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Fonctions Booléennes : Cryptographie & Applications

FLAT DYNAMICAL SYSTEMS AND
SELF-SYNCHRONIZING STREAM CIPHERS

G. Millérioux1, P. Guillot2, J. M. Amigó3 and J. Daafouz4

Abstract. In this paper, we present properties of dynamical sys-
tems and their use for cryptographical applications. In particular,
we study the relationship with the self-synchronizing stream ci-
phers from a structural point of view. Finally a framework involv-
ing discrete Lyapunov exponents and Walsh transform is sketched
to characterize the dynamical behaviors.

1. Introduction

The main objective of the paper is to show how dynamical sys-
tems can be used for cryptographical applications, in particular for the
design of self-synchronizing stream ciphers. The reasoning is based
on structural characterization of dynamical systems which confer to
them special synchronization properties. And yet, synchronization is-
sues are of special importance. Indeed, in a stream cipher cryptographic
setup, the correspondents generate the same key stream to hide the mes-
sage and this requires perfect synchronization. The advantage of self-
synchronizing stream cipher lies in that the receiver automatically re-
covers the synchronization only from the cipher text. These ciphers
have been studied, for example, in [6]. Recall also that block ciphers
can be operated in a self-synchronizing (so-called CFB) mode.
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The paper is organized as follows. In Sect. 2, three important no-
tions related to dynamical systems borrowed from control theory are
presented: relative degree, invertibility and flatness. In Sect. 3, a con-
nection is established between ciphers defined by flat dynamical systems
and self-synchronizing stream ciphers. In Sect. 4, two examples of con-
struction of self-synchronizing stream ciphers based on flat dynamical
systems are provided. Finally, in Sect.5 and Sect.6, a framework in-
volving discrete Lyapunov exponents and Walsh transform is provided
to characterize the dynamical behaviors of the proposed ciphers.

2. Dynamical systems

2.1. Basic definition

The dynamical systems considered here are discrete-time ones. Their
behavior depends on the internal state and the input values. They pro-
duce an output signal. A formal definition is given below.

Definition 2.1. A dynamical system is a 5-tuple D = (A, B, S , f , h)
where

(1) A is the input alphabet, which is a finite set of input symbols
denoted at at the discrete time t;

(2) B is the output alphabet, which is a finite set of output symbols
denoted bt at the discrete time t;

(3) S is the finite set of internal states denoted st at the discrete time
t;

(4) f : S × A −→ S is the next-state function. Given an input
at ∈ A and a state st ∈ S , the state vector a time t + 1 reads:

st+1 = f (st, at) (1)

(5) h : S × A −→ B is the output function. Given an input at ∈ A
and a state st ∈ S , the output symbol reads:

bt = h(st, at) (2)

The sequence (bt) produced by the dynamical system D is com-
pletely defined by the initial internal state s0 and by the input sequence
(at) of symbols at.

The internal state st+i ∈ S at time t + i depends on the state st ∈ S
and on the sequence of i input symbols at · · · at+i−1 ∈ Ai, by means of
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the so called i-order iterated next-state function, f (i) : S × Ai −→ S ,
defined for i ≥ 1 and recursively obeying for t ≥ 0

{

f (1)(st, at) = f (st, at)
f (i+1)(st, at · · · at+i) = f

(

f (i)(st, at · · · at+i−1), at+i
)

for i ≥ 1

Similarly, the output symbol bt+i at time t+i depends on the state st ∈

S and on the sequence of i+1 input symbols at · · · at+i ∈ Ai+1, by means
of the so-called i-order iterated output function h(i) : S × Ai+1 −→ B,
defined for i ≥ 0 and recursively obeying for t ≥ 0

{

h(0)(st, at) = h(st, at)
h(i)(st, at . . . at+i) = h

(

f (i)(st, at · · · at+i−1), at+i
)

for i ≥ 1,

When such a system corresponds to a physical process model, all the
variables, namely the input, the output and the state belong to a contin-
uum. When the variables belong to finite cardinality sets, the dynamical
systems reduce to finite-state automata which are also known as Mealy
or Moore machines. The next subsections are devoted to the presenta-
tion of three important properties related to those systems and borrowed
from the automatic control theory: relative degree, left invertibility and
flatness. It will be shown in Sect. 3 that considering the three above-
mentioned properties is of special interest for cryptographic purposes.
Indeed, for ciphering applications, such dynamical systems may be used
to transform a plaintext a into a cryptogram b. The secret element that
parameterizes the encryption process may be either the next-state func-
tion or the output function, or any combination of those two parameters.
For the decryption, a device achieving the inversion is required.

2.2. Relative degree

Definition 2.2. The relative degree of the dynamical system D is the
quantity equalling

• 0 if ∃st ∈ S , ∃at , a′t ∈ A h(st, at) , h(st , a′t )
• r if for any sequence at+i · · · at+r (i > 0) of input symbols

∃st ∈ S , ∃at, a
′
t ∈ A h(r)(st, atat+1 · · · at+r) , h(r)(st, a

′
t a
′
t+1 · · · a

′
t+r)

In other words, the relative degree of the dynamical system D is
the minimum number of iterations such that the output at time t + r is
influenced by the input at time t and
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• if the relative degree r of D equals zero, there exists a state
st ∈ S and two distinct input symbols at ∈ A and a′t ∈ A that
lead to different values of the output
• if the relative degree is r > 0, then for i < r, the iterated output

function h(i) only depends on st while for i ≥ r, it depends both
on st and on the sequence of i− r+ 1 input symbols at · · · at+i−r .
In particular, for i = r, the iterated output function depends both
on at and on st, that is, there exists a state st ∈ S and two distinct
input symbols at ∈ A and a′t ∈ A that lead to different values of
the output, for any sequence at+i · · · at+r of input symbols.

Consequently, for r > 0, the r-order output function h(r) may be
considered as a function over S × A and thereby one has for r ≥ 0:

bt+r = h(r)(st, at) (3)

Remark 1. We do not consider the case when r may depend on a. Here-
after, the relative degree will be an intrinsic parameter of D

As a result, if a dynamical system D = (A, B, S , f , h) has a relative
degree equal to r, then the dynamical system D′ = (A, B, S , f , h(r)) is
equivalent toD in the sense that it has the same behavior asD provided
that the first r output symbols are ignored. The block diagram of D is
depicted on Figure 1.

st

at

f

h(r) bt+r

F 1. Block diagram ofD

In the cryptographic context, the advantage of a relative degree r > 0
lies in that it can be expected that the cryptographic complexity of the
cipher increases while the computational complexity does not since h(r)

results from recursive operations.

2.3. Left invertibility

The invertibility property is obviously required in cryptography. For
a given encryption dynamical system DE , there must exist a decryption
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one DD that recovers efficiently the plaintext from the cryptogram. Let
us mention that it is not mandatory to recover all the plain text. It may
be acceptable to recover the plain text only after a finite number of syn-
chronization symbols. More precisely, if a dynamical system is used
for ciphering, then the receiver must be able to recover the plain text a
from the cipher text b. From the dynamical system theory, it implies the
so-called left invertibility.

Definition 2.3. The dynamical system D is left invertible if there exists
a nonnegative integer R < ∞, called inherent delay, such that for any
two inputs at ∈ A and a′t ∈ A the following implication holds:

∀st ∈ S
h(0)(st, at) · · · h(R)(st, at · · · at+R) = h(0)(st, a′t ) · · · h

(R)(st, a′t · · · a
′
t+R)

⇒ at = a′t
(4)

The left invertibility property means that the input at is uniquely de-
termined by the knowledge of the state st and of the output sequence
bt, . . . , bt+R.

When left invertible, D admits an inverse dynamical system D−1

which is generically defined as the 5−tuple D−1 = (B, A, S R, f ′, h′)
where

(1) B is the input alphabet of D−1, which is the output alphabet of
D;

(2) A is the output alphabet of D−1, which is the input alphabet of
D;

(3) S R = S × BR is the finite set of internal states, constituted of
both the internal state st ∈ S and the required input sequence
bt, . . . , bt+R−1 to determine symbol at.

(4) f ′ : S R × B −→ S R is the inverse next-state function. Given
an output sequence b ∈ BR+1 and s′t ∈ S , the state obeys the
following dynamics:

(s′t+R+1, bt+1 · · · bt+R) = f ′(s′t+R, bt · · · bt+R−1, bt+R)

By construction of the inverse next-function, the internal states
st of the transmitter and the S−component s′t of the internal state
of the receiver fulfill s′t+t0+R = st+t0 for all t ≥ 0 if s′t0+R = st0 .

(5) h′ : S R × B −→ A is the inverse output function. Given an
output sequence b ∈ BR+1 and s′t ∈ S one has:

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’08
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h′(s′t+R, bt · · · bt+R−1, bt+R) = a′t+R = at if s′t+R = st

In other words, the inversion is correctly performed with a
delay R provided that the sequences (st) and (s′t ) are synchro-
nized at both ends.

Remark 2. Hereafter it will be assumed that the inherent delay and the
relative degree coincide, that is R = r. The class of dynamical systems
for which such an assumption holds can be easily characterized.

We assume now that the input alphabet A equals the output alphabet
B, and that the information is included in a substring of the input se-
quence. If so, the invertibility property means that for any internal state
st ∈ S , the map

hst :
A −→ A
at 7−→ h(r)(st, at)

is a permutation, where r ≥ 0 is the relative degree of D. The output
function h(r) may be considered as a family of permutations, indexed by
the set S of the internal states, or at least by a subset.

In the binary case, one has A = B = {0, 1}. The only permutations
are identity and inversion. Thus the output function h(r) may be always
expressed as h(r)(st, at) = at ⊕ h1(st), where h1 is a map S −→ {0, 1} and
where ⊕ denotes the modulo 2 addition on the 2-element field. Let us
mention that in the general (non-binary) case, the output function h(r) is
expressed as h(r)(st, at) = σh1(st)(at), where (σp)p∈P is a family of per-
mutations on A indexed by a subset P of S .

2.4. Flatness

Definition 2.4. An output for D is said to be flat if all system variables
of D can be expressed as a function of bt and a finite number of its
forward/backward iterates. In particular, there exists a function F and
integers t1 < t2 such that

st = F (bt+t1 , · · · , bt+t2 ) (5)

Definition 2.5. The dynamical system D is said to be flat if it admits a
flat output.

We define the flatness characteristic number as the quantity d = t2 −

t1 + 1.
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A necessary condition for flatness is left invertibility. If the system is
flat, then there exist at least two ways for obtaining the function F and
so the relation (5): direct and recursive. The first solution is based on the
elimination of the state st in equations (1) and (3). A second solution
consists in resorting to the next-state iterated inverse function defined
for i ≥ 1 by f ′(i) : S R × Bi −→ S ′ recursively obeying for t ≥ 0



















f ′(1)(s′t+R, bt · · · bt+R−1, bt+R) = f ′(s′t+R, bt · · · bt+R−1, bt+R)
f ′(i+1)(s′t+R, bt · · · bt+R−1, bt+R · · · bt+R+i)
= f ′
(

f
′(i)(s′t+R, bt · · · bt+R−1, bt+R · · · bt+R+i−1), bt+R+i

)

By construction of the iterated inverse next-function, the internal
states st of the transmitter and the S−component s′t of the internal state
of the receiver fulfill s′t+i+R+1 = f ′(i+1)(s′t+R, bt · · · bt+R−1, bt+R · · · bt+R+i) =
st+i+1 for all t ≥ 0 if s′t+R = st.

Assume that there exists an integer I such that f ′(I+1) does no longer
depend on the state s′t+R. Hence, the following equalities apply

f ′(I+1)(s′t+R, bt · · · bt+R−1, bt+R · · · bt+R+I)
= f ′(I+1)(st, bt · · · bt+R−1, bt+R · · · bt+R+I )
= st+I+1

= f ′(I+1)(0, bt · · · bt+R−1, bt+R · · · bt+R+I)

is always fulfilled. Hence,

st = f ′(I+1)(0, bt−I−1 · · · bt+R−1). (6)

Equation (6) gives explicitly the function F = f ′(I+1), the bounds t1 =
−I − 1, t2 = R − 1 and the flatness characteristic number d = R + I + 1.
The existence of I is guaranteed if the system D is flat.

3. The connection with self-synchronizing stream ciphers

Assume that the dynamical system D has bounded relative degree
r and that it is flat with a flatness characteristic number d. If so, the
following claims apply:

• there exists a function h(r), such that bt+r = h(r)(st, at) depends
both on st and at

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’08



8 G. MILLÉRIOUX, P. GUILLOT, J. M. AMIGÓ, J. DAAFOUZ

• the state st of D can always be expressed as a function of the
output and this function reads st = F (bt+t1 , · · · , bt+t2 ). The flat-
ness property expresses the fact that the receiver may synchro-
nize his internal state automatically, without any other informa-
tion but the cipher text. This corresponds exactly to the so-called
self-synchronizing stream cipher. The synchronization delay of
the cipher is d = t2 − t1 + 1

As a result, if these conditions are fulfilled, the dynamical system D
acts as a self-synchronizing stream cipher with the canonical representa-
tion given on Figure 2. Since the principle is based upon the embedding
of the input a into the dynamics f , it will be called Self-synchronizing
Message-Embedded Stream Cipher.

h(r)(st, at)at

Fst

bt+r

F 2. Self-synchronizing Message-Embedded
Stream Cipher

The inverse of a flat dynamical systemD can always be expressed as
a canonical form defined by

(1) The internal state set S is the set of d−tuple of output symbols :
S = Bd = {(bt−1, · · · , bt−d) | bt−i ∈ B}.

(2) The next-state inverse function is a shift f ′
(

bt, (bt−1, . . . , bt−d)
)

=

(bt, bt−1, . . . , bt−d+1).
(3) The output function is any function h : A × S −→ B such that

h(bt , bt−1, . . . bt−d) = σg(bt−1,...bt−d)(bt), where g(bt−1 , . . . bt−d) is a
function that selects a permutation σi : A −→ B.

The security of such a canonical self-synchronizing stream cipher is
insured as long as the permutation σg(bt−1,...bt−d) defined from the internal
state cannot be distinguished from a random choice in the set of all per-
mutations.

In practice, the actual synchronization delay of self-synchronizing
stream ciphers is the number of symbols required for the receiver to re-
cover the same internal state as the transmitter. It is usual to define a
statistical synchronization delay as a random variable Ds that is a delay

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’08
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of synchronization regarding the input sequence (bt) and the receiver
internal state s′t as random variables. A self-synchronizing stream ci-
pher is said to have statistical synchronization delay if the probability
that Ds > D0 decreases as D0 grows to infinity. And yet, as previously
pointed out, the synchronization delay of the proposed cipher obtained
fromD is d = t2 − t1 + 1. As a result, for designing a self-synchronizing
stream cipher with statistical synchronization delay, the quantities t1

and/or t2 must depend on (bt) and s′t . Regarding cryptographic appli-
cations, it may be expected to bring in more complex dynamic.

4. Self-synchronizing message-embedded stream cipher
construction

In this section, an example of construction of self-synchronizing
stream cipher based on flat dynamical systems involving picewise linear
nonlinearities is provided. The flatness condition is expressed in terms
of algebraic conditions (see [7] for details). Let F be a finite field. All
along this section, the input and output alphabets are A = F and B = F.
The internal state is the n dimensional vector space over F.

We first address the design with linear dynamical systems although
any cryptographic application makes senses when resorting to this class
of systems. The following subsection is only viewed as a prerequisite.

4.1. Flat linear system

A dynamical system is linear if the next-state and the output func-
tions are linear. A linear dynamical system denoted DL can be generi-
cally described by:

{

st+1 = f (st, at) = Mst + vat

bt = h(st , at) = Cst + Dat
(7)

where M ∈ Fn×n, v ∈ Fn×1, C ∈ F1×n and D ∈ F.

In general, the relative degree r of DL coincides with the inherent
delay R. It equals zero if D , 0. If D = 0, then the relative degree is
the minimum number r > 0 such that CAr−1B , 0. It can be shown
that the next-state iterated inverse function ofDL is defined for i ≥ 1 by

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’08
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f ′(i) : S ′ × Bi+1 −→ S ′ recursively obeying for t ≥ 0


















f ′(1)(s′t+R, bt+R) = Ps′t+R + Qbt+R

f ′(i+1)(s′t+R, bt+R · · · bt+R+i) = Pi+1 s′t+R + Qi+1bt+R

+Qibt+R+1 + · · · + Qbt+R+i

where P and Q are some matrices depending on M, v,C and D.

Such a system DL is flat with flat output bt if and only if there exists
an integer I such that the matrix PI+1 is the null matrix, so that f ′(I+1)

does no longer depend on s′t+R. In other words, the matrix P defining
the next-state inverse function must be nilpotent.

4.2. Flat switched linear systems

Switched linear systems denoted Ds are of the form
{

f (st , at) = st+1 = Mσ(t) st + vσ(t)at

h(st , at) = bt = Cσ(t) st + Dσ(t)at
(8)

All the matrices, namely Mσ(s) ∈ F
n×n, vσ(s) ∈ F

n×1, Cσ(s) ∈ F
1×n and

Dσ(s) ∈ F belong to the respective finite sets of matrices {M j}1≤ j≤J ,
{v j}1≤ j≤J , {C j}1≤ j≤J and {D j}1≤ j≤J . The index j corresponds to the dis-
crete mode of the system and results from a switching function σ : t 7→
j = σ(t) ∈ {1, . . . , J}.

It can be shown that the relative degree r of Ds coincides with the
inherent delay R. The relative degree r of Ds is

• r = 0 if for all modes j, Dσ(t) , 0;
• the least integer r < ∞ such that, for all t ≥ 0

T
i, j
σ(t) = 0 for i = 0, . . . , r − 1 and j = 0, . . . , i

T
r,0
σ(t) , 0

(9)

with

T
i, j
σ(t) = Cσ(t+i) M

σ(t+i−1)
σ(t+ j+1)vσ(t+ j) if j ≤ i − 1, T i,i

σ(t) = Dσ(t+i) (10)

and with the transition matrix defined as the product of matrices

Mσ(t1)
σ(t0) = Mσ(t1) Mσ(t1−1) . . .Mσ(t0) if t1 ≥ t0

= 1n if t1 < t0

where 1n stands for the identity matrix of dimension n.

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’08
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It can be shown that the next-state iterated inverse function of D s is
defined for i ≥ 1 by f ′(i) : S ′ × Bi+1 −→ S ′ recursively obeying for
t ≥ 0







































f ′(1)(s′t+R, bt+R) = Pσ(t) s′t+R + Qσ(t)bt+R

f ′(i+1)(s′t+R, bt+R · · · bt+R+i) = Pσ(t+i) · · ·Pσ(t) s′t+R+

Pσ(t+i) · · · Pσ(t+1)Qσ(t)bt+R+

Pσ(t+i) · · · Pσ(t+2)Qσ(t+1)bt+R+1 + · · · + Pσ(t+i)Qσ(t+i−1)bt+R+i−1

+Qσ(t+i)bt+R+i

where P j and Q j are some matrices depending on M j, v j,C j and D j. Let
P and Q be the sets of those possible matrices.

Such a system Ds is flat with flat output bt if and only if there ex-
ists an integer I such that the matrix Pσ(t+I) · · · Pσ(t) is the null matrix,
so that f ′(I+1) does no longer depend on s′t+R. Therefore, the following
proposition applies:

Proposition 4.1. The system DL is a self-synchronizing stream cipher
if the two following conditions are satisfied:

(1) The product P j1 · · · P jI of any I matrices belonging to the set P
equals the null matrix.

(2) The switching function σ is self-synchronizing, that is, it must
only depend on a subsequence of (bt).

The synchronization delay is bounded by I. When the probability
that the product of I factors P j1 · · ·P jI equals the zero matrix grows to
1 as I grows to infinity, then the synchronization delay is statistically
bounded.

The construction of a self-synchronizing switching function can fol-
low the scheme of the canonical flat dynamical systems. The construc-
tion of flay dynamical systems can be extended to dynamical systems
with non-linear transitions.

5. Discrete chaos and cryptography

We have seen in Sect. 2.3 that when, as usual, the input alpha-
bet A and the output alphabet B are the same, the output functions
h(r)

st
: at 7→ h(r)(st, at) are a family of permutations of A, parameter-

ized by the internal states st. Permutations, together with substitutions,

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’08



12 G. MILLÉRIOUX, P. GUILLOT, J. M. AMIGÓ, J. DAAFOUZ

are the basic tools in block encryption. One of the techniques used to de-
sign permutations (and pseudo-random sequences) for cryptographical
applications is the discretization of chaotic maps (see e.g. [4]). Let X be
a compact metrical space (like an n-dimensional interval or an n-torus)
and f : X → X a map. Roughly speaking, we say that the dynamical
system (X, f ) generated by the iterates f n = f ◦ f n−1( f 0 = identity) is
chaotic if the the orbits { f n(x) : n ∈ N} have random-like properties
for ‘typical’ choices of x ∈ X (see [8] for a formal definition of chaos).
Chaos-based cryptography takes advantage of the ergodic properties of
dynamical systems.

The intuition that permutations may have different diffusion and mix-
ing properties have been embodied in an approach called discrete chaos,
whose theoretical framework was presented in [5]. The main tool of
discrete chaos is the discrete Lyapunov exponent.

Let X = {ξ0, ..., ξL−1} be a linearly ordered finite set, ξi < ξi+1, en-
dowed with a metric d(·, ·), and F : X → X be a bijection or, equiva-
lently, a permutation of X. We define the discrete Lyapunov exponent
(DLE) of F as

λF =
1
L

L−1
∑

i=0

log
d (F(ξi+1), F(ξi))

d (ξi+1, ξi)
, (11)

where the definition of ξL, the right neighbor of ξL−1, depends on the
‘topology’ of X (see below for a choice). We will use natural loga-
rithms to calculate λF . Observe that λF depends both on the order (that
determines whose neighbor is who) and on the metric d, but it is invari-
ant under rescaling and, furthermore, has the same invariances that d
might have.

Any discrete approximation of a chaotic system (X, f ) in form of a
permutation FM : {0, 1, ...,M − 1} → {0, 1, ...,M − 1} is called a chaotic
cryptographic primitive. Furthermore, we say that a cryptographic algo-
rithm is chaotic if some of its building blocks is a chaotic cryptographic
primitive. Examples of chaotic primitives include the finite-state tent
map, the finite-state Chebyshev map and the finite-state n-dimensional
torus automorphisms. Affine transformations on the n-torus in chaos
synchronization-based cryptography have been studied in [10]. These
maps have the nice property that the precision of the initial point does
not degrade along its orbit. See [2] for a general view of digital chaotic
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cryptography.

In the examples and applications we will consider below, F will be
a permutation of the subset X = {0, ..., L − 1} of R endowed with the
Euclidean distance d(ξi, ξ j) =

∣

∣

∣ξi − ξ j

∣

∣

∣ and the standard order. In this
case, we will refer to X as a linear set and choose ξL ≡ ξL−2 to be the
‘right’ neighbor of the last (or greatest) state ξL−1 in the definition (11);
we have λF ≥ 0.

The justification for calling λF the discrete Lyapunov exponent of F
is as follows. Let x j+1 = f (x j), j = 0, 1, ..., L − 1, be a typical trajectory
of length L of a chaotic self-map f of a one-dimensional interval I, such
that x j+1 , x j for all j and |xL−1 − x0| < ε. We define f (xL−1) = x0 and
order x0, x1, ..., xL−1 in I to obtain xn0 < xn1 < ... < xnL−1 , so that xni and
xni+1 are neighbors. Furthermore, set ξi =

⌊

xni N
⌋

, where N is chosen
such that ξi , ξ j for all i , j. The map f induces then the obvious
permutation

F(ξi) = ξ j if f (xni ) = xn j

on {ξ0, ..., ξL−1}. Then,

Proposition 5.1. [5] Let I be a one-dimensional interval and f : I → I
a chaotic map with piecewise continuous derivative. Then limL→∞ λFL =

λ f , where λ f is the Lyapunov exponent of f .

In [5] the reader can also find a generalization of Proposition 5.1 to
higher dimensions.

We consider next some examples of permutations on linear sets.

Example 5.2. For the right shift modulo L, defined on X = {0, ..., L− 1}
as θL(ξ) = ξ + 1 for ξ = 0, 1, ..., L − 2 and θL(L − 1) = 0, we find

λθL =
2
L

ln(L − 1).

Example 5.3. Define the permutation

Fmax
2l (ξ) =

{

l + k if ξ = 2k 0 ≤ k ≤ l − 1
k if ξ = 2k + 1 0 ≤ k ≤ l − 1

on S = {0, ..., 2l − 1}. The DLE of Fmax
2l is easily seen to be

λFmax
2l
=

l + 1
2l

ln l +
l − 1

2l
ln(l + 1) ≡ λmax

2l . (12)
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For large l we have:

λθ2l ≈
1
l

log 2l and λmax
2l ≈ log l.

It was proven in [3] that λmax
2l is the greatest DLE a bijection on the linear

set {0, ..., 2l−1}may have. This makes possible to gauge the ‘diffusivity’
of a permutation of an even number of elements.

Example 5.4. The Advanced Encryption Standard (AES) or Rijndael is
a symmetric cipher designed for 128, 192 and 256 bit block lengths [9];
for simplicity, we consider here the first implementation only. In order
to calculate the DLE for the AES, we assign to each 128 bit block an
integer in {0, 1, ..., 2128 − 1} via its binary representation. The computa-
tion of the DLE has been performed on 7000 iterations of the AES map
obtaining DLE = 20.93 after the first round and DLE = 87.22 after the
second and subsequent rounds (to be compared to λmax

2128 = 88.03) [1].

Example 5.5. Serpent handles 128-bit messages using a key that can be
either 128-, 192-, or 256-bits long [9]. The encryption proceeds basi-
cally in 32 rounds, using 8 S-boxes S i. In the simplest version, the input
to the ith round is first XORed with the round key Ki, next each 4-bit
subblock is input in parallel into 32 copies of the same S-box S i mod 8,
and finally (except in the last round) the output of the S-boxes is submit-
ted to linear transformations. In order to measure the diffusion property
of the whole algorithm, we followed the orbit of a sample of 128-bit
random messages. The result is DLE = 84.16 after the first round and
DLE = 87.22 (the same as for AES) after the second and subsequent
rounds.

6. Spectral properties

We consider here the binary case. The input and the output alphabets
are the set F2 and the internal states set is the n-dimensional vector space
F

n
2 over F.

The inverse next-state function is constituted by two functions f ′0 and
f ′1 , over Fn and such that f ′0(s′t ) = f ′(s′t , 0) and f ′1(s′t ) = f ′(s′t , 1).

The inverse iterated function f (′k) is a function Fn+k −→ Fn. The
Walsh spectrum is a efficient tool to study correlation properties of such
vectorial mappings.

By definition, the Walsh matrix of a vectorial function g : Fn −→ Fm

is the 2n × 2m matrix Wg, with coefficient on line u ∈ Fn
2 and column
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v ∈ Fn
2 equal to

Wg(u, v) =
∑

x∈Fn
2

(−1)u·g(x)+v·x ,

where a · b denotes the usual dot product a1b1 + · · · + anbn. The value
Wg(u, v) represents the correlation between the function x 7→ u ·g(x) and
the linear form x 7−→ v · x.

Remark 3. The line u of this matrix is the usual Walsh Transform of the
Boolean function x 7→ u · g(x)

The Walsh matrix of the iterated function f (k) may be expressed by
mean of the Walsh matrices W0 and W1 of the functions f ′0 and f ′1 . For
u and w in Fn

2 and v ∈ Fk
2,

W f (k)(u, vw) =
1

2nk

k
∏

i=1

Wvi(u,w)

The synchronizations properties may be expressed by mean of the
Walsh matrix. The synchronization delay is less than or equal to D0

means that the composition of any f ′0 and f ′1 function is a constant func-
tion that no longer depends on the initial state s′t0 , and thus that any
product of s factors equal to W0 or W1 is the Walsh matrix of a constant
function.

Statistical synchronization delay may also be expressed by mean of
the Walsh matrices. It means that the product of k matrices equal to W0

or W1, converges to the Walsh matrix of a constant function for almost
all vector v ∈ Fk, as k grows to infinity.

7. Conclusion

In this paper, self-synchronizing architectures coming from the study
of nonlinear dynamics and discrete-time control theory have been pre-
sented with the aim of designing devices for cryptographical applica-
tions. We have presented properties of dynamical systems namely, in-
vertibility and flatness and their possible use for cryptographic appli-
cations. In particular, we have shown that flat dynamical systems may
act as self-synchronizing stream ciphers. That may open some new per-
spectives for construction of such ciphers.
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