which is absurd because according to definition 1 for all a
dNk ≤ , 

Trst
a y

CCk +× < Trst
d

Tr
zu

CCkC +×+ . Therefore, 0≠+ktz  for all ],1[ a
dNk ∈ .  

Property  3. If the initial stock at the supplier site is equal to zero, then for all ],0[ Tt∈  
01 == tt bb  

Proof. We have that 00 =b  because we began with zero stock at the supplier site and that 
011 == tt zy  t∀ , therefore, there is no entry at the supplier site at t=0. Assume that there 

exists a ],1[ Tt∈  such that 0≠tb which is the first non-zero occurrence, i.e. that for all 
]1,0[ −∈ ti  0=ib .  According to property 1, 011 11 == −− tt zy  and therefore, 01 1 ≠−tb . Given 

that 01 ≠−tδ  and 01 =−tb , it follows that )0,0(),( 11 ≠−− tt zy  

1st  case : if 01 ≠−ty  

Let −+ ΓΓ=Γ tytyty ,,, U  (see figure 10) be a cycle such that: 

),,1(

),1,(
1

,

11
,

ttt
ty

ttt
ty

YAA

BBY
−+

−−−

=Γ

=Γ
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11 −tu ty

tz

ta

tb

td

11 −ty

1−tu

1−ty

1−tz

1−ta 11 −ta

11 −tb1−tb

1−td 11 −td

 
Figure 10 : Cycle −+ ΓΓ tyty ,, U  

The path ),1,( 11
,

ttt
ty BBY −−− =Γ does not contain an arc of zero value, given that 01 ≠−ty  and 

01 1 ≠−tb . Consequently, 0)]()([
,

>−−Γ
ubufMin

ty
and given that 0)]()([

,
>−+Γ

ufucMin
ty

it 

follows that 
{ } 0)]()([;)]()([

,,
>−−= +− Γ∈Γ∈

ufucMinubufMinMin
tyty uu

γ . 

Since ∑∑ −+ Γ∈Γ∈
+=<+=

tyty u
st
b

tr
yu

tr
y

st
a CCuaCCua

,,
)()( (given that st

a
st
b CC > ) ⇒  

0)()(
,,

<−∑∑ −+ Γ∈Γ∈ tyty uu
uaua this is absurd, therefore tb  can never non-zero. Consequently, 

given that 011 11 == −− tt zy it also follows that 01 1 =−tb .  

2nd case: if 01 ≠−tz  : 

Let −+ ΓΓ=Γ tztztz ,,, U  (see figure 11) such that: 

),,1(

),1,(
1

,

11
,

ttt
tz

ttt
tz

ZDD

BBZ
−+

−−−

=Γ

=Γ
 

Given that 01 ≠−tz , 01 1 ≠−tb and 0≠tb , it follows that 0)]()([
,

>−−Γ
ubufMin

tz
 on 

),1,( 11
,

ttt
tz BBZ −−− =Γ .  In addition, since 0)]()([

,
>−+Γ

ufucMin
tz

 it follows that  

{ } 0)]()([;)]()([
,,

>−−= +− Γ∈Γ∈
ufucMinubufMinMin

tztz uu
γ . In this case 

∑∑ −+ Γ∈Γ∈
+=<+=

tytz u
st
b

tr
zu

tr
z

st
d CCuaCCua

,,
)()(  (given that st

d
st

b CC > ) ⇒  

0)()(
,,

<−∑∑ −+ Γ∈Γ∈ tztz uu
uaua   which is also absurd, therefore tb can never be null. Therefore, 

given that 011 11 == −− tt zy  it follows that 01 1 ==− tt bb ( 111 111 −−− ++= tttt byzb ). 

Finally, for all ],0[ Tt∈ , 01 == tt bb  
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tu1 ty

tz

ta

tb

td

ty1

tu1

1−tu

1−ty

1−tz

ta 11 −ta

11 −tbtb

td 11 −td

ty1

 
Figure 11 : Cycle −+ ΓΓ tztz ,, U  

Property  4. For all  ],0[ Tt∈ , 0=tu   
Proof. Assume there exists a ],0[ Tt∈ such that 0≠tu . Therefore, 0≠ta . Let 

−+ ΓΓ=Γ tututu ,,, U  be a cycle (see figure 12) such that:  

),1(

),(
1

,

,

tt
tu

tt
tu

DU

UA
−+

−

=Γ

=Γ
 

tu1 1+ty

1+tz

1+ta

1+tb

1+td

ty1

11 −tu

tu

ty

tz

ta ta1

tb1tb

td td1

11 −ty

 
Figure 12 : Cycle −+ ΓΓ tutu ,, U  

Since 0≠tu , it also follows that 0≠ta , and as a consequence that 0)]()([
,

>−−Γ
ubufMin

tu
. 

In addition, since 0)]()([
,

>−+Γ
ufucMin

tu
 it follows that 

{ } 0)]()([;)]()([
,,

>−−= +− Γ∈Γ∈
ufucMinubufMinMin

tutu uu
γ . 

However, since 
∑∑ −+ Γ∈Γ∈

+=<+=
tutu u

tr
a

tr
uu

st
d

tr
u CCuaCCua

,,
)()( ⇒∑ ∑+ −Γ∈ Γ∈

<−
tu tuu u

uaua
, ,

0)()( this is in 

contradiction with the minimum cost network flow theorem, and therefore for all ],0[ Tt∈  
0=tu . 

Property 5. For all  ],0[ Tt∈ , ttx δ=  
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Proof. Assume there exists a ],0[ Tt∈  such that ttx δ> . According to property 5 , for all 
],0[ Tt∈ , 01 == tt bb . Given that 0≠tδ   (see assumptions above) it follows that 

)0,0(),( ≠tt zy  

1st case: if 0≠ty   

Let −+ ΓΓ=Γ tytyty ,,, U  (see figure 13) be a cycle such that:   
 

 
 

tu1 1+ty

1+tz

1+ta

1+tb

1+td

ty1
tu1

tu

ty

tz

ta ta1

tb1tb

td td1

ty1
tx

 
Figure 13 : Cycle −+ ΓΓ tyty ,, U  

 
Given that ttx δ> it follows that 0)]()([

,
>−−Γ

ubufMin
ty

 and since 0)]()([
,

>−+Γ
ufucMin

ty
it 

also follows that  
{ } 0)]()([;)]()([

,,
>−−= +− Γ∈Γ∈

ufucMinubufMinMin
tyty uu

γ  

According to the minimum cost network flow theorem we must have that  
0)()(

,,
≥−∑∑ −+ Γ∈Γ∈ tyty uu

uaua  but given that ∑∑ −+ Γ∈Γ∈
+=<=

iyty u
tr
x

tr
yu

CCuaua
,,

)(0)( (the cost 

of arc tA1  is null) there is a contradiction. Therefore, in this case ttx δ= .  
 
2nd case: if 0≠tz  and 0=ty  (if 0≠ty  we return to case 1) 

Let ity + , ],1[ tTi −∈ , or jtu +1 , ],0[ tTj −∈ , and  be the first non-zero variable. For example, 
if ity +  is the first non-zero variable then all mty + and ntu +1 (with ]1,1[ −∈ im and ]1,0[ −∈ in ) 
are zero. 
1stsub-case: if ity +  the first non-zero variable: 
Let  −+ ΓΓ=Γ tztztz ,,, U  (see figure 14) such that: 

),,...,1(

),,...,,,(

,

1
,

ititt
tz

ititttt
tz

ZDD

YAAXZ
+++

+++−

=Γ

=Γ
 

)1(

),(

,

,

t
ty

tt
ty

A

XY

=Γ

=Γ
+

−



 16

tz

td1

ity +

itz +

tx

itd +

ita +

 
Figure 14 : Cycle −+ ΓΓ tztz ,, U  

Given that ity +  is the first non-zero variable, it follows that between t+1 and t+i no containers 
depart from the customer site, i.e. all arcs of −Γ tz , are nonzero. In addition, ttx δ>  which 
simply means that 0)]()([

,
>−−Γ

ubufMin
tz

.  Therefore, 

{ } 0)]()([;)]()([
,,

>−−= +− Γ∈Γ∈
ufucMinubufMinMin

tztz uu
γ  and given that  

∑∑ −+ Γ∈Γ∈
+×++=<+×=

iztz u
tr
y

st
a

tr
x

tr
zu

tr
z

st
d CCiCCuaCCiua

,,
)()( (Because st

a
st
d CC < )    

this is in contradiction with minimum cost network flow theorem. Therefore ttx δ>  is 
impossible ⇒  ttx δ= in this case. 
2ndsub-case: if jtu +1 is the first non-zero variable with 0>j . In this case all mty + and ntu +1 , for 

],1[ jm∈ et ]1,0[ −∈ jn , are zero. 
Let −+ ΓΓ=Γ tztztz ,,, U  (See figure 15) such that :   

)1,,...,1(

)1,1,...,,,(

,

1
,

jtjtt
tz

jtjtttt
tz

DDD

UAAXZ
+++

+++−

=Γ

=Γ
 

In the case where j=0  the tow paths are reduced to  

)1(

)1,,(

,

,

t
tz

ttt
tz

D

UXZ

=Γ

=Γ
+

−
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tz

td1

jty +

jtz +

tx

jtd +

jta +

jtu +1

jtd +1

 
Figure 15 : Cycle −+ ΓΓ tztz ,, U  

Because it is supposed that ttx δ>  then, given that no containers depart from the customer 
until t+j, there are no zero arcs on the path −Γ tz ,  and the tX  arcs have a value greater than the 

lower band ( ttx δ> ). Therefore, 0)]()([
,

>−−Γ
ubufMin

tz
 and since 0)]()([

,
>−+Γ

ufucMin
tz

 it 

follows that  
{ } 0)]()([;)]()([

,,
>−−= +− Γ∈Γ∈

ufucMinubufMinMin
tztz uu

γ
  

Since, according to minimum cost network flow theorem, 0)()(
,,

≥−∑∑ −+ Γ∈Γ∈ tztz uu
uaua  is a 

condition for optimality, and given that 
∑∑ −+ Γ∈Γ∈

+×++=<×=
iztz u ua

tr
x

tr
zu d CCjCCuaCjua

,,
)()( , this is absurd. Therefore, in this 

case ttx δ= . 
 3rd sub-case: if all ity + and jtu +1 ,  ],1[ tTi −∈  and ],0[ tTj −∈ , are equal to zero, then after t 
all transportation variables will be equal to zero except kk xandz , ],[ Ttk ∈ . Now, suppose 
that the feasible flow f found in this case is optimal. Let f’ be another feasible flow obtained 
by transforming f by subtracting ttx δλ −=  from )1,,...,1,,,( TTtttt AAAAXZ=Γ and adding 
it to )1,,...,1,(' TTtt DDDD=Γ .  This gives a gain of ))()(( dzxa CtTCCCtT ×−−++×−×λ  
which implies that f is not optimal. Therefore, ttx δ>  is impossible ⇒  ttx δ= . 
Property  6. If for ],0[ Tt∈ , )(max1

],1[
kt

Nk
tt

a
d

a +
∈

≥+ δδ then 

 )(max11
],1[

kt
Nk

ttt
a
d

au +
∈

−+≤ δδ  

Proof. Assume there exists a ],0[ Tt∈  such that )(max11
],1[

kt
Nk

ttt
a
d

au +
∈

−+> δδ   and let 

],1[ a
dNi∈  be the index corresponding to the position of maximum demand, in other words  

itktNk a
d

++∈
= δδ )(max

],1[
. So, according to property 2, if 01 ≠tu  then ],1[ a

dNk∈∀  ktz +  =0. In 

other words, in the interval ],1[ a
dNtt ++  the system uses only the stock available at the 

customer site. However, this stock is strictly lower than it+δ   because 
)(max11

],1[
1 kt

Nk
tttt

a
d

uaa +
∈

+ <−+= δδ  and consequently the demand at t+i cannot be satisfied, 

which is absurd. Therefore, )(max11
],1[

kt
Nk

ttt
a
d

au +
∈

−+≤ δδ . 
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Property 7. Let ],0[ Tt∈  and i∈ ],1[ a
bN  represent the position index of maximal demand: this 

means that itkt
Nk a

d

++
∈

= δδ )(max
],1[ with i>1. If )(max1

],1[
kt

Nk
tt

a
d

a +
∈

>+ δδ then we have: 

01 =+ jtu for all ]1,1[ −∈ ij , 0≠+kta  for all ],1[ ik∈   and 01 ≠+lta  for all ]1,1[ −∈ il  
Remark 6. If  i=1 (i is at the position of maximum demand), then 01 ≠+ta  
Proof. Let ],0[ Tt∈  and i∈ ],1[ a

bN  such that itkt
Nk a

d

++
∈

= δδ )(max
],1[

 and assume 

that )(max1
],1[

kt
Nk

tt
a
d

a +
∈

>+ δδ . )(max11
],1[

kt
Nk

ttt
a
d

au +
∈

−+≤ δδ  which means that the 

customer stock at period tttt uaa 111 −+=+ δ  is greater than or equal to )(max
],1[

kt
Nk a

d

+
∈

δ , i.e. 

)(max11
],1[

1 kt
Nk

tttt
a
d

uaa +
∈

+ ≥−+= δδ . Assume that there is a non-zero departure jtu +1  for 

]1,1[ −∈ ij  which is the first non-zero occurrence, i.e. all departures mtu +1  for ]1,1[ −∈ jm  
are null. Let +− Γ∪Γ=Γ be a cycle (see figure 16) such that  

)1,...,,1(
)1,...,1,(

1

11

jttt

jttt

DDU
UAA

+++

+++−

=Γ

=Γ
 

 

jty +

jtz +

tx

tu1 jtu +1

1+ta

1+td

jta +

jtd +

jta +1

jtd +1

11 +ta

11 +td

 
Figure 16 : Cycle −+ ΓΓ U  

Since all mtu +1 are null, there are no departures from the customer site, this means that stock 
lta +  for ],1[ jl ∈  can never decrease and will remain greater than )(max

],1[
kt

Nk a
d

+
∈

δ . In 

addition, for all ],1[ jk∈  kty +  can never exceed )(max
],1[

kt
Nk a

d

+
∈

δ  ⇒ 01 >=− +++ ktktkt aya .  

Therefore, the path )1,...,1,( 11 jttt UAA +++− =Γ  cannot contain a null arc, i.e. 
0)]()([ >−−Γ

ubufMin , and because 0)]()([ >−+Γ
ufucMin , it follows that:  

{ } 0)]()([;)]()([ >−−= +− Γ∈Γ∈
ufucMinubufMinMin

uu
γ  

 Since, ∑∑ −+ Γ∈Γ∈
+×=<×+=

u
tr
u

st
au

st
d

tr
u CCjuaCjCua )()(  (because st

a
st
d CC < ) this is 

absurd and therefore there is no departure jtu +1  for ]1,1[ −∈ ij , and the stock kta +  for 
],1[ ik∈  can never decrease, i.e. )(max

],1[
nt

Nn
kt

a
d

a +
∈

+ ≥ δ . In addition, given that 
ltltnt

Nn
ya

d

+++
∈

≥> δδ )(max
],1[

 for  ]1,1[ −∈ il , it follows that   01 >−= +++ ltltlt yaa . 

Consequently, for jtu +1 , ]1,1[ −∈ ij , 0≠+kta  for all ],1[ ik∈  and 01 ≠+kta  for all ]1,1[ −∈ il . 
Property 8. For a )],max(,0[ a

d
a
d MNTt −∈ , if )(max1

],1[
kt

Nk
tt

a
d

a +
∈

>+ δδ , then  
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)(max11
],1[

kt
Nk

ttt
a
d

au +
∈

−+= δδ  

Proof. Let )],max(,0[ a
d

a
d MNTt −∈  such that )(max1

],1[
kt

Nk
tt

a
d

a +
∈

>+ δδ  and let i∈ ],1[ a
bN  

such that the maximum demand position be defined as itkt
Nk a

d

++
∈

= δδ )(max
],1[

. Assume that 

)(max11
],1[

kt
Nk

ttt
a
d

au +
∈

−+< δδ . In other words, for the customer stock at period t+1, 

)(max
],1[

1 kt
Nk

t
a
d

a +
∈

+ > δ and because there is no departure (according to property 8, 

01 =+ jtu for all ]1,1[ −∈ ij ),  the stock will stay the same or increase at the customer site 
in ],1[ itt ++ . Therefore, we will find that at period it + , )(max

],1[
kt

Nk
it

a
d

a +
∈

+ > δ  and given 

that itity ++ ≤ δ , it follows that 01 >−= +++ ititit yaa . Therefore, for all ],1[ ik∈ , kta +  and kta +1  
will be nonzero.  
1st case: assume there exists a ],[ a

dNij∈   such that 01 ≠+ jtu which is the first non-zero 
occurrence of jtu +1 .  In other words, for all ]1,[ −∈ jim , mtu +1 are null. Let +− Γ∪Γ=Γ  be a 
cycle (see figure 17) such that: 

)1,...,,1(
)1,...,1,(

1

11

jttt

jttt

DDU
UAA

+++

+++−

=Γ

=Γ
 

 

jty +

jtz +

tx

tu1 jtu +1

1+ta

1+td

jta +

jtd +

jta +1

jtd +1

11 +ta

11 +td

 
Figure 17 : Cycle −+ ΓΓ U  

Given that the stock at the customer site will stay the same until the period t+j (the first 
departure is jtu +1 , ],[ a

dNij∈ ), it follows that all mta +  and mta +1  for ],[ jim∈  are nonzero. 
Thus, 0)]()([ >−−Γ

ubufMin  and since 0)]()([ >−+Γ
ufucMin this implies that 

{ } 0)]()([;)]()([ >−−= +− Γ∈Γ∈
ufucMinubufMinMin

uu
γ . Given that: 

∑∑ −+ Γ∈Γ∈
+×=<×+=

u
tr
u

st
au

st
d

tr
u CCjuaCjCua )()(   (because st

a
st
d CC < ) this is absurd. 

Therefore, in this case )(max11
],1[

kt
Nk

ttt
a
d

au +
∈

−+< δδ  is impossible. 

2nd Case:  suppose that there is no period ],[ a
dNij∈  such that 01 ≠+ jtu . 

1st sub-case: assume there exists a a
dNk > such that 01 ≠+ktu or 0≠+kty which is the first non-

zero occurrence.  
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1) If 01 ≠+ktu  is the first non-zero occurrence, then all  ltu +1  for ]1,1[ −+∈ kNl a
d  and all mty +    

for ],1[ kNm a
d +∈ are equal to zero. In this case, let +− Γ∪Γ=Γ be a cycle such that:  

)1,...,,1(
)1,...,1,(

1

11

kttt

kttt

DDU
UAA

+++

+++−

=Γ

=Γ
 

(the same form of cycle as figure 16) 
Given that for all ],1[ a

dNn∈ , 01 ≠+nta  and that there are no departures between periods 
t+ a

dN  and t+k,  it follows that, for all ],1[ kNm a
d +∈ , mta +  and mta +1  are non-zero and the 

path )1,...,1,( 11 kttt UAA +++− =Γ  does not contain a null arc, i.e. 0)]()([ >−−Γ
ubufMin .  Since, 

0)]()([ >−+Γ
ufucMin , it follows that 

{ } 0)]()([;)]()([ >−−= +− Γ∈Γ∈
ufucMinubufMinMin

uu
γ  

Given that ∑∑ −+ Γ∈Γ∈
+×=<×+=

u
tr
u

st
au

st
d

tr
u CCkuaCkCua )()( this is absurd. Therefore, the 

inequality )(max11
],1[

kt
Nk

ttt
a
d

au +
∈

−+< δδ  is impossible⇒ )(max11
],1[

kt
Nk

ttt
a
d

au +
∈

−+≥ δδ . 

2 ) If kty + is the first non-zero occurrence, then all the other mtu +1 and  mty +  values, for 
]1,1[ −+∈ kNm a

d , are equal to zero. Let +− Γ∪Γ=Γ  be a cycle such that (see figure 18): 

),,...,,1(
),...,1,(

1

11

ktkttt

kttt

ZDDU
YAA

++++

+++−

=Γ

=Γ
 

Given that 01 ≠+nta  for ],1[ a
dNn∈  and that there are no departures between periods t+ a

dN  
and t+k, it follows that stocks mta + , for ],1[ kNm a

d +∈ , and nta +1 , for all ]1,1[ −+∈ kNn a
d ,  

will be non-zero and consequently 0)]()([ >−−Γ
ubufMin .  Since, 0)]()([ >−+Γ

ufucMin  it 

follows that { } 0)]()([;)]()([ >−−= +− Γ∈Γ∈
ufucMinubufMinMin

uu
γ .  Since, 

∑∑ −+ Γ∈Γ∈
+×=<+×+=

u
tr
y

st
au

tr
z

st
d

tr
u CCkuaCCkCua )()(  for a

dNk >  this is absurd and in 

contradiction with minimum cost network flow theorem. 

tx

tu1

1+ta

1+tc

kta +

ktc +

11 +ta

11 +tc

kty +

ktz +

 
Figure 18 : Cycle −+ ΓΓ U  

 
2nd sub-case: Assume that all ktu +1  and kty +  are equal to zero for a

dNk > .  Let f be the flow 
found in this case and suppose that it is optimal with the assumption that 

)(max11 ],1[
kt

Nk
ttt

a
d

au +
∈

−+< δδ . 



 21

 Let 01)(max1
],1[

>−−+= +
∈

tkt
Nk

tt ua a
d
δδα  and let f’ be a new flow obtained from f by 

subtracting α  from the path ),...,1,( 11 Ttt AAA ++=Γ  and adding it to the path 
),...,1,,1(' 11 Tttt DDDU ++=Γ .  The total cost resulting from f ’ has a variation of 

))()(( st
a

st
d

st
u CtTCtTC −−−+×α  which is negative given that 

a
d

a
d

a
d MtTMNtT >−⇒>− ),max( . According to definition 2,  for all 

st
d

Trst
a

a
d CjCCjMj

u
×+>×> , and consequently: 

0))()(()()( <−−−−×⇒×−+>×− st
d

st
u

st
a

st
d

Trst
a CtTCCtTCtTCCtT

u
α . Therefore, the cost of 

f’ is less than f and consequently if )(max11
],1[

kt
Nk

ttt
a
d

au +
∈

−+< δδ the flow cannot 

be optimal and, therefore, the inequality )(max11 ],1[
kt

Nk
ttt

a
d

au +
∈

−+< δδ is 

impossible⇒ )(max11
],1[

kt
Nk

ttt
a
d

au +
∈

−+≥ δδ . 

According to property 7 )(max11
],1[

kt
Nk

ttt
a
d

au +
∈

−+≤ δδ , and, therefore, 

)(max11
],1[

kt
Nk

ttt
a
d

au +
∈

−+= δδ . 

Property  9. If, )(max1
],1[

kt
Nk

tt
a
d

a +
∈

≤+ δδ  for a )],max(,0[ a
d

a
d MNTt −∈ , then 01 =tu  

Proof. Let )],max(,0[ a
d

a
d MNTt −∈  such that )(max1

],1[
kt

Nk
tt

a
d

a +
∈

≤+ δδ  and assume 

that 01 ≠tu . According, to property 2 if 01 ≠tu  then for all ],1[ a
dNk∈ , 0=+ktz . Given that 

)(max1
],1[

kt
Nk

tt
a
d

a +
∈

≤+ δδ , the customer stock cannot satisfy the maximum demand 

)(max
],1[

kt
Nk a

d

+
∈

δ . Consequently, there will exist a ],1[ a
dNk ∈  such that 0≠+ktz , which is 

absurd according to property 2. Therefore, for all )],max(,0[ a
d

a
d MNTt −∈  if 

)(max1
],1[

kt
Nk

tt
a
d

a +
∈

≤+ δδ  then 01 =tu . 

Proprerty 10. For a )],max(,0[ a
d

a
d MNTt −∈ , if  )(max1

],1[
kt

Nk
tt

a
d

a +
∈

≤+ δδ  then 

))1(,0max( 11 tttt az δδ +−= ++  
),1min( 11 ++ += tttt ay δδ  

Proof. Let )],max(,0[ a
d

a
d MNTt −∈  such that )(max1

],1[
kt

Nk
tt

a
d

a +
∈

≤+ δδ , which, according 

to property 10, implies that 01 =tu . Suppose that { })1(,0max 11 tttt az δδ +−> ++ . Since 
111 +++ += ttt zyδ , it follows that 1111 )1()1(1 ++++ +−+=−+= tttttttt zayaa δδδ  and, given  

that { })1(,0max 11 tttt az δδ +−> ++ , it follows that  
0)1()1()1(1 11111 =+−+−+>+−+= +++++ ttttttttttt aazaa δδδδδδ ⇒ 01 1 >+ta  

1st case : Assume there exists 01 ≠+ktu , for 0>k and Tkt ≤+ , or 0≠+lty , for 0>l and 
Tlt ≤+   and that one of the two variables are non-zero occurrences. 

1st sub-case: if  01 ≠+ktu  and ],1[ Ttkt +∈+  is the first to be non-zero, which implies that 
there are no departures between period t+1 and t+k (unless  1+ty ), then the stock at customer 
site will be non-zero between these two periods. Let +− Γ∪Γ=Γ  be a cycle such that: 

 
)1,...,,1(

)1,1,...,1,(
1

11

kttt

ktkttt

DDU
UAAA

+++

++++−

=Γ

=Γ
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Given that there are no departures between period t+1 and t+k (unless  1+ty ), and that 
01 ≠+ktu , it follows that all arcs of path )1,,...,1,( 11 ktkttt UAAA ++++− =Γ  are non-

zero⇒ 0)]()([ >−−Γ
ubufMin and 

thus { } 0)]()([;)]()([ >−−= +− Γ∈Γ∈
ufucMinubufMinMin

uu
γ . 

Given that ∑∑ −+ Γ∈Γ∈
+×=<×+=

u
tr
u

st
au

st
d

tr
u CCkuaCkCua )()( , this is absurd. Therefore, in 

this case the inequality ))1(,0max( 11 tttt az δδ +−> ++  is impossible. 
2nd sub-case :  if 0≠+lty for ],2[ Ttlt +∈+ is the first to be non-zero, then there are no 
departures from the customer site between periods t+2 and t+l. Let +− Γ∪Γ=Γ  be a cycle 
such that  

),,...,1,(
),,...,1,(

11

11

ltlttt

ltlttt

ZDDY
YAAZ

+++++

++++−

=Γ

=Γ
 

On the path ),,...,1,( 11 ltlttt YAAZ ++++− =Γ  there are no zero arcs, i.e. 0)]()([ >−−Γ
ubufMin  

and since 0)]()([ >−+Γ
ufucMin , it follows that 

{ } 0)]()([;)]()([ >−−= +− Γ∈Γ∈
ufucMinubufMinMin

uu
γ .  

Given that ∑∑ −+ Γ∈Γ∈
+×−+=<+×−+=

u
tr
y

st
a

tr
zu

tr
z

st
d

tr
y CClCuaCClCua )1()()1()( , this is 

absurd and consequently ))1(,0max( 11 tttt az δδ +−> ++  is also impossible in this case. 
2nd case: if all ktu +1 and kty + are zero for Tkt ≤+ . Let f be the optimal flow found in this case 
and let 0111 11 >−−+== ++ ttttt uyaa δβ be an integer that is subtracted from the path 

),...,( 1 Tt AA +=Γ and added to ),...,,1(' Ttt DDU=Γ . Calling the obtained flow from this 
transformation f’, the cost variation from this transformation 
is ])()([ st

a
st
d

tr
u CtTCtTC ×−−×−+×β .  Given that a

d
a
d

a
d MtTMNtT >−⇒>− ),max(  and 

that, according to definition 2, st
d

Trst
a CtTCCtT

u
×−+>×− )()(  ⇒  

0))()(( <×−−×−+× st
a

st
d

tr
u CtTCtTCβ this implies that f’ is better than f. Therefore, taking 

))1(,0max( 11 tttt az δδ +−> ++  cannot optimize the flow. 
We have seen that in all cases the inequality ))1(,0max( 11 tttt az δδ +−> ++ ⇒  

))1(,0max( 11 tttt az δδ +−≤ ++ . In addition, ))1(,0max( 11 tttt az δδ +−< ++  is also impossible. 
We have also seen that when 0))1(,0max( 1 =+−+ ttt a δδ  , 1+tz  cannot be negative and that 
when )1())1(,0max( 11 tttttt aa δδδδ +−=+− ++  taking 1+tz  less than )1(1 ttt a δδ +−+  cannot 
satisfy the demand at period t+1. Therefore: 

))1(,0max(
))1(,0max(
))1(,0max( 11

11

11
tttt

tttt

tttt

az
az
az

δδ
δδ

δδ
+−=⇔

⎪⎩

⎪
⎨
⎧

+−≤

+−≥ ++

++

++

 

And because 111 +++ =+ ttt yz δ ⇒ ),1min( 11 ++ += tttt ay δδ  
Finally we can summarise this work as follow:  
For all )],max(,0[ a

d
a
d MNTt −∈  

))1(,0max( 11 −− +−= tttt az δδ  
),1min( 11 tttt ay δδ −− +=  

))(max1,0max(1
],1[

kt
Nk

ttt
a
d

au +
∈

−+= δδ  
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 and for all t  
ttx δ=  

011 == tt zy  

0=tu  
5. Interpretation and Discussion   

In our case, the supplier site has the largest storage cost. We have seen that storage at 
the supplier site should be avoided. This is obvious; in fact there is no interest in sending 
empty containers for storage at the supplier site, neither from the customer site nor the depot 
site. Keeping empty containers and sending them as needed is better then sending them before 
they are needed and suffering the additional costs involved. Concerning movement between 
the customer and the depot; at the end of each period there are always deliveries of loaded 
containers from supplier site tδ . After they have been emptied the customer is able to return 
them to the best place for storage. Although the depot has the lowest storage cost, we have 
seen that the quantity sent from the customer, to the depot in each period is different to the 
total quantity in customer possession ( tta δ+1 ). In fact, the decision of how many containers 
to send from the customer site to the depot must not only take into account the different 
storage costs but also the different transportation costs. The transportation cost from the 
customer to the supplier Tr

y
C  the transportation cost from the customer to the depot and the 

transportation cost from the depot to the supplier )( TrTr
zu

CC +  must all be taken into 
consideration. At the customer site, the system holds a quantity exactly equal to the maximum 
demand on the horizon of the next a

dN  periods for direct use (in the case when the entries 
( tta δ+1 ) are greater than maximum demand). This is because if we send a quantity to the 
depot such that the remaining stock becomes )(max

],1[
kt

Nk
t

a
d

a +
∈

< δ  we will be obliged to 

reuse it in the interval ],[ a
dNtt +  and since Trst

d
TrTrst

a zuy
CCiCCCi +×+<+×  for all a

dNi ≤ , 
this transportation will cost more than storage. Similarly, if we keep a quantity more 
than )(max

],1[
kt

Nk a
d

+
∈

δ , it will not be used in the interval ],[ a
dNtt +  and storage costs may 

outweigh the transportation costs of sending it to the depot; Trst
d

TrTrst
a zuy

CCjCCCj +×+>+×  

for all a
dNj > . Thus, the system sends only the surplus of containers compared to 

)(max
],1[

kt
Nk a

d

+
∈

δ  to the depot. 

In order to satisfy the demand for empty containers at the supplier site, the system always uses 
the customer inventory first and uses depot inventory to make up any shortfall. This is 
because if we use the depot inventory such that { })1(,0max 1 tttt az δδ +−> +  this entails that  

{ }tttt ay δδ ,1min 11 −− +<  (given that ttt zy δ=+ ); in other words, we will obtain a surplus at 
the customer site which will create additional costs. 
6. Conclusion 
Throughout this paper we have demonstrated that in this cost configuration ( st

b
st
a

st
d CCC << ) 

a simple recurring formula solves the model. This result can be extended to other 
configurations costs such as: 

• the supplier has the lowest cost followed by the depot ( st
a

st
b

st
d CCC << ). 

• the customer site has the lowest cost independently from whether the depot or the 
supplier has the second lowest cost. 

• the supplier site has the lowest cost, independently from whether the depot or the 
customer has the second lowest cost.  
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The same reasoning can be applied to each of these situations. This shows that the problem 
can be divided into four categories and easily understood.  
This result is important for two reasons.  Firstly, it simplifies the resolution of the container 
management problem. Secondly, it permits greater understanding of system behaviour and 
facilitates the interpretation of all movements. This can help us understand other situations, 
such as when there are several customer sites, depots and supplier sites. In addition, this new 
resolution method opens new horizons for the treatment of other problems related to flow 
optimization, such as system container dimensioning and container purchasing policies. The 
last two problems have been examined for certain particular cases. The cases have only 
looked at one site systems and have neglected the different movements in the transportation 
network flow (D.J. Buchanan and Abad, 1998). It is our intention in future studies to 
investigate this problem from the global aspect and demonstrate possible simplifications.  
 
References 
 
Chan, F. T. S., Chan, H. K., and Choy, K. L., 2005.  A systematic approach to manufacturing 

packaging logistics 
The International Journal of Advanced Manufacturing Technology, 29, 47-57. 
Chan, H. K., 2007.  A pro-active and collaborative approach to reverse logistics&mdash;a 

case study. Production Planning &amp; Control, 18(4), 350 - 360. 
D.J. Buchanan, and Abad, P. L., 1998.  Optimal policy for a periodic review returnable 

inventory system. IIE Transactions, 30, 1049-1055. 
D.Saphire. 1994. Delivering the Goods Benefits of Reusable Shipping Containers. Inform. 
ED Castillo, and Cochran, J., 1996.  Optimal short horizon distribution operations in reusable 

container systems. The Journal of the Operational Research Society, 47, 48-60. 
Eelco de Jong, Mark van den Hil, Marcel van Nederpelt, Joris VandenBerghe, and Jörg 

Köster. 2004. Making Waves : RFID Adoption in Returnable Packaging. Logicacmg. 
Logicacmg. 

Erera Alan L, Morales Juan C, and Savelsbergh Martin, 2005a.  Global intermodal tank 
container management for the chemical industry. Transportation Research Part E: 
Logistics and Transportation Review, 41(6), 551-566. 

Erera Alan L, Morales Juan C, and Savelsbergh Martin. 2005b. "Robust Optimization for 
Empty Repositioning Problems." The logistics institute Georgia Institute of 
Technology School of Industrial and Systems Engineering Atlanta. 

Gassel, and F.J.M., v. 1998. Returnable packaging for non-specific building materials. in de 
proceedings van het CIB World Building Congress at Gävle,  Sweden, 865 - 870. 

González-Torre, P. L., Adenso-Díaz, B., and Artiba, H., 2004.  Environmental and reverse 
logistics policies in European bottling and packaging firms. International Journal of 
Production Economics, 88(1), 95-104. 

I. A. Karimi, M. Sharafali, and H. Mahalingam, 2005.  Scheduling tank container movements 
for chemical logistics. AIChE Journal, 51(1), 178-197. 

Leo Kroon, and Gaby Vrijens, 1995.  Returnable containers: an example of reverse logistics. 
International Journal of Physical Distribution & Logistics Management, 25(2), 56-68. 

Lerpong Jarupan, Sagar V. Kamarthi, and Gupta, S. M., 2003.  Evaluation of Trade-offs in 
Costs and Environmental Impacts for Returnable Packaging Implementation. Dept. of 
Mechanical, Industrial and Manufacturing Engineering. 

M.Kärkkäinen, T.Ala-risku, and M.Herold. 2004. Managing the rotation of reusable transport 
packaging a multiple case study. the Thirteenth International Working Seminar on 
Production Economics,Igls/Innsbruck. 



 25

Martin, D., 1996.  Costing Structures of Reusable Packaging Systems. Packaging Technology 
and Science, 9(5), 237-254. 

Orbis. 2004. Why Reusables? Using Plastic Reusable Packaging to Optimize Your Supply 
Chain. ORBIS Corporation. 

S. Paul Singh, Vanee Chonhenchob, and Jagjit Singh, 2006a.  Life cycle inventory and 
analysis of re-usable plastic containers and display-ready corrugated containers used 
for packaging fresh fruits and vegetables. Packaging Technology and Science, 19(5), 
279-293. 

Stopwaste, and RPA. 2008. A cost comparison model for Reusable Transport Packaging. 
 
 
 


