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Designing Self-Synchronizing Stream Ciphers with
Flat Dynamical Systems

G. Millérioux, P. Guillot, J.M. Amigó, and J. Daafouz

Abstract—In this paper, we present properties of dynamical
systems and their use for cryptographical applications. In par-
ticular, we study the relationship with the self-synchronizing
stream ciphers from a structural point of view. A special class
of dynamical systems, namely the piecewise linear systems, are
then considered.

I. I

The main objective of the paper is to show how dynamical
systems can be used for cryptographical applications,
in particular for the design of self-synchronizing stream
ciphers. The reasoning is based on structural characterization
of dynamical systems which confer to them special
synchronization properties. And yet, synchronization issues
are of special importance. Indeed, in a stream cipher
cryptographic setup, the correspondents generate the same
key stream to hide the message and this requires perfect
synchronization. The advantage of self-synchronizing stream
cipher lies in that the receiver automatically recovers the
synchronization only from the cipher text. These ciphers have
been studied, for example, in [1] or [2].

The paper is organized as follows. In Sect. II, three
important notions related to dynamical systems borrowed
from control theory are presented: relative degree, invertibility
and flatness. In Sect. III, a connection is established between
ciphers defined by flat piecewise linear dynamical systems and
self-synchronizing stream ciphers. In Sect. IV, an example of
construction of self-synchronizing stream ciphers based on
flat dynamical systems is provided.

II. D 

A. Basic definition

Definition 1: A dynamical system is a 5-tuple D =

(A, B, S , f , h) where

1) A is the input alphabet, which is a finite set of input
symbols denoted at at the discrete time t;

2) B is the output alphabet, which is a finite set of output
symbols denoted bt at the discrete time t;

3) S is the finite set of internal states denoted st at the
discrete time t;
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4) f : S × A −→ S is the next-state function. Given an
input at ∈ A and a state st ∈ S , the state vector a time
t + 1 reads:

st+1 = f (st, at) (1)

5) h : S × A −→ B is the output function. Given an input
at ∈ A and a state st ∈ S , the output symbol reads:

bt = h(st, at) (2)

The internal state st+i ∈ S at time t + i depends on the state
st ∈ S and on the sequence of i input symbols at · · ·at+i−1 ∈ Ai,
by means of the so called i-order iterated next-state function,
f (i) : S × Ai −→ S , defined for i ≥ 1 and recursively obeying
for t ≥ 0
{

f (1)(st, at) = f (st, at)
f (i+1)(st, at · · · at+i) = f

(

f (i)(st, at · · · at+i−1), at+i

)

for i ≥ 1

Similarly, the output symbol bt+i at time t + i depends on
the state st ∈ S and on the sequence of i + 1 input symbols
at · · · at+i ∈ Ai+1, by means of the so-called i-order iterated
output function h(i) : S × Ai+1 −→ B, defined for i ≥ 0 and
recursively obeying for t ≥ 0
{

h(0)(st, at) = h(st, at)
h(i)(st, at . . . at+i) = h

(

f (i)(st, at · · · at+i−1), at+i

)

for i ≥ 1,

When D corresponds to a physical process model, all
the variables, namely the input, the output and the state
belong usually to a continuum. When the variables belong
to finite cardinality sets, the dynamical systems reduce to
finite-state automata which are also known as Mealy or
Moore machines. The next subsections are devoted to the
presentation of three important properties related to those
systems and borrowed from the automatic control theory:
relative degree, left invertibility and flatness. It will be
shown in Sect. III that considering the three aforementioned
properties is of special interest for cryptographic purposes.
Indeed, for ciphering applications, such dynamical systems
may be used to transform a plaintext a into a cryptogram b.
The secret element that parameterizes the encryption process
may be either the next-state function or the output function, or
any combination of those two parameters. For the decryption,
a device achieving the inversion is required.

B. Relative degree

Definition 2: The relative degree of the dynamical system
D is the quantity equaling
• 0 if ∃st ∈ S ,∃at, a′t ∈ A s.t. h(st, at) , h(st, a′t)
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• r if for any sequence at+i · · ·at+r (i > 0) of input symbols

∃st ∈ S , ∃at, a
′
t ∈ A s.t.

h(r)(st, atat+1 · · · at+r) , h(r)(st, a
′
ta
′
t+1 · · · a

′
t+r)

In other words, the relative degree of the dynamical system
D is the minimum number of iterations such that the output
at time t + r is influenced by the input at time t and

• if the relative degree r of D equals zero, there exists a
state st ∈ S and two distinct input symbols at ∈ A and
a′t ∈ A that lead to different values of the output

• if the relative degree is r > 0, then for i < r, the iterated
output function h(i) only depends on st while for i ≥ r,
it depends both on st and on the sequence of i − r + 1
input symbols at · · ·at+i−r. In particular, for i = r, the
iterated output function depends both on at and on st,
that is, there exists a state st ∈ S and two distinct input
symbols at ∈ A and a′t ∈ A that lead to different values of
the output, for any sequence at+i · · · at+r of input symbols.

Consequently, for r > 0, the r-order output function h(r)

may be considered as a function over S × A and thereby one
has for r ≥ 0:

bt+r = h(r)(st, at) (3)

Remark 1: We do not consider the case when r may depend
on a. Hereafter, the relative degree will be thereby considered
as an intrinsic parameter of D

As a result, if a dynamical system D = (A, B, S , f , h) has
a relative degree equal to r, then the dynamical system D′ =
(A, B, S , f , h(r)) is equivalent to D in the sense that it has the
same behavior as D provided that the first r output symbols
are ignored. The block diagram of D is depicted on Figure 1.

st

at

f

h(r) bt+r

Fig. 1. Block diagram of D

In the cryptographic context, the advantage of a relative
degree r > 0 lies in that it can be expected that the
cryptographic complexity of the cipher increases while the
computational complexity does not since h(r) results from
recursive operations.

C. Left invertibility

The invertibility property is obviously required in cryptogra-
phy. For a given encryption dynamical system DE , there must
exist a decryption oneDD that recovers efficiently the plaintext
from the cryptogram. Let us mention that it is not mandatory
to recover all the plain text. It may be acceptable to recover
the plain text only after a finite number of synchronization
symbols. More precisely, if a dynamical system is used for
ciphering, then the receiver must be able to recover the plain

text a from the cipher text b. From the dynamical system
theory, it implies the so-called left invertibility.

Definition 3: The dynamical system D is left invertible if
there exists a nonnegative integer R < ∞, called inherent delay,
such that for any two inputs at ∈ A and a′t ∈ A the following
implication holds:

∀st ∈ S
h(0)(st, at) · · ·h(R)(st, at · · · at+R) = h(0)(st, a′t) · · · h

(R)(st, a′t · · · a
′
t+R)

⇒ at = a′t
(4)

The left invertibility property means that the input at is
uniquely determined by the knowledge of the state st and of
the output sequence bt, . . . , bt+R.

When left invertible,D admits an inverse dynamical system
D−1 which is generically defined as the 5−tuple D−1 =

(B, A, S R, f ′, h′) where
1) B is the input alphabet of D−1, which is the output

alphabet of D;
2) A is the output alphabet of D−1, which is the input

alphabet of D;
3) S R = S × BR is the finite set of internal states, consti-

tuted of both the state st ∈ S and the input sequence
bt, . . . , bt+R−1.

4) f ′ : S R × B −→ S R is the inverse next-state function.
Given an output sequence b ∈ BR+1 and s′t ∈ S , the state
obeys the following dynamics:

(s′t+R+1, bt+1 · · ·bt+R) = f ′(s′t+R, bt · · ·bt+R−1, bt+R)

By construction of the inverse next-function, the internal
states st of the transmitter and the S−component s′t of
the internal state of the receiverD−1 fulfill s′t+t0+R = st+t0
for all t ≥ 0 if s′t0+R = st0 .

5) h′ : S R × B −→ A is the inverse output function. Given
an output sequence b ∈ BR+1 and s′t ∈ S one has:

h′(s′t+R, bt · · · bt+R−1, bt+R) = a′t+R = at if s′t+R = st

In other words, the inversion is correctly performed with
a delay R provided that the sequences (st) and (s′t) are
synchronized at both ends.

The next-state i−order iterated inverse function is defined
for i ≥ 1 by f ′(i) : S R × Bi −→ S and recursively obeys for
t ≥ 0






















f ′(1)(s′t+R, bt · · ·bt+R−1, bt+R) = f ′(s′t+R, bt · · · bt+R−1, bt+R)
f ′(i+1)(s′t+R, bt · · ·bt+R−1, bt+R · · ·bt+R+i)
= f ′
(

f
′(i)(s′t+R, bt · · ·bt+R−1, bt+R · · ·bt+R+i−1), bt+R+i

)

The i−order iterated inverse next-function has the
property that the internal states st of the transmitter and the
S−component s′t of the internal state of the receiver fulfill
s′t+R+i+1 = f ′(i+1)(s′t+R, bt · · ·bt+R−1, bt+R · · · bt+R+i) = st+i+1 for
all i ≥ 0 if s′t+R = st and s′t+t0+R+i = st+t0+i for all t ≥ 0 if
s′t0+R+i = st0+i.

Remark 2: Hereafter it will be assumed that the inherent
delay and the relative degree coincide, that is R = r. The class
of dynamical systems for which such an assumption holds can
be easily characterized.
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We assume now that the input alphabet A equals the output
alphabet B, and that the information is included in a substring
of the input sequence. If so, the invertibility property means
that for any internal state st ∈ S , the map

hst :
A −→ A
at 7−→ h(r)(st, at)

is a permutation, where r ≥ 0 is the relative degree of D.
The output function h(r) may be considered as a family of
permutations, indexed by the set S of the internal states, or
at least by a subset.

In the binary case, one has A = B = {0, 1}. The
only permutations are identity and inversion. Thus
the output function h(r) may be always expressed as
h(r)(st, at) = at ⊕ h1(st), where h1 is a map S −→ {0, 1} and
where ⊕ denotes the modulo 2 addition on the 2-element
field. In the general (non-binary) case, the output function
h(r) is expressed as h(r)(st, at) = σh1(st)(at), where (σp)p∈P is a
family of permutations on A indexed by a subset P of S .

D. Flatness

Definition 4: An output for D is said to be flat if all system
variables of D can be expressed as a function of bt and a finite
number of its forward/backward iterates. In particular, there
exists a function F and integers t1 < t2 such that

st = F (bt+t1 , · · · , bt+t2) (5)

Definition 5: The dynamical system D is said to be flat if
it admits a flat output.

We define the flatness characteristic number as the quantity
d = t2 − t1 + 1.

A necessary condition for flatness is left invertibility. If the
system is flat, then there exist at least two ways for obtaining
the function F and so the relation (5): direct and recursive.
The first solution is based on the elimination of the state st in
equations ( 1) and (3). A second solution consists in resorting
to the next-state iterated inverse function f ′(i) : S R×Bi −→ S .
Indeed, assume that there exists an integer I such that f ′(I+1)

does no longer depend on the state s′t+R. Hence, the following
equalities apply

f ′(I+1)(s′t+R, bt · · · bt+R−1, bt+R · · · bt+R+I)
= f ′(I+1)(st, bt · · · bt+R−1, bt+R · · · bt+R+I)
= st+I+1

After performing the change of variable t → t− I−1, the state
reads

st = f ′(I+1)(∗, bt−I−1 · · · bt+R−1). (6)

where * stands for a dummy variable since f ′(I+1) does no
longer depend on and is only a function F of bt−I−1 · · · bt+R−1.
Hence, Eq. (6) gives explicitly the function F , the bounds
t1 = −I − 1, t2 = R − 1 and the flatness characteristic number
d = R + I + 1. The existence of I is guaranteed if the system
D is flat. Let us notice that it might be more convenient from
a computational point of view to iterate the inverse next-state
function rather than resorting to the function F itself.

III. T   -  

Assume that the dynamical system D has bounded relative
degree r and that it is flat with a flatness characteristic number
d. If so, the following claims apply:

• there exists a function h(r), such that bt+r = h(r)(st, at)
depends both on st and at

• the state st of D can always be expressed as a function of
the output and this function reads st = F (bt+t1 , · · · , bt+t2 ).
The flatness property expresses the fact that the re-
ceiver may synchronize his internal state automatically,
without any other information but the cipher text. This
corresponds exactly to the so-called self-synchronizing
stream cipher. The synchronization delay of the cipher is
d = t2 − t1 + 1 = R + I + 1

As a result, if these conditions are fulfilled, the dynamical
system D acts as a self-synchronizing stream cipher with the
canonical representation given on Figure 2. Since the principle
is based upon the embedding of the input a into the dynamics
f , it will be called Self-synchronizing Message-Embedded
Stream Cipher.

h(r)(st, at)at

Fst

bt+r

Fig. 2. Self-synchronizing Message-Embedded Stream Cipher

The security of such a canonical self-synchronizing stream
cipher is insured as long as the permutation hst , when A = B,
cannot be distinguished from a random choice in the set of
all permutations.

In practice, the actual synchronization delay of self-
synchronizing stream ciphers is the number of symbols re-
quired for the receiver to recover the same internal state as the
transmitter. It is usual to define a statistical synchronization de-
lay as a random variable Ds that is a delay of synchronization
regarding the input sequence (bt) and the receiver internal state
s′t as random variables. A self-synchronizing stream cipher is
said to have statistical synchronization delay if the probability
that Ds > D0 decreases as D0 grows to infinity. And yet,
as previously pointed out, the synchronization delay of the
proposed cipher obtained from D is d = R + I + 1. As a
result, for designing a self-synchronizing stream cipher with
statistical synchronization delay, the quantities R = r and/or
I must depend on (bt) and/or s′t . Regarding cryptographic
applications, it may be expected to bring in more complex
dynamic.

IV. S- -  


In this section, an example of construction of self-
synchronizing stream cipher based on flat dynamical systems
involving piecewise linear nonlinearities is provided. The
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flatness condition is expressed in terms of algebraic conditions
(see [3] for details). Let F be a finite field. All along this
section, the input and output alphabets are A = F and B = F.
The internal state is the n dimensional vector space over F.

Switched linear systems denoted Ds are of the form

{

f (st, at) = st+1 = Mσ(t) st + vσ(t)at

h(st, at) = bt = Cσ(t) st + Dσ(t)at
(7)

All the matrices, namely Mσ(s) ∈ F
n×n, vσ(s) ∈ F

n×1, Cσ(s) ∈

F
1×n and Dσ(s) ∈ F belong to the respective finite sets of

matrices {M j}1≤ j≤J , {v j}1≤ j≤J , {C j}1≤ j≤J and {D j}1≤ j≤J . The
index j corresponds to the discrete mode of the system and
results from a switching function σ : t 7→ j = σ(t) ∈ {1, . . . , J}.

A. Structural consideration

1) Relative degree: We are checking for an algebraic inter-
pretation of the relative degree for the switched linear system
(7) in terms of its state space description matrices. To this end,
we must write down the expression of bt+i by iterating (7)

bt+i = Cσ(t+i) M
σ(t+i−1)
σ(t) st +

j=i
∑

j=0

T
i, j
σ(t)at+ j (8)

with

T
i, j
σ(t) = Cσ(t+i) M

σ(t+i−1)
σ(t+ j+1)vσ(t+ j) if j ≤ i − 1, T i,i

σ(t) = Dσ(t+i) (9)

and with the transition matrix defined as the product of
matrices

Mσ(t1 )
σ(t0) = Mσ(t1) Mσ(t1−1) . . .Mσ(t0) if t1 ≥ t0

= 1n if t1 < t0

where 1n stands for the identity matrix of dimension n.

By virtue of (8) and the Definition 2, the following
Proposition applies

Proposition 1: The relative degree r of Ds is

• 0 if for all t ≥ 0, T 0,0
σ(t) , 0;

• the least integer r < ∞ such that, for all t ≥ 0

T
i, j
σ(t) = 0 for i = 0, . . . , r − 1 and j = 0, . . . , i
T

r,0
σ(t) , 0

(10)

When (7) has a finite relative degree r ≥ 0, its output reads
at time t + r:

bt+r = Cσ(t+r) M
σ(t+r−1)
σ(t) st + T

r,0
σ(t)at (11)

which defines the function h(r) of (3).

2) Left invertibility: If Ds has a finite relative degree r, the
expression of the input at is unique and can be deduced from
(11):

at = (T r,0
σ(t))

−1(bt+r −Cσ(t+r) M
σ(t+r−1)
σ(t) st) (12)

since the existence of the inverse of T r,0
σ(t) is guaranteed. As a

result, the following Proposition applies:

Proposition 2: if Ds has a finite relative degree r, it is left
invertible with R = r

In other words, if Ds has a finite relative degree r, the
relative degree r of Ds and its inherent delay R are coincident.

3) Next-state iterated inverse function:
Proposition 3: The next-state iterated inverse function of
Ds is defined for i ≥ 1 by f ′(i) : S × Bi −→ S recursively
obeying for t ≥ 0







































s′t+R+1 = f ′(1)(s′t+R, bt+R) = Pσ(t) s′t+R + Qσ(t)bt+R

s′t+R+i+1 = f ′(i+1)(s′t+R, bt+R · · · bt+R+i) =
Pσ(t+i) · · ·Pσ(t) s′t+R + Pσ(t+i) · · ·Pσ(t+1)Qσ(t)bt+R+

Pσ(t+i) · · ·Pσ(t+2)Qσ(t+1)bt+R+1 + · · ·+

Pσ(t+i)Qσ(t+i−1)bt+R+i−1 + Qσ(t+i)bt+R+i

(13)

with

Pσ(t) = Mσ(t) − vσ(t)(T
r,0
σ(t))

−1Cσ(t+r) M
σ(t+r−1)
σ(t) (14)

and

Qσ(t) = vσ(t)(T
r,0
σ(t))

−1 (15)

Proof: On one hand, substituting (11) into (13) and taking
into account that r = R yields:

f ′(1)(s′t+R, bt+R) = s′t+R+1
= Pσ(t) s′t+R+

vσ(t)(T
R,0
σ(t))

−1Cσ(t+R) M
σ(t+R−1)
σ(t) st+

vσ(t)(T
R,0
σ(t))

−1T
R,0
σ(t)at

(16)

Taking into account (14) and noticing that (T R,0
σ(k))

−1T
R,0
σ(k) =

1, if s′t+R = st then:

s′t+R+1 := Mσ(t) s′t+R + vσ(t)at = Mσ(t) st + vσ(t)at (17)

Hence, s′t+i+R+1 = f ′(i+1)(s′t+R, bt+R · · · bt+R+i) = st+i+1 for all
t ≥ 0, which is the definition of the iterated inverse next-
function.

Proposition 4: The inverse output function h′ : S×B −→ A
is given by

a′t+R = h′(s′t+R, bt+R) = (T R,0
σ(t))

−1(bt+R −Cσ(t+R) M
σ(t+R−1)
σ(t) s′t+R)

(18)
Proof: The proof is immediate since by letting s′t+R = st

in (18), the comparison with (12) yields a′t+R = at.
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4) Flatness: We now derive an algebraic interpretation of
flat outputs for (7).

Proposition 5: The output of (7) assumed to be left invert-
ible, is a flat output if there exists a positive integer I < ∞
such that for all t ≥ 0

Pσ(t+I) · · ·Pσ(t) = 0 (19)

where 0 stands for the null matrix.

Proof: Take into account the next-iterated inverse function
(13). Assume that there exists an integer I such that (19) is
fulfilled. Thus s′t+R+I+1 = st+I+1 does no longer depend on the
state s′t+R but on a finite number of forward/backward iterated
output bt of Ds. Thus, according to Definition 4, b is a flat
output.

5) Self-synchronous stream ciphers flatness-based design:
Let P be the sets of possible matrices Pσ(t+I) · · ·Pσ(t).

Proposition 6: The system Ds is a self-synchronizing
stream cipher if the two following conditions are satisfied:

1) The product P j1 · · ·P jI of any I matrices belonging to
the set P equals the null matrix.

2) The switching function σ is self-synchronizing, that is,
it must only depend on a subsequence of (bt).

The synchronization delay is bounded by I. When the
probability that the product of I factors P j1 · · ·P jI equals
the zero matrix grows to 1 as I grows to infinity, then the
synchronization delay is statistically bounded.

The construction of a self-synchronizing switching function
can follow the scheme of the canonical flat dynamical
systems. The construction of flat dynamical systems can be
extended to dynamical systems with non-linear transitions.

B. Behavioral consideration

We have seen in Sect. II-C that when, as usual, the
input alphabet A and the output alphabet B are the same,
the output functions h(r)

st
: at 7→ h(r)(st, at) are a family

of permutations of A, parameterized by the internal states
st. One of the techniques used to design permutations (and
pseudo-random sequences) for cryptographical applications is
the discretization of chaotic maps (see e.g. [4]). Let X be
a compact metrical space (like an n-dimensional interval or
an n-torus) and f : X → X a map. Roughly speaking,
we say that the dynamical system (X, f ) generated by the
iterates f n = f ◦ f n−1( f 0 = identity) is chaotic if the orbits
{ f n(x) : n ∈ N} have random-like properties for ‘typical’
choices of x ∈ X (see [5] for a formal definition of chaos).
For cryptographic purposes, we take advantage of the ergodic
properties of dynamical systems.

The intuition that permutations may have different diffusion
and mixing properties have been embodied in an approach
called discrete chaos, whose theoretical framework was
presented in [6]. The main tool of discrete chaos is the

discrete Lyapunov Exponent.

Any discrete approximation of a chaotic system (X, f ) in
form of a permutation FM : {0, 1, ...,M− 1} → {0, 1, ...,M− 1}
is called a chaotic cryptographic primitive. Examples of
chaotic primitives include the finite-state tent map, the
finite-state Chebyshev map and the finite-state n-dimensional
torus automorphisms. Affine transformations on the n-torus in
chaos synchronization-based cryptography have been studied
in [7]. These maps have the nice property that the precision
of the initial point does not degrade along its orbit. See [8]
for a general view of digital chaotic cryptography.

V. C

In this paper, self-synchronizing architectures coming from
the study of nonlinear dynamics and discrete-time control
theory have been presented with the aim of designing devices
for cryptographical applications. We have presented three
notions related to dynamical systems, namely relative degree,
invertibility and flatness. We have shown that insofar as a
dynamical system has a finite relative degree, is left invertible
and flat, it may act as self-synchronizing stream cipher. That
may open some new perspectives for construction of such
ciphers.
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