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. An additional bonus of our approach is that it breaks up the result into smaller and more digestible chunks which are related to the K(2)-localization of the spectrum T M F of topological modular forms and related spectra. Even more, the Adams-Novikov differentials for L K(2) V (0) can be read off from those for T M F .

Introduction

Let K(2) be the second Morava K-theory for the prime 3. For suitable spectra F , e.g. if F is a finite spectrum, the homotopy groups of the Bousfield localization L K(2) F can be calculated via the Adams-Novikov spectral sequence. By [START_REF] Devinatz | Homotopy fixed point spectra for closed subgroups of the Morava stabilizer groups[END_REF] this spectral sequence can be identified with the descent spectral sequence E s,t 2 = H s (G 2 , (E 2 ) t F ) =⇒ π t-s (L K(2) F ) for the action of the (extended) Morava stabilizer group G 2 on E 2 ∧ F where the action is via the Goerss-Hopkins-Miller action on the Lubin-Tate spectrum E 2 (see [START_REF] Goerss | A resolution of the K(2)-local sphere[END_REF] for a summary of the necessary background material). Here we just recall that the homotopy groups of E 2 are non-canonically isomorphic to W F9 [[u 1 ]][u ±1 ] where W F9 denotes the ring of Witt vectors of F 9 , where u 1 is of degree 0 and u is of degree -2. We also recall that G 2 is a profinite group and its action on the profinite module (E 2 ) * F is continuous; group cohomology is, throughout this paper, taken in the continuous sense.

The cohomological dimension of G 2 is well-known to be infinite and therefore a finite projective resolution of the trivial profinite G 2 -module Z 3 cannot exist. However, in [START_REF] Goerss | A resolution of the K(2)-local sphere[END_REF] a finite resolution of the trivial module Z 3 was constructed in terms of permutation modules. More precisely, the group G 2 is isomorphic to the product G 1 2 × Z 3 of a central subgroup (isomorphic to) Z 3 and a group G 1 2 which is the kernel of a homomorphism G 1 2 → Z 3 , also called the reduced norm. One of the main technical achievements of [START_REF] Goerss | A resolution of the K(2)-local sphere[END_REF] was the construction of a permutation resolution of the trivial module Z 3 for the group G 1 2 . This resolution is self-dual in a suitable sense (cf. section 3.4) and has the form

0 → C 3 → C 2 → C 1 → C 0 → Z 3 → 0 (1) with C 0 = C 3 = Z 3 [[G 1 2 /G 24 ]] and C 1 = C 2 = Z 3 [[G 1 2 ]] ⊗ Z3[SD16] χ.
Here G 24 is a certain subgroup of G 1 2 of order 24, isomorphic to the semidirect product Z/3 ⋊ Q 8 of the cyclic group of order 3 with a non-trivial action of the quaternion group Q 8 , and SD 16 is another subgroup, isomorphic to the semidihedral group of order 16 (see section 2.2). Furthermore, χ is a suitable one-dimensional representation of SD 16 , defined over Z 3 , and if S is a profinite G 1 2 -set we denote the corresponding profinite permutation module by Z 3 [[S]].

For any Z 3 [[G 1 2 ]]-module M the resolution [START_REF] Behrens | A modular description of the K(2)-local sphere at the prime 3[END_REF] gives rise to a first quadrant cohomological spectral sequence

E s,t 1 = Ext t Z3[[G 1 2 ]] (C s , M ) =⇒ H s+t (G 1 2 , M ) (2)
refered to in the sequel as the algebraic spectral sequence. By Shapiro's Lemma we have

(3) E 0,t 1 = E 3,t 1 ∼ = H t (G 24 , M ), E 1,t 1 = E 2,t 1 ∼ = Hom Z3[SD16] (χ, M ) t = 0 0 t > 0 .
The bulk of our work is the calculation of this spectral sequence if M = (E 2 ) * (V (0)). In this case the E 1 -term is well understood and can be interpreted in terms of modular forms in characteristic 3. In fact, it is determined by the following result which we include for the convenience of the reader and in which v 1 denotes the well-known G 2 -invariant class u 1 u -2 ∈ M 4 . For the definition of the other classes figuring in this result the reader is referred to section 5.1.

Theorem 1.1. Let M = (E 2 ) * (V (0)).

a) There are elements β ∈ H 2 (G 24 , M 12 ), α ∈ H 1 (G 24 , M 4 ) and α ∈ H 1 (G 24 , M 12 ), an invertible G 24 -invariant element ∆ ∈ M 24 , and an isomorphism of graded algebras

H * (G 24 , M ) ∼ = F 3 [[v 6 1 ∆ -1 ]][∆ ±1 , v 1 , β, α, α]/(α 2 , α 2 , v 1 α, v 1 α, α α + v 1 β) .
b) The ring of SD 16 -invariants of M is given by the subalgebra M SD16 = F 3 [[u 4 1 ]][v 1 , u ±8 ] and Hom Z3[SD16] (χ, M ) is a free M SD16 -module of rank 1 with generator ω 2 u 4 , i.e.

Hom Z3[SD16] (χ, M ) ∼ = ω 2 u 4 F 3 [[u 4 1 ]][v 1 , u ±8 ] .
Remark We note that v 6 1 ∆ -1 is a G 24 -invariant class in the maximal ideal of M 0 and hence a formal power series in v 6 1 ∆ -1 converges in M and is also invariant. Similarly with u 4 1 . Of course, the name for ∆ is chosen to emphasize the close relation with the theory of modular forms. For example we note that M G24 is isomorphic to the completion of M 3 := F 3 [∆ ±1 , v 1 ] with respect to the ideal generated by v 6 1 ∆ -1 , and M 3 is isomorphic to the ring of modular forms in characteristic 3 (cf. [START_REF] Deligne | Courbes elliptiques: Formulaire (d'après J. Tate)[END_REF] and [START_REF] Behrens | A modular description of the K(2)-local sphere at the prime 3[END_REF]). Similarly, M SD16 is isomorphic to the completion of F 3 [v 1 , u ±8 ] with respect to the ideal generated by u 4 1 = v 4 1 u 8 . The larger algebra F 3 [v 1 , u ±4 ] is isomorphic to the ring M 3 [START_REF] Deligne | Courbes elliptiques: Formulaire (d'après J. Tate)[END_REF] of modular forms of level 2 (in characteristic 3) (cf. [START_REF] Behrens | A modular description of the K(2)-local sphere at the prime 3[END_REF]). The relation with modular forms could be made tight if in [START_REF] Goerss | A resolution of the K(2)-local sphere[END_REF] we had worked with a version of E 2 which uses a deformation of the formal group of a supersingular curve rather than that of the Honda formal group.

As (E 2 ) * (V (0)) is a graded module, the spectral sequence is trigraded. The differentials in this spectral sequence are v 1 -linear and continuous. Therefore d 1 is completely described by continuity and the following formulae in which we identify the E 1 -term via Theorem 1.1.

Theorem 1.2. There are elements

∆ k ∈ E 0,0,24k 1 , b 2k+1 ∈ E 1,0,16k+8 1 , b 2k+1 ∈ E 2,0,16k+8 1 , ∆ k ∈ E 3,0,24k 1 for each k ∈ Z satisfying ∆ k ≡ ∆ k , b 2k+1 ≡ ω 2 u -4(2k+1) , b 2k+1 ≡ ω 2 u -4(2k+1) , ∆ k ≡ ∆ k
(where the congruences are modulo the ideal (v 6 1 ∆ -1 ) resp. (v 4 1 u 8 ) and in the case of ∆ 0 we even have equality ∆ 0 = ∆ 0 = 1) such that

d 1 (∆ k ) =      (-1) m+1 b 2.(3m+1)+1 k = 2m + 1 (-1) m+1 mv 4.3 n -2 1 b 2.3 n (3m-1)+1 k = 2m.3 n , m ≡ 0 (3) 0 k = 0 d 1 (b 2k+1 ) =      (-1) n v 6.3 n +2 1 b 3 n+1 (6m+1) k = 3 n+1 (3m + 1) (-1) n v 10.3 n +2 1 b 3 n (18m+11) k = 3 n (9m + 8) 0 else d 1 (b 2k+1 ) =          (-1) m+1 v 2 1 ∆ 2m 2k + 1 = 6m + 1 (-1) m+n v 4.3 n 1 ∆ 3 n (6m+5)
2k + 1 = 3 n (18m + 17) (-1) m+n+1 v 4.3 n 1 ∆ 3 n (6m+1) 2k + 1 = 3 n (18m + 5) 0 else .

It turns out that the d 2 -differential of this spectral sequence is determined by the following principles: it is non-trivial if and only if v 1 -linearity and sparseness of the resulting E 2 -term permit it, and in this case it is determined up to sign by these two properties. The remaining d 3 -differential turns out to be trivial. More precisely we have the following result. 

d 2 (∆ k α) =      (-1) m+n+1 v 6.3 n +1 1 b 3 n+1 (6m+1) k = 2.3 n (3m + 1) (-1) m+n v 10.3 n+1 +1 1 b 3 n+1 (18m+11) k = 2.3 n (9m + 8) 0 else d 2 (∆ k α) = (-1) m v 11 1 b 18m+11 k = 6m + 5 0 else . 
b) The d 3 -differential is trivial.

Remark 1 on notation Of course, the elements ∆ k α and ∆ k α are only names for elements in the E 2 -term which are represented in the E 1 -term as products, but which are no longer products in the E 2 -term. Similar abuse of notation will be used in Theorem 1.4, Proposition 1.5, Theorem 1.6 and in section 6 and 8.

Next we use that the element β of Theorem 1.1 lifts to an element with the same name in H 2 (G 1 2 , M 12 ) resp. in H 2 (G 2 , M 12 ). In fact this latter element detects the image of β 1 ∈ π 10 (S 0 ) in π 10 (L K(2) V (0)). The previous results yield the following E ∞ -term as a module over F 3 [β, v 1 ].

Theorem 1.4. As an F 3 [β, v 1 ]-module the E ∞ -term of the algebraic spectral sequence [START_REF] Deligne | Courbes elliptiques: Formulaire (d'après J. Tate)[END_REF] for M = (E 2 ) * /(3) is isomorphic to a direct sum of cyclic modules generated by the following elements and with the following annihilator ideals: a) For E 0, * , * ∞ we have the following generators with respective annihilator ideals

1 = ∆ 0 (βv 2 1 ) ∆ m β m = 0 (v 2 1 ) α (v 1 ) ∆ 2m+1 α (v 1 ) ∆ 2.3 n (3m-1) α m ≡ 0 mod (3) (v 1 ) ∆ 2m α (v 1 ) ∆ 2m+1 α m ≡ 2 mod (3) (v 1 ) ∆ 2.3 n (3m+1) αβ (v 1 ) ∆ 2.3 n (3m-1) αβ m ≡ 0 mod (3) (v 1 ) ∆ 2m+1 αβ m ≡ 2 mod (3) (v 1 ) . b) For E 1, * , * ∞
we have the following generators with respective annihilator ideals

b 1 (β) b 2.3 n (3m-1)+1 m ≡ 0 mod (3) (v 4.3 n -2 1 , β) . c) For E 2, * , *

∞

we have the following generators with respective annihilator ideals

b 3 n+1 (6m+1) (v 6.3 n +1 1 , β) b 3 n (6m+5) m ≡ 1 mod (3) (v 10.3 n +1 1 , β) . d) For E 3, * , * ∞
we have the following generators with respective annihilator ideals

∆ 2m (v 2 1 ) ∆ 3 n (6m±1) (v 4.3 n 1 , βv 2 1 ) ∆ m α (v 1 ) ∆ m α (v 1 )
.

To get at H * (G 1 2 , (E 2 ) * /(3)) we still need to know the extensions between the filtration quotients. They are given by the following result.

Proposition 1.5. The F 3 [β, v 1 ]-module generators of the E ∞ -term of Theorem 1.4 can be lifted to elements (with the same name) in H * (G 1 2 ; (E 2 ) * /(3)) such that the relations defining the annihilator ideals of Theorem 1.4 continue to hold with the following exceptions

v 1 α = b 1 v 1 ∆ 2.3 n (9m+2) α = (-1) m+1 b 2.3 n+1 (9m+2)+1 v 1 ∆ 2.3 n (9m+5) α = (-1) m+1 b 2.3 n+1 (9m+5)+1 v 1 ∆ 6m+1 α = (-1) m b 2(9m+2)+1 v 1 ∆ 6m+3 α = (-1) m+1 b 2(9m+5)+1 βb 3 n+1 (6m+1) = ±∆ 3 n (6m+1) α βb 3 n+1 (18m+11) = ±∆ 3 n (18m+11) α βb 18m+11 = ±∆ 6m+4 α .
Apart from the last group of β-extensions (which are simple consequences of the calculation of H * (G 2 , (E 2 ) * /(3, u 1 )), cf. [START_REF] Goerss | The homotopy of L 2 V (1) for the prime 3, Categorical decomposition techniques in algebraic topology (Isle of Skye[END_REF]) one can summarize the result by saying that nontrivial v 1extensions exist only between E 0,1, * ∞ and E 1,0, * +4 ∞ and there is such an extension whenever sparseness permits it, and then the corresponding relation is unique up to sign. Unfortunately this is not clear a priori, but needs proof and the proof gives the exact value of the sign. In contrast determining the sign for the β-relations would require an extra effort.

The main results can now be stated as follows.

Theorem 1.6. As an

F 3 [β, v 1 ]-module H * (G 1 2 , (E 2 ) * /(3)
) is isomorphic to the direct sum of the cyclic modules generated by the following elements and with the following annihilator ideals

1 = ∆ 0 (βv 2 1 ) ∆ m β m = 0 (v 2 1 ) α (βv 1 ) ∆ 2m+1 α (v 1 ) ∆ 2.3 n (3m-1) α m ≡ 0 mod (3) (v 4.3 n+1 -1 1 , βv 1 ) ∆ 2m α (v 1 ) ∆ 2m+1 α m ≡ 2 mod (3) (v 3 1 , βv 1 ) ∆ 2.3 n (3m+1) αβ (v 1 ) ∆ 2.3 n (3m-1) αβ m ≡ 0 mod (3) (v 1 ) ∆ 2m+1 αβ m ≡ 2 mod (3) (v 1 ) b 3 n+1 (6m+1) (v 6.3 n +1 1 , βv 1 ) b 3 n (6m+5) m ≡ 1 mod (3) (v 10.3 n +1 1 , βv 1 ) ∆ 2m (v 2 1 ) ∆ 3 n (6m±1) (v 4.3 n 1 , βv 2 1 ) ∆ 2m+1 α (v 1 ) ∆ 2m α m ≡ 2 mod (3) (v 1 ) ∆ 2m α (v 1 ) ∆ 3 n (6m+5) α m ≡ 1 mod (3) (v 1 ) .
We emphasize that even though this result is involved the mechanism which produces is quite transparent. The passage to the cohomology of G 2 results now from the decomposition

G 2 ∼ = Z 3 × G 1
2 and the fact that the central factor Z 3 acts trivially on (E 2 ) * /(3).

Theorem 1.7. There is a class ζ ∈ H 1 (G 2 , (E 2 ) 0 /(3)) and an isomorphism of graded algebras

H * (G 1 2 ; (E 2 ) * /(3)) ⊗ Z3 Λ Z3 (ζ) ∼ = H * (G 2 , (E 2 ) * /(3)) .
Remark We warn the reader that there is something subtle about this Künneth type isomorphism. In fact, the class α of Theorem 1.1 is defined via the Greek letter formalism in H 1 (G 24 , -) as the Bockstein of the class v 1 with respect to the obvious short exact sequence

0 → (E 2 ) * /(3) 3 -→ (E 2 ) * /(9) -→ (E 2 ) * /(3) → 0 .
The same formalism allows to define classes α(F ) ∈ H 1 (F, (E 2 ) 4 /(3)) for any closed subgroup F of G 2 and these classes are well compatible with respect to restrictions among different subgroups. However, with respect to the isomorphism of Theorem 1.

7 the class α(G 2 ) corresponds to α(G 1 2 ) -v 1 ζ (cf. Corollary 7.
2). We will insist on the notation α(G 2 ) and α(G 1 2 ) in order to avoid possible confusion when we deal with H * (G 2 , -). Fortunately similar notation is unnecessary for the classes α and β (cf. Corollary 7.2). The difference between α(G 2 ) and α(G 1 2 ) turns out to be important for studying the differentials in the Adams-Novikov spectral sequence for π * (L K(2) V (0)).

In fact, these differentials can be derived from those of the Adams-Novikov spectral sequence for π * (L K(2) V (1)) which have been determined in [START_REF] Goerss | The homotopy of L 2 V (1) for the prime 3, Categorical decomposition techniques in algebraic topology (Isle of Skye[END_REF].

Remark 2 on notation In the following theorem we give the E ∞ -term of the Adams-Novikov spectral sequence for π * (L K(2) V (0)) as a subquotient of its E 2 -term which itself has been described in Theorem 1.6 and Theorem 1.7 as a module over F 3 [β, v 1 ] ⊗ Λ(ζ) with generators represented in the E 1 -term of the algebraic spectral sequence (2) for M = (E 2 ) * V (0). As before, generators of E ∞ which are represented by products in this E 1 -term are not necessarily products in E ∞ . In order to distinguish between module multiplication and the name of a generator we write β and v 1 as right hand factors in such a product if they are only part of the name of a generator, e.g. in the case of ∆ 6m+1 βv 1 . We have also renamed (for reasons which will be explained below) generators involving ∆ k by Σ 48 ∆ k-2 .

Theorem 1.8. As a module over

F 3 [β, v 1 ] ⊗ Λ(ζ) the E ∞ -term of the Adams-Novikov spectral sequence for π * (L K(2) V (0)) is the quotient of the direct sum of cyclic F 3 [β, v 1 ] ⊗ Λ(ζ)-modules
with the following generators and annihilator ideals

1 = ∆ 0 (βv 2 1 , β 3 v 1 , β 6 ) ∆ 3m β, m = 0 (v 2 1 , β 2 v 1 , β 5 ) ∆ 6m+1 βv 1 (v 1 , β 2 ) ∆ 6m+4 βv 1 (v 1 , β 3 ) α(G 1 2 ) (βv 1 , β 3 ) ∆ 2m+1 α(G 1 2 ) m ≡ 2 mod (3) (v 1 , β 3 ) ∆ 2.3 n (3m-1) α(G 1 2 ) m ≡ 0 mod (3), n ≥ 1 (v 4.3 n+1 -1 1 , βv 1 , β 3 ) ∆ 2(3m-1) α(G 1 2 ) m ≡ 0 mod (3) (v 11 1 , βv 1 , β 4 ) ∆ 6m α (v 1 , β 5 ) b 2(9m+2)+1 (v 2 1 , β) ∆ 6m+3 α (v 3 1 , βv 1 , β 5 ) ∆ 2.3 n (3m+1) α(G 1 2 )β n ≥ 1 (v 1 , β 2 ) ∆ 2.3 n (3m-1) α(G 1 2 )β m ≡ 0 mod (3), n ≥ 1 (v 1 , β 2 ) ∆ 2(3m-1) α(G 1 2 )β m ≡ 0 mod (3) (v 1 , β 3 ) b 3 n+1 (6m+1) v 1 n ≥ 0 (v 6.3 n 1 , β) b 3 n (6m+5) v 1 m ≡ 1 mod (3), n = 1 (v 10.3 n 1 , β) b 3(6m+5) m ≡ 1 mod (3) (v 31 1 , βv 1 , β 5 ) Σ 48 ∆ 3 n (6m+1)-3 n ≥ 1 (v 2 1 , β 2 v 1 , β 5 ) Σ 48 ∆ 3 n (6m+5)-3 m ≡ 1 mod (3), n ≥ 1 (v 2 1 , β 3 v 1 , β 5 ) Σ 48 ∆ 3 n (6m+5)-3 m ≡ 1 mod (3), n ≥ 1 (v 2 1 , β 2 v 1 , β 5 ) Σ 48 ∆ (6m+1)-3 v 1 (v 1 , β 2 ) Σ 48 ∆ 3 n (6m±1)-2 v 1 n ≥ 1 (v 4.3 n -1 1 , βv 1 , β 3 ) Σ 48 ∆ (6m+1)-2 v 2 1 (v 2 1 , β) Σ 48 ∆ (6m+5)-2 (v 4 1 , βv 2 1 , β 3 v 1 , β 5 ) Σ 48 ∆ 2m-1 α(G 1 2 ) m ≡ 0 mod (3) (v 1 , β 3 ) Σ 48 ∆ 3 n (6m+1)-3 α(G 1 2 ) n ≥ 0 (v 1 , β 2 ) Σ 48 ∆ 3 n (6m+5)-3 α(G 1 2 ) m ≡ 1 mod (3), n ≥ 1 (v 1 , β 3 ) Σ 48 ∆ 3 n (6m+5)-3 α(G 1 2 ) m ≡ 1 mod (3), n ≥ 1 (v 1 , β 2 ) Σ 48 ∆ 6m α (v 1 , β 4 ) Σ 48 ∆ 6m+3 α m ≡ 1 mod (3) (v 1 , β 4 )
modulo the following relations (in which module generators are put into brackets in order to distinguish between module multiplications and generators.)

β 3 [∆ k α(G 1 2 )] = β 2 ζ[∆ k βv 1 ] k = 2(3m -1) m ≡ 0 mod (3) β 2 [∆ k α(G 1 2 )β] = β 2 ζ[∆ k βv 1 ] k = 2(3m -1) m ≡ 0 mod (3) β 4 [∆ k β] = β 4 ζ[∆ k α] k = 6m + 3 β 2 [Σ 48 ∆ k α(G 1 2 )] = β 2 ζ[Σ 48 ∆ k v 1 ] k = 6m + 1 β 2 [Σ 48 ∆ k α(G 1 2 )] = β 2 v 1 ζ[Σ 48 ∆ k ] k = 6m + 3 β 2 [Σ 48 ∆ k α(G 1 2 )] = β 2 v 1 ζ[Σ 48 ∆ k ] k = 3 n (6m + 5) -3 m ≡ 1 mod (3), n ≥ 1 β 4 [Σ 48 ∆ k ] = β 3 ζ[Σ 48 ∆ k α] k = 6m .
We remark that some but not all of the relations figuring in this result could have been avoided by choosing different generators, e.g. if we had chosen, for k = 2(3m -1) and m ≡ 0 mod (3), ∆ k α(G 2 )β as a generator instead of ∆ k α(G 1 2 )β.

Furthermore we remark that this description of the E ∞ -term as an F 3 [β, v 1 ] ⊗ Λ(ζ)-module does not lift to π * (L K(2) V (0)). In fact, it is not hard to see that there are exotic relations like

v 1 ∆α = β 2 α which hold in π * (E hG24 2 ∧ V (0)), in particular v 1 [∆α(G 1 2 )] = 0 in π * (L K(2) V (0)).
As stated above this result is obtained without much trouble from the calculation of the Adams-Novikov E 2 -term given in Theorem 1.6 and Theorem 1.7 by using knowledge of the Adams-Novikov differentials for L K(2) V (1). However, even if the rigorous proof proceeds this way, we feel that the final result can be better appreciated from the following point of view. In [START_REF] Goerss | A resolution of the K(2)-local sphere[END_REF] the algebraic resolution (1) for G 1 2 resp. the companion resolution for G 2 (obtained by tensoring with a minimal resolution for Z 3 ) was "realized" by resolutions of the homotopy fixed point spectrum E hG 1 2 2 resp. of L K(2) S 0 via homotopy fixed point spectra with respect to the corresponding finite subgroups of G 2 . In particular there is a resolution

* → L K(2) S 0 → X 0 → X 1 → X 2 → X 3 → X 4 → * (4) with X 0 = E hG24 2 , X 1 = E hG24 2 ∨ Σ 8 E hSD16 2 , X 2 = Σ 8 E hSD16 2 ∨ Σ 40 E hSD16 2 , X 3 = Σ 48 E hG24 2 ∨ Σ 40 E hSD16 2 and X 4 = Σ 48 E hG24 2
. We note that the 48-fold suspension appearing in the definition of X 3 and X 4 is the reason for the (abusive) change of notation from ∆ k in Theorem 1.6 to Σ 48 ∆ k-2 in Theorem 1.8. Furthermore, the spectrum E hG24 2 can be identified with the K(2)localization of the spectrum T M F of topological modular forms and E hSD16 2 with "half" of the K(2)-localization of the spectrum T M F 0 (2) of topological modular forms of level 2 (cf. [START_REF] Behrens | A modular description of the K(2)-local sphere at the prime 3[END_REF]). These spectra are of considerable independent interest and their Adams-Novikov spectral sequences and their homotopy is well understood (cf. the appendix or [START_REF] Behrens | A modular description of the K(2)-local sphere at the prime 3[END_REF], [START_REF] Goerss | A resolution of the K(2)-local sphere[END_REF]). The Adams-Novikov differentials for L K(2) V (0) can be completely understood by those for E hG24 2 ∧ V (0) (cf. the remarks following Lemma 8.1 and Lemma 8.4 for more precise statements). The complicated final result described in Theorem 1.8 can thus be deduced, just as in the case of Theorem 1.6, from more basic structures by an essentially simple though elaborate mechanism.

We believe that our results have the following advantages over those by Shimomura [START_REF]The homotopy groups of the L 2 -localized mod 3 Moore spectrum[END_REF]. In our approach the final result relates well to modular forms and the homotopy of the spectrum T M F of topological modular forms; in particular the approach helps to understand how the complicated structure of π * (L K(2) V (0)) is built from that of the comparatively simple homotopy of T M F . This is also reflected in our notation which is very different from that in [START_REF] Shimomura | The homotopy groups of the L 2 -localized Toda-Smith spectrum V (1) at the prime 3[END_REF] where classical chromatic notation is used. Furthermore we determine E ∞ as a module over

F 3 [β, v 1 ].
In contrast Theorem 2.8. in [START_REF]The homotopy groups of the L 2 -localized mod 3 Moore spectrum[END_REF] gives a direct sum decomposition as an F 3 [v 1 ]-module (of E ∞ and not as claimed in [START_REF]The homotopy groups of the L 2 -localized mod 3 Moore spectrum[END_REF] of π * (L K(2) V (1))) and this decomposition only partially reflects the F 3 [β, v 1 ]-module structure. In fact, many non-trivial β-multiplications are not recorded in [START_REF]The homotopy groups of the L 2 -localized mod 3 Moore spectrum[END_REF], for example those on the classes ∆ 2.

3 n (9m+2) α(G 1 2 ), ∆ 2.3 n (9m+8) α(G 1 
2 ), b 3(18m+11) , ... , nor are the additional β-relations of Theorem 1.8. There are related discrepancies on the height of β-torsion; for example, in [START_REF]The homotopy groups of the L 2 -localized mod 3 Moore spectrum[END_REF] all elements in the same bidegree as the elements Σ 48 ∆ 6m appear to be already killed by β 4 . Finally the classes v 9m+2 2 ξ/v 3 1 of [START_REF]The homotopy groups of the L 2 -localized mod 3 Moore spectrum[END_REF] which correspond to v 1 Σ 48 ∆ (6m+1)-2 in our notation and which support a non-trivial Adams-Novikov d 9 -differential (cf. Lemma 8.4) seem to be permanent cycles in [START_REF]The homotopy groups of the L 2 -localized mod 3 Moore spectrum[END_REF].

The paper is organized as follows. In section 2 we recall background material on the stabilizer groups, we introduce important elements of G 2 and we recall the definition of its subgroups SD 16 and G 24 as well as that of an important torsionfree subgroup K of finite index in G 1 2 . In section 3 we study the maps in the permutation resolution [START_REF] Behrens | A modular description of the K(2)-local sphere at the prime 3[END_REF]. In fact, in [START_REF] Goerss | A resolution of the K(2)-local sphere[END_REF] the maps C 3 → C 2 and C 2 → C 1 of the permutation resolution (1) were not described explicitly so that the resolution was not ready yet to be used for detailed calculations. The subgroup K plays a crucial role in finding an approximation to the map C 2 → C 1 . We also show that the map C 3 → C 2 is in a suitable sense dual to the map C 1 → C 0 . In section 4 we study the action of the stabilizer group on (E 2 ) * /(3) and we derive formulae for the action of the elements of G 2 introduced in section 2. In section 5 we comment on Theorem 1.1 and we verify Theorem 1.2 (cf. Proposition 5.7, Proposition 5.10 and Proposition 5.12). Most of the new results of these sections, in particular the formulae for the action of the stabilizer group, the approximation of the map C 2 → C 1 and the evaluation of the induced map

E 1,0, * 1 = Ext 0 Z3[[G 1 2 ]] (C 1 , (E 2 ) * /(3)) → Ext 0 Z3[[G 1 2 ]] (C 2 , (E 2 ) * /(3)) = E 2,0, * 1
are taken from the second author's thesis [START_REF] Karamanov | A propos de la cohomologie du deuxième groupe stabilisateur de Morava[END_REF]. The evaluation of this map is by far the hardest calculation in our approach. In section 6 we prove Proposition 1.3 and Proposition 1.5. In a short section 7 we discuss the subtleties of the Künneth isomorphism of Theorem 1.7 and section 8 contains the discussion of the differentials in the Adams-Novikov spectral sequence and proves Theorem 1.8. For the convenience of the reader we have collected the description of the related Adams-Novikov spectral sequences for E hG24 2 ∧ V (0), for E hG24 2 ∧ V (1) and for L K(2) V (1) in an appendix.

Background on the Morava Stabilizer Group

In the sequel we will recall some of the basic properties of the Morava stabilizer groups S n resp. G n . The reader is refered to [START_REF] Douglas | Complex cobordism and stable homotopy groups of spheres[END_REF] for more details (see also [START_REF]Centralizers of elementary abelian p-subgroups and mod-p cohomology of profinite groups[END_REF] and [START_REF] Goerss | A resolution of the K(2)-local sphere[END_REF] for a summary of what will be important in this paper).

2.1. Generalities. We recall that the Morava stabilizer group S n is the group of automorphisms of the p-typical formal group law Γ n over the field F q (with q = p n ) whose [p]-series is given by [p] Γn (x) = x p n . Because Γ n is already defined over F p the Galois group Gal(F q /F p ) of the finite field extension F p ⊂ F q acts naturally on Aut(Γ n ) = S n and G n can be identified with the semidirect product S n ⋊ Gal(F q /F p ).

The group S n is also equal to the group of units in the endomorphism ring of Γ n , and this endomorphism ring can be identified with the maximal order O n of the division algebra D n over Q p of dimension n 2 and Hasse invariant 1 n . In more concrete terms, O n can be described as follows: let W := W Fq denote the Witt vectors over F q . Then O n is the non-commutative ring extension of W generated by an element S which satisfies S n = p and Sw = w σ S, where w ∈ W and w σ is the image of w with respect to the lift of the Frobenius automorphism of F q . The element S generates a two sided maximal ideal m in O n with quotient O n /m canonically isomorphic to F q . Inverting p in O n yields the division algebra D n , and O n is its maximal order.

Reduction modulo m induces an epimorphism O × n -→ F × q . Its kernel will be denoted by S n and is also called the strict Morava stabilizer group. The group S n is equipped with a canonical filtration by subgroups

F i S n , i = k n , k = 1, 2, . . ., defined by F i S n := {g ∈ S n |g ≡ 1 mod (S in )} .
The intersection of all these subgroups contains only the element 1 and S n is complete with respect to this filtration, i.e. we have S n = lim i S n /F i S n . Furthermore, we have canonical isomorphisms

F i S n /F i+ 1 n S n ∼ = F q induced by x = 1 + aS in → ā . Here a is an element in O n , i.e. x ∈ F i S n and ā is the residue class of a in O n /m ∼ = F q .
The associated graded object grS n with gr i S n :

= F i S n /F i+ 1 n S n , i = 1 n , 2 n , . . . becomes a graded Lie algebra with Lie bracket [ā, b] induced by the commutator [x, y] := xyx -1 y -1 in S n .
Furthermore, if we define a function ϕ from the positive real numbers to itself by ϕ(i) := min{i + 1, pi} then the p-th power map on S n induces maps P : gr i S n -→ gr ϕ(i) S n which define on grS n the structure of a mixed Lie algebra in the sense of Lazard (cf. Chap. II.1. of [START_REF] Lazard | Groupes analytiques p-adiques[END_REF]). If we identify the filtration quotients with F q as above then the Lie bracket and the map P are explicitly given as follows (cf. Lemma 3.1.4 in [START_REF]Centralizers of elementary abelian p-subgroups and mod-p cohomology of profinite groups[END_REF]).

Lemma 2.1. Let ā ∈ gr i S n , b ∈ gr j S n . Then a) [ā, b] = āb p ni -bā p nj ∈ gr i+j S n b) P ā =      ā1+p ni +...+p (p-1)ni i < (p -1) -1 ā + ā1+p ni +...+p (p-1)ni i = (p -1) -1 ā i > (p -1) -1 .
The right action of S n on O n determines a group homomorphism S n → GL n (W). The resulting determinant homomorphism S n → W × extends to a homomorphism

G n → W × ⋊ Gal(F p n /F p ) which factors through Z × p ×Gal(F p n /F p )
. By choosing a fixed isomorphism between the quotient of Z × p by its maximal finite subgroup with Z p we get the "reduced determinant" homomorphism

G n → Z p .
We denote its kernel by G 1 n and the intersection of G 1 n with S n resp. S 1 n by S n resp. S 1 n . The center of G n is equal to the center of S n and can be identified with Z × p (if we identify S n with O × n ) and the composite

Z × p → G n → Z × p sends z to z n . Thus if p does not divide n we get an isomorphism G n ∼ = Z p × G 1 n .
2.2. Important subgroups in the case n = 2 and p = 3. From now on we assume n = 2 and p = 3. Let ω be a primitive eighth root of unity in

W × := W × F9 . Then (5) a = - 1 2 (1 + ωS)
is an element of S 1 2 of order 3. (This element was denoted s in [START_REF] Goerss | The homotopy of L 2 V (1) for the prime 3, Categorical decomposition techniques in algebraic topology (Isle of Skye[END_REF] and [START_REF] Goerss | A resolution of the K(2)-local sphere[END_REF].) We can and will in the sequel choose ω such that we have the following relation in

W/(3) ∼ = F 9 (6) ω 2 + ω -1 ≡ 0 .
Next we let t := ω 2 . Then we have ta = a 2 t. Furthermore, if φ ∈ Gal(F 9 /F 3 ) is the Frobenius automorphism then the elements ψ := ωφ and t generate a subgroup Q 8 which normalizes the subgroup generated by a so that ψ, t and a generate a subgroup G 24 of S 1 2 of order 24 which is isomorphic to a semidirect product Z/3 ⋊ Q 8 .

The elements ω and φ generate a subgroup SD 16 of S 1 2 of order 16, isomorphic to the semidihedral group of order 16.

Finally there is a torsionfree subgroup K of S 1 2 which has already played an important role in [START_REF]Centralizers of elementary abelian p-subgroups and mod-p cohomology of profinite groups[END_REF]. It is defined as follows: Lemma 2.1 implies that an element 1 + xS in S 2 of order 3 satisfies x = 0 and x + x 1+3+9 = 0, i.e. x 4 = -1 where x is the class of x in gr 1 2 S 1 2 ∼ = F 9 . There are no such elements x such that x ∈ F 3 . Hence, if we define K to be the kernel of the homomorphism

S 1 2 → gr 1 2 S 1 2 ∼ = F 9 → F 9 /F 3
then K is torsion free, and we have a split short exact sequence

(7) 1 → K → S 1 2 → Z/3 → 1 . K inherits a complete filtration from S 2 by setting F k 2 K = F k 2 S 2 ∩ K
and it is easy to check that the associated graded is given as [START_REF] Karamanov | A propos de la cohomologie du deuxième groupe stabilisateur de Morava[END_REF] gr

k 2 K =      Ker(T r : F 9 → F 3 ) k > 0 even F 3 k = 1 F 9 k > 1 odd
where T r denotes the trace from F 9 to F 3 .

The following elements will play an important role in our later calculations.

(

) b := [a, ω], c := [a, b], d := [b, c] . 9 
In the next lemma we record approximations to these elements which we will use repeatedly.

Lemma 2.2.

a) a ≡ 1 + ωS + S 2 mod (S 3 ) b) b ≡ 1 -S -ωS 2 mod (S 3 ) c) c ≡ 1 -ω 2 S 2 -ωS 3 mod (S 4 ) d) d ≡ 1 + ω 2 S 3 mod (S 4 )
Proof. a) The approximation for a is immediate from its definition.

b) By explicit calculation in

O 2 we find b = 1 4 (1 + ωS)ω(1 -ωS)ω -1 = 1 4 (1 + ωS)(1 -ω -1 S) = 1 4 (1 + 3ω 2 + (ω + ω 3 )S)
and then we use that our choice of ω yields

ω 3 + ω = -1 and ω 2 -1 = -ω in F 9 .
c) Similarly we get

c = 1 64 (1 + ωS)(1 + 3ω 2 + (ω + ω 3 )S)(1 -ωS)(1 -3ω 2 -(ω + ω 3 )S) = - 1 8 (1 + 6ω 2 -3ωS) .
d) Finally the formula for d can be obtained from Lemma 2.1.

The information in the following proposition will be important for a closer inspection of the permutation resolution (1).

Proposition 2.3. a) H * (K; F 3 ) is a Poincaré duality algebra of dimension 3. b) H 2 (K; F 3 ) ∼ = H 1 (K; F 3 ) ∼ = (F 3 ) 2 . c) H 1 (K; Z 3 ) ∼ = Z/9 ⊕ Z/3 where Z/9 resp. Z/3 is generated by b resp. by c. d) H 2 (K; Z 3 ) = 0. e) H 0 (K; Z 3 ) ∼ = H 3 (K, Z 3 ) ∼ = Z 3 .
Proof. Parts (a) and (b) have already been shown in Proposition 4.4. of [START_REF]Centralizers of elementary abelian p-subgroups and mod-p cohomology of profinite groups[END_REF].

For part (c) we note that

H 1 (K; Z 3 ) ∼ = K/[K, K] where [K, K] is the closure of the commu- tator subgroup [K, K] of K. By Lemma 2.1 the commutator map gr i K × gr j K → gr i+j K, (x, y) → [x, y]
is surjective when i = 3 2 and j = k 2 with k even, and also when i = 1 2 and j = l 2 with l > 1 odd.

Thus F 2 K ⊂ [K, K]. If i = 1
2 and j = 1 then the image of the commutator map is the kernel of the trace map. Together with part (b) of Lemma 2.1 this shows that K/[K, K] ∼ = Z/9 ⊕ Z/3 and it is easy to check that b and c generate Z/9 resp. Z/3.

The remaining parts (d) and (e) now follow from a simple Bockstein calculation.

3. The maps in the permutation resolution 3.1. Generalities. Let G be a profinite p-group. We say that G is finitely generated if H 1 (G, Z p ) is finitely generated over Z p . The kernel of the augmentation Z p [[G]] → Z p is denoted by IG, or simply by I. We say that a Z p [[G]]-module M is I-complete if the filtration by the submodules I n M , n ≥ 0, is complete. As in [START_REF] Goerss | A resolution of the K(2)-local sphere[END_REF] we use a Nakayama type lemma to show that certain homomorphisms are surjective. Its proof is the same as that of Lemma 4.3 of [START_REF] Goerss | A resolution of the K(2)-local sphere[END_REF].

Lemma 3.1. Let G be a finitely generated profinite p-group and f :

M → N a homomorphism of IG-complete Z p [[G]]-modules. Suppose that H 0 (f ) : H 0 (G, M ) → H 0 (G, N ) is surjective. Then f is surjective.
In [START_REF] Goerss | A resolution of the K(2)-local sphere[END_REF] we used the analogous Lemma 4.3 for G = S 1 2 in order to show that certain Z 3 [[S 1 2 ]]linear maps are surjective. Here we use Lemma 3.1 for G = K together with the action of the element a on H 0 (K, -) resulting from the exact sequence [START_REF]Centralizers of elementary abelian p-subgroups and mod-p cohomology of profinite groups[END_REF] in order to show that the same maps are surjective. The advantage of working with K will become clear when we will discuss the kernel of the map C 1 → C 0 (see the remark after Proposition 3.4 below). We begin the construction of the permutation resolution exactly as in [START_REF] Goerss | A resolution of the K(2)-local sphere[END_REF].

The homomorphism

∂ 1 . Let C 0 = Z 3 [[G 1 2 ]] ⊗ Z3[G24] Z 3 and e 0 = e ⊗ 1 ∈ C 0 if e is the unit in G 1 2 . Let ∂ 0 : C 0 → Z 3
be the standard augmentation and let N 0 be the kernel of ∂ 0 so that we have a short exact sequence [START_REF] Douglas | Complex cobordism and stable homotopy groups of spheres[END_REF] 0 

→ N 0 → C 0 → Z 3 → 0 . Proposition 3.2. a) As Z 3 [[K]]-module N 0 is
f i in H 0 (K, N 0 ) by f i then we have an isomorphism H 0 (K; N 0 ) ∼ = Z 3 {f 1 } ⊕ Z/9{f 2 } ⊕ Z/3{f 3 } . b)
The action of a on H 0 (K, N 0 ) is given by :

a * f 1 = f 1 + f 2 , a * f 2 = f 2 + f 3 , a * f 3 = f 3 -3f 2 . c) H 1 (K; N 0 ) = 0.
Proof. a) We consider the long exact sequence in H * (K, -) associated to the short exact sequence [START_REF] Douglas | Complex cobordism and stable homotopy groups of spheres[END_REF]. As C 0 is free K-module we have

H 1 (K; C 0 ) = 0. Furthermore, H 0 (K; C 0 ) ∼ = Z 2 3
, generated by the classes of e 0 and ωe 0 so that the end of this long exact sequence has the following form and by passing to K-coinvariants we get the second formula.

0 → H 1 (K; Z 3 ) ∼ = Z/9 ⊕ Z/3 → H 0 (K; N 0 ) → H 0 (K; C 0 ) ∼ = Z 2 3 → H 0 (K; Z 3 ) ∼ = Z 3 → 0 . Now (a)
The third formula can now be deduced from the fact that

a 3 * f 1 = f 1 .
c) This follows from the long exact sequence in H 0 (K, -) associated to the exact sequence (10) by using that

H i (K, C 0 ) = 0 for i = 1, 2 and H 2 (K, Z 3 ) = 0. Let C 1 = Z 3 [[G 1 2 ]] ⊗ Z3[SD16]
χ where χ is the non trivial character of SD 16 defined over Z 3 on which ω and φ both act by multiplication by -1. Let e 1 be the generator of C 1 given by e ⊗ 1 where e is as before the unit in G 1 2 . Corollary 3.3. There is a Z 3 [[G 1 2 ]]-linear epimorphism ∂ 1 : C 1 → N 0 given by e 1 → (e -ω)e 0 .

Proof. The elements ω 2 , φω and ω -1 φ all belong to G 24 and hence they act trivially on e 0 . Therefore we have ω(e -ω)e 0 = (ω -ω 2 )e 0 = -(e -ω)e 0 and φ(e -ω)e 0 = (φ -φω)e 0 = (ω(ω -1 φ) -e)e 0 = -(e -ω)e 0 . This implies that there is a well defined homomorphism C 1 → N 0 which sends e 1 to (e -ω)e 0 . To see that this homomorphism is surjective we note that C 1 is free as Z 3 [[K]]-module of rank 3 with generators e 1 , ae 1 and a 2 e 1 . Then we use Lemma 3.1 and Proposition 3.2.

3.3.

The homomorphism ∂ 2 . Now we turn towards the construction of the second homomorphism in our permutation resolution. This is substantially more intricate; in [START_REF] Goerss | A resolution of the K(2)-local sphere[END_REF] its existence was established but no explicit formula was given.

Let N 1 be the kernel of ∂ 1 so that we have a short exact sequence [START_REF] Neil | Gross-Hopkins duality[END_REF] 0

→ N 1 → C 1 → N 0 → 0 . Proposition 3.4. a) H 0 (K; N 1 ) ∼ = Z 2 3 . The inclusion of N 1 into C 1 induces an injection H 0 (K, N 1 ) → H 0 (K, C 1 )
and identifies H 0 (K, N 1 ) with the submodule generated by the classes g i , i = 1, 2, of g 1 = 3(a -e) 2 e 1 and g 2 = 9(a -e)e 1 . b) The action of a on H 0 (K, N 1 ) is determined by

a * g 1 = -2g 1 -g 2 , a * g 2 = 3g 1 + g 2 . c) H 0 (S 1 2 , N 1 ) ∼ = Z/3 and if n 1 is any element of N 1 which agrees in H 0 (K, C 1 ) with g 1 then its class in H 0 (S 1 2 , N 1 ) is non-trivial. d)
The elements ω and φ both act on H 0 (S 1 2 , N 1 ) by multiplication by -1.

Proof. a) We observe that C 1 is a free K-module of rank 3 generated by e 1 , ae 1 and ae 2 . Then (a) follows from Proposition 3.2 by using the long exact sequence in H 0 (K, -) associated to the short exact sequence [START_REF] Neil | Gross-Hopkins duality[END_REF] .

b) The formulae for the action of a already hold in H 0 (K, C 1 ). c) This follows from part (b) by passing to coinvariants with respect to the action of a.

d) This has already been observed in Lemma 4.6. of [START_REF] Goerss | A resolution of the K(2)-local sphere[END_REF].

Remark We remark that working with S 1 2 -coinvariants only (as in [START_REF] Goerss | A resolution of the K(2)-local sphere[END_REF]) does not give us a good hold on a generator of N 1 . The reason is that the map H 0 (S 1 2 , N 1 ) ∼ = Z/3 → H 0 (S 1 2 , C 1 ) ∼ = Z 3 is necessarily trivial and therefore such a generator cannot be easily associated with an element in C 1 . Working with K-coinvariants gives us a starting point, namely the element g 1 ∈ C 1 , from which we can try to construct an element n 1 of N 1 whose class in H 0 (K, C 1 ) agrees with that of g 1 and thus projects to a generator of H 0 (S 1 2 , N 1 ). A first step in the direction of finding such a generator n 1 is taken in Lemma 3.6 below.

Corollary 3.5. Let C 2 = Z 3 [[G 1 2 ]] ⊗ Z3[SD16]
χ, let n 1 ∈ N 1 be any element which projects non-trivially to the coinvariants H 0 (S 1 2 ; N 1 ) and let

n ′ 1 := 1 16 g∈SD16 χ(g -1 )g(n 1 ) .
Then there is a

Z 3 [[G 1 2 ]]-linear epimorphism ∂ 2 : C 2 → N 2 given by e 2 → n ′ 1 .
Proof. By construction the group SD 16 acts on n ′ 1 via the mod-3 reduction of the character χ and thus there is a homomorphism ∂ 2 as claimed. Surjectivity of ∂ 2 follows from Lemma 3.1. Proof. We start with the following two observations: c) By (a) and (b) n 1 belongs to N 1 . Furthermore it is clear that n 1 and 3(a -e) 2 e 1 agree in H 0 (K, C 1 ), hence n 1 projects non-trivially to H 0 (S 1 2 , N 1 ).

• Proposition 3.2 implies that ∂ 1 ((a -e) 2
The question becomes now how we can determine x and y. In fact, we do not have explicit formulae for x and y. However, in section 5.3 we will give approximations for them which are sufficient for our homological calculations.

3.4. The homomorphism ∂ 3 . In [START_REF] Goerss | A resolution of the K(2)-local sphere[END_REF] it was shown (by using that K is a Poincaré duality group) that the kernel of ∂ 2 can be identified with

Z 3 [[G 1 2 /G 24 ]
]. However, the identification and thus the construction of ∂ 3 was not explicit. The following result shows that ∂ 3 can be replaced by the dual of ∂ 1 , at least up to isomorphism.

If G is a profinite group and M a continuous left Z p [[G]]-module then we define its dual

M * by Hom Zp[[G]] (M, Z p [[G]]). This becomes a left Z p [[G]]-module via (g.ϕ)(m) = ϕ(m)g -1 if g ∈ G, ϕ ∈ Hom Zp[[G]] (M, Z p [[G]]
) and m ∈ M . We observe that for a finite subgroup H there is a canonical

Z p [[G]]-linear isomorphism (14) Z p [[G/H]] → Z p [[G/H]] * ∼ = Z p [[G]] H , g → g * : g → g( h∈H h)g -1 ↔ ( h∈H h)g -1 .
Proposition 3.7.

a) There is an exact complex of

Z 3 [[G 1 2 ]]-modules 0 -→ C * 0 ∂ * 1 -→ C * 1 ∂ * 2 -→ C * 2 ∂ * 3 -→ C * 3 ǫ -→ Z 3 -→ 0 in which ∂ * i is the dual of ∂ i for i = 1, 2, 3. b) There is an isomorphism of complexes of Z 3 [[G 1 2 ]]-modules 0 -→ C * 0 ∂ * 1 -→ C * 1 ∂ * 2 -→ C * 2 ∂ * 3 -→ C * 3 ǫ -→ Z 3 -→ 0 ↓ f 3 ↓ f 2 ↓ f 1 ↓ f 0 ↓= 0 -→ C 3 ∂3 -→ C 2 ∂2 -→ C 1 ∂1 -→ C 0 ǫ -→ Z 3 -→ 0 .
such that f i induces the identity on Tor

Z3[[S 1 2 ]] 0 (F 3 , C i ) for i = 2, 3 if we identify C * i with C 3-i via the isomorphism of (14). c) The homomorphism ∂ * 1 : C * 0 → C * 1 is
given by e * 0 → (e + a + a 2 )e * 1 .

Proof. a) Each C i is free as a Z 3 [[K]]-module and therefore the complex

0 -→ C 3 ∂3 -→ C 2 ∂2 -→ C 1 ∂1 -→ C 0 ǫ -→ Z 3 -→ 0 is a free Z 3 [[K]]-resolution of Z 3 . Because K is of finite index in G 1 2 the coinduced module of Z 3 [[K]] is isomorphic to Z 3 [[G 1 2 ]
]. Therefore there are natural isomorphisms

C * i = Hom Z3[[G 1 2 ]] (C i , Z 3 [[G 1 2 ]]) ∼ = Hom Z3[[K]] (C i , Z 3 [[K]]) and the n-th cohomology of the complex Hom Z3[[K]] (C i ; Z 3 [[K]]) is H n (K; Z 3 [[K]]).
Because K is a Poincaré duality group this is zero except when n = 3 and then it is isomorphic to Z 3 . Finally, one sees as in Proposition 5 of [START_REF] Neil | Gross-Hopkins duality[END_REF] 

that the Z 3 [[G 1 2 ]]-module structure on H n (G 1 2 ; Z 3 [[G 1 2 ]]) ∼ = H n (K; Z 3 [[K]]) is trivial. b) The augmentation Z 3 [[G 1 2 ]] → Z 3 induces an isomorphism Hom Z3[[G 1 2 ]] (Z 3 , Z 3 ) ∼ = Hom Z3[[G 1 2 ]] (Z 3 [[G 1 2 ]], Z 3
) . Thus the right hand square is commutative up to a unit in Z 3 if we choose for f 0 the isomorphism given in (14), and we can modify f 0 by a unit so that it commutes on the nose. Then f 0 induces an isomorphism Kerǫ ∼ = Kerǫ and

C 2 ∂2 -→ C 1 ∂1 -→ Kerǫ resp. C * 1 ∂ * 2 -→ C * 2 ∂ * 3 -→ Kerǫ
is the beginning of a resolution of Kerǫ resp. Kerǫ by projective Z 3 [[G 1 2 ]]-modules and the isomorphism induced by f 0 lifts to a chain map f • between the projective resolutions. By Lemma 4.5 of [START_REF] Goerss | A resolution of the K(2)-local sphere[END_REF] we have Tor Z3[[S 1 2 ]] i (F 3 , Kerǫ) ∼ = F 3 if i = 0, 1 and this implies that the maps

f 1 : C 1 → C * 2 and f 2 : C 2 → C * 1 induce isomorphisms on Tor Z3[[S 1 
2 ]] 0 (F 3 , -) and hence they are themselves isomorphisms by Lemma 4.3 of [START_REF] Goerss | A resolution of the K(2)-local sphere[END_REF]. Finally, f 3 is trivially an isomorphism because f 2 and f 1 are isomorphisms.

The isomorphism of chain complexes (considered as automomorphism via ( 14)) induces an automorphism of spectral sequences Tor Z3[[S 1 2 ]] j

(F 3 , C i ) ⇒ Tor Z3[[S 1 2 ]] i+j (F 3 , Z 3 )
which converges towards the identity, and this easily implies the remaining part of (b). c) By ( 14) we have for each g ∈ G 1

2

(e + a + a 2 ) * (e * 1 )( g) = g h∈SD16 χ(h -1 )h (e + a -1 + a -2 ) = g h∈SD16 χ(h -1 )h (e + a + a 2 )
and

∂ * 1 (e * 0 )( g) = e * 0 ( g(e -ω)) = g(e -ω) h∈G24 h = g(e -ω) h∈Q8 
h (e + a + a 2 ) .

Then we conclude via the identity (e -ω) h∈Q8 h = h∈SD16 χ(h -1 )h.

On the action of the stabilizer group

In this section we will produce formulae for the action of the elements a, b, c and d of the stabilizer group G 2 on F 9 [[u 1 ]][u ±1 ], at least modulo suitable powers of the invariant ideal generated by u 1 . It turns out that it is sufficient to have a formula for the action of a and b on u modulo (u 6 1 ), and for the action of c and d on u modulo (u 10 1 ).

4.1. Generalities. We recall (cf. [START_REF] Douglas | Complex cobordism and stable homotopy groups of spheres[END_REF]) that

BP * ∼ = Z (p) [v 1 , v 2 , .
. .] where the Araki generators v i satisfy the following equation (in

BP * ⊗ Q) (15) pλ k = 0≤i≤k λ i v p i k-i .
Here the λ i ∈ BP * ⊗ Q are the coefficients of the logarithm of the universal p-typical formal group law

F on BP * , log F (x) = i≥0 λ i x p i
(with λ 0 = 1), and thus the [p]-series of F is given by

[p] F (x) = i≥0 F v i x p i .
The homomorphism

BP * → (E n ) * = W F p n [[u 1 , . . . , u n-1 ]][u ±1 ], v i →    u i u 1-p i i < n u 1-p n i = n 0 i > n
defines a p-typical formal group law F n over (E n ) * . Then the formal group law G n over (E n ) 0 defined by G n (x, y) = u -1 F n (ux, uy) is a universal deformation of Γ n and is p-typical with p-series

(16) [p] Gn (x) = px + Gn u 1 x p + Gn • • • + Gn u n-1 x p n-1 + Gn x p n .
Next we recall how one can get at the action of an element g ∈ S n on (E n ) 0 . For a given g we choose a lift g ∈ (E n ) 0 [[x]] of g and let G be the formal group law defined by

G(x, y) = g -1 G n ( g(x), g(y)) .
Then there is a unique ring homomorphism g * : (E n ) 0 → (E n ) 0 and a unique * -isomorphism from g * G n to G such that the composition

h g : g * G n → G g → G n
is an isomorphism of p-typical formal group laws and can therefore be written (cf. Appendix 2 of [START_REF] Douglas | Complex cobordism and stable homotopy groups of spheres[END_REF]) as

h g (x) = i≥0 Gn t i (g)x p i for unique continuous functions (17) t i : S n → (E n ) 0 .
We note that (18)

t i (g) ≡ g i mod (3, u 1 ) if g = i g i S i ∈ S n with g p 2 i = g i . Then we have (19) g * (u) = t 0 (g)u
and the equation

(20) h g ([p] g * Gn (x)) = [p] Gn (h g (x))
can be used to recursively find better and better approximations for t 0 (g) as well as for the action of g on the deformation parameters u 1 , . . . , u n-1 .

4.2.

A formula modulo (3) for the formal group law G 2 . From now on we restrict attention to the case n = 2 and p = 3. Proof. From (15) we get λ 1 = -v1 24 and

λ 2 = 1 1-3 8 v2 3 - v 4 
1 72 . To obtain the result for log G2 we use the classifying homomorphism for F 2 and that log G2 (x) = u -1 log F2 (ux).

Corollary 4.2. The formal group law G 2 satisfies

x + G2 y ≡ x + y -u 1 (xy 2 + x 2 y) + u 2 1 (xy 4 + x 4 y) -u 3 1 (xy 6 + x 6 y) -u 3 1 (x 3 y 4 + x 4 y 3 ) -(x 3 y 6 + x 6 y 3 ) + u 4 1 (x 4 y 5 + x 5 y 4 ) mod (3, (x, y) 11 ) .
Proof. This follows directly from x + G2 y = exp G2 (log G2 (x) + log G2 (y)).

4.3.

Formulae for the action modulo (3). To simplify notation we will denote in the remainder of this section the mod-3 reduction of the value of the function t i of (17) on an element g again by t i (g), or even by t i if g is clear from the context.

Proposition 4.3. Let g ∈ S n and let u 1 be Araki's u 1 . Then the following equations hold

a) g * (u 1 ) = t 2 0 u 1 b) t 0 + t 6 0 t 1 u 3 1 = t 9 0 + t 3 1 u 1 c) t 1 -t 8 0 t 1 u 4 1 ≡ t 9 1 + t 3 2 u 1 -t 18 0 t 3 1 u 2 1 -t 9 0 t 6 1 u 3 1 mod (u 7 1 ) d) If g ≡ 1 mod (S 2 ) then t 2 ≡ t 9 2 + t 3 3 u 1 mod (u 2 1 )
.

Remark If we want to know g * (u 1 ) modulo (u 7 1 ) then (a) shows that it is enough to know t 0 modulo (u 6 1 ) and this can be calculated from (b) if we know t 0 modulo (u 1 ) and t 1 modulo (u 3 1 ). Furthermore, t 1 can be calculated modulo (u 3 1 ) from (c) if we know t 0 , t 1 and t 2 modulo (u 1 ). In the same manner we can even calculate g * (u 1 ) modulo (u 8 1 ).

Similarly, if we want to know g * (u 1 ) modulo (u 11 1 ) then (a) shows that it is enough to know t 0 modulo (u 10 1 ) and this can be calculated from (b) if we know t 0 modulo (u 1 ) and t 1 modulo (u 7 1 ). Furthermore, t 1 can be calculated modulo (u 7 1 ) from (c) if we know t 0 modulo (u 3 1 ), t 1 modulo (u 1 ) and t 2 modulo (u 2 1 ). Finally (d) can be used to calculate t 2 modulo (u 2 1 ) if we know t 2 and t 3 modulo (u 1 ).

Proof. In this proof we abbreviate G 2 simply by G. We consider equation (20)

h g ([3] g * G )(x) = [3] G (h g (x)) over (E 2 ) 0 /(3)[[x]
] and compare coefficients of x 3 k for k = 1, 2, 3, 4. By (16) we have

h g ([3] g * G )(x) ≡ t 0 g * (u 1 )x 3 + g * G x 9 + G t 1 g * (u 1 )x 3 + g * G x 9 3 + G t 2 g * (u 1 )x 3 + g * G x 9 9 + G t 3 g * (u 1 )x 3 + g * G x 9 27 mod (x 82 ) [3] G (h g (x)) ≡ u 1 (t 0 x + G t 1 x 3 + G t 2 x 9 + t 3 x 27 ) 3 + G (t 0 x + G t 1 x 3 + G t 2 x 9 ) 9 mod (x 82 ) .
a) For the coefficient of x 3 we obviously get g * (u 1 )t 0 = u 1 t 3 0 which proves (a).

b) The coefficient of

x 9 in h g ([3] g * G )(x) is equal to t 0 + g * (u 1 ) 3 t 1 which by (a) is equal to t 0 + u 3 1 t 6 0 t 1 . The coefficient of x 9 in [3] G (h g (x)) is equal to the same coefficient in u 1 (t 0 x + G t 1 x 3 ) 3 + G (t 0 x) 9
which is clearly equal to u 1 t 3 1 + t 9 0 and hence we get (b).

c) The coefficient of x 27 in h g ( [START_REF] Devinatz | Homotopy fixed point spectra for closed subgroups of the Morava stabilizer groups[END_REF] g * G )(x) is equal to the coefficient of x 27 in t 0 g * (u 1 )x 3 + g * G x 9 + G t 1 g * (u 1 )x 3 + g * G x 9 3 + G t 2 g * (u 1 )x 3 9 and the latter coefficient is equal to

t 1 + t 2 g * (u 1 ) 9 + c
where c is the coefficient of x 27 in

t 0 g * (u 1 )x 3 + g * G x 9 + G t 1 g * (u 1 ) 3 x 9 .
Next we observe that Corollary 4.2 yields

g * (u 1 )x 3 + g * G x 9 ≡ g * (u 1 )x 3 + x 9 -g * (u 1 ) 3 x 15 -g * (u 1 ) 2 x 21 + g * (u 1 ) 6 x 21 -g * (u 1 ) 9 x 27 mod (x 28 ) .
Applying Corollary 4.2 once more and using (a) and calculating modulo (u 7 1 ) we obtain c ≡ -u 1 t 2 0 t 1 g * (u 1 ) 3 = -u 4 1 t 8 0 t 1 mod (u 7 1 ) and hence modulo (u 7 1 ) the coefficient of

x 27 in h g ([3] g * G )(x) is equal to t 1 -u 4 1 t 8 0 t 1 . On the other hand the coefficient of x 27 in [3] G (h g (x)) is equal to the same coefficient in u 1 (t 0 x + G t 1 x 3 + G t 2 x 9 ) 3 + G (t 0 x + G t 1 x 3 ) 9
and this coefficient is equal to

u 1 t 3 2 + t 9 1 + d where d is the coefficient of x 27 in u 1 (t 0 x + G t 1 x 3 ) 3 + G t 9 0 x 9 .
Next we observe that Corollary 4.2 yields

(t 0 x + G t 1 x 3 ) 3 ≡ t 3 0 x 3 + t 3 1 x 9 -u 3 1 t 6 0 t 3 1 x 15 -u 3 1 t 3 0 t 6 1 x 21 + u 6 1 t 12 0 t 3 1 x 21 -u 9 1 t 18 0 t 3 1 x 27 mod (x 28 ) .
Applying Corollary 4.2 once more and using (a) and calculating modulo (u 7 1 ) we obtain

u 1 (t 0 x + G t 1 x 3 ) 3 + G t 9 0 x 9 ≡ u 1 t 3 0 x 3 + t 3 1 x 9 -u 3 1 t 6 0 t 3 1 x 15 -u 3 1 t 3 0 t 6 1 x 21 ) + t 9 0 x 9 -u 3 1 t 3 0 x 3 + t 3 1 x 9 -u 3 1 t 6 0 t 3 1 x 15 -u 3 1 t 3 0 t 6 1 x 21 ) 2 t 9 0 x 9 -u 2 1 t 3 0 x 3 + t 3 1 x 9 -u 3 1 t 6 0 t 3 1 x 15 -u 3 1 t 3 0 t 6 1
x 21 )t 18 0 x 18 +u 6 1 t 3 0 x 3 + t 3 1 x 9 -u 3 1 t 6 0 t 3 1 x 15 -u 3 1 t 3 0 t 6 1 x 21 ) 4 t 9 0 x 9 mod (x 28 ) and hence

d ≡ -u 3 1 (t 6 1 -2u 3 1 t 9 0 t 3 1 )t 9 0 -u 2 1 t 18 0 t 3 1 + 4u 6 1 t 18 0 t 3 1 mod (u 7 1 ) . Therefore the coefficient of x 27 in [3] G (h g (x)
) is equal to

t 9 1 + u 1 t 3 2 -u 2 1 t 18 0 t 3 1 -u 3 1 t 9 0 t 6 1 + 2u 6 1 t 18 0 t 3 1 + 4u 6 1 t 18 0 t 3 1 mod (u 7 1 ) and (c) follows. d) The coefficient of x 81 in h g ([3] g * G )(x) is equal to the same coefficient in t 0 g * (u 1 )x 3 + g * G x 9 + G t 1 g * (u 1 )x 3 + g * G x 9 3 + G t 2 g * (u 1 )x 3 + g * G x 9 9 + G t 3 (g * (u 1 )x 3 ) 27 which modulo (u 3 1 ) is equal to the same coefficient in t 0 g * (u 1 )x 3 + g * G x 9 + G t 1 x 27 + G t 2 x 81
and by Corollary 4.2 this is easily seen to be equal to t 2 modulo (u 2 1 ).

On the other hand the coefficient of

x 81 in [3] G (h g (x)
) is equal to the same coefficient in

u 1 (t 0 x + G t 1 x 3 + G t 2 x 9 + t 3 x 27 ) 3 + G (t 0 x + G t 1 x 3 + t 2 x 9 ) 9
and this coefficient is equal to u 1 t 3 3 + t 9 2 + e where e is the coefficient of x 81 in the series

u 1 (t 0 x + G t 1 x 3 + G t 2 x 9 ) 3 + G (t 0 x + G t 1 x 3 ) 9 .
Now g ≡ 1 mod (S 2 ) implies t 1 ≡ 0 mod (u 1 ) and thus modulo (u 2 1 ) we find that e is also the coefficient of x 81 in u 1 (t 0 x + G t 2 x 9 ) 3 + G t 9 0 x 9 and by Corollary 4.2 even of the coefficient of x 81 in u 1 (t 0 x + G t 2 x 9 ) 3 . Now Lemma 4.4 below shows that the coefficient of x 27 in t 0 x + G t 2 x 9 is trivial modulo (u 1 ) (if not, either the coefficient of x 18 y or of x 9 y 2 in x + G y would have to be nontrivial modulo (u 1 )), hence e is trivial modulo (u 2 1 ) and the proof of (d) is complete.

Lemma 4.4.

x

+ G2 y ≡ x + y + i≥1 P 8i+1 (x, y) mod (3, u 1 )
where P 8i+1 is a homogeneous polynomial of degree 8i + 1 without terms x 8i+1 and y 8i+1 .

Proof. It is enough to show this for the graded formal group law F 2 over (E 2 ) * . This group law is a homogeneous series of degree -2 if x and y are given degree -2 and thus, if we write

x + G2 y ≡ x + y + j≥1 P j (x, y) mod (3, u 1 )
with homogeneous polynomials in x and y of degree -2j then the coefficients in P j have to be in (E 2 ) 2j-2 . Furthermore, this group law has its coefficients in the subring generated by u 1 u -2 and u -8 . However, (E 2 ) * /(3, u 1 ) ∼ = F 9 [[u ±1 ]] and thus 2j -2 has to be a multiple of 16.

1 mod (3, u 6 1 ) k = 3k ′ + 2 .
Proof. The result follows easily from Corollary 4.5 and from

t 0 (g) k = (1 + (t 0 (g) -1) ) k ≡ 5 j=1 k 3 (t 0 (g) -1) j mod (3, u 6 1 ) 
by using that k j ≡ i ki ji mod (p) if k = i k i p i and j = i j i p i are the p-adic expansions of k and j respectively. Using Lemma 2.2 we finally get the following information on the action of a, b, c and d on (E 2 ) * /(3). We use 1 and ω 2 as a basis of F 9 considered as an F 3 -vector space (rather then 1 and ω). 

a * u 1 ≡ u 1 -(1 + ω 2 )u 2 1 -ω 2 u 3 1 + (1 -ω 2 )u 4 1 -u 5 1 -(1 + ω 2 )u 6 1 mod (u 7 1 ) b * u 1 ≡ u 1 + u 2 1 + u 3 1 -u 4 1 + (1 + ω 2 )u 5 1 + (1 -ω 2 )u 6 1 mod (u 7 1 ) c * u 1 ≡ u 1 -ω 2 u 5 1 + (-1 + ω 2 )u 8 1 -(1 + ω 2 )u 9 1 mod (u 11 1 ) d * u 1 ≡ u 1 + ω 2 u 8 1 mod (u 11 1 ) a * u ≡ 1 + (1 + ω 2 )u 1 + (-1 + ω 2 )u 3 1 + (1 + ω 2 )u 5 1 u mod (u 6 1 ) b * u ≡ 1 -u 1 + u 3 1 -ω 2 u 4 1 -u 5 1 u mod (u 6 1 ) c * u ≡ 1 + ω 2 u 4 1 + (1 -ω 2 )u 7 1 + ω 2 u 8 1 u mod (u 10 1 ) d * u ≡ 1 -ω 2 u 7
1 u mod (u 10 1 ) .

5.

The E 2 -term of the algebraic spectral sequence 5.1. The E 1 -term. We begin by giving some background on Theorem 1.1, or equivalently, on the E 1 -term of the spectral sequence (2)

E s,t, * 1 = Ext t Z3[[G 1 2 ]] (C s , (E 2 ) * /(3)) =⇒ H s+t (G 1 2 , (E 2 ) * /( 3 
)) . We note that for s = 1, 2 the module C s is projective as Z 3 [[G 1 2 ]]-module and thus we have a Shapiro isomorphism

(21) E s,t 1 = Ext t Z3[[G 1 2 ]] (χ ↑ G 1 2 SD16 , (E 2 ) * /(3)) ∼ = Hom Z3[SD16] (χ, (E 2 ) * /(3)) t = 0 0 t > 0 .
The action of SD 16 on (E 2 ) * is known (cf. the proof of Lemma 22 of [START_REF] Henn | On finite resolutions of K(n)-local spheres, Elliptic Cohomology[END_REF] for an explicit reference) to be given by ( 22) This implies immediately that (E 2 ) * /(3) SD16 is isomorphic to F 3 [[u 4 1 ]][v 1 , u ±8 ] as a graded algebra and that there is an isomorphism of (E 2 ) * /(3) SD16 -modules

ω * u 1 = ω 2
(24) Ext 0 Z3[SD16] (χ, (E 2 ) * /(3)) ∼ = ω 2 u 4 F 3 [[u 4 1 ]][v 1 , u ±8 ].
For s = 0, 3 we have a Shapiro isomorphism

E s,t 1 = Ext t Z3[[G 1 2 ]] (Z 3 [[G 1 2 /G 24 ]], (E 2 ) * /(3)) ∼ = H t (G 24 , (E 2 ) * /(3)
) . Let G 12 be the subgroup of G 24 generated by the elements a and t. The calculation of the cohomology algebra H * (G 12 , (E 2 ) * /(3)) was deduced from that of H * (G 12 , (E 2 ) * ) in section 1.3 of [START_REF] Goerss | The homotopy of L 2 V (1) for the prime 3, Categorical decomposition techniques in algebraic topology (Isle of Skye[END_REF]. In precisely the same way one deduces the calculation of H * (G 24 , (E 2 ) * /(3)) from that of H * (G 12 , (E 2 ) * ) which was given in section 3 of [START_REF] Goerss | A resolution of the K(2)-local sphere[END_REF]. In particular there are classes

∆ ∈ H 0 (G 24 , (E 2 ) 24 /(3)), α ∈ H 1 (G 24 , (E 2 ) 4 /(3)) α ∈ H 1 (G 24 , (E 2 ) 12 /(3)), β ∈ H 2 (G 24 , (E 2 ) 12 /(3))
and an isomorphism of algebras

(25) H * (G 24 , (E 2 ) * /(3)) ∼ = F 3 [[v 6 1 ∆ -1 ]][v 1 , ∆ ±1 , β, α, α]/(α 2 , α 2 , v 1 α, v 1 α, α α + v 1 β) .
In the sequel we need some control over the elements occuring in this isomorphism (cf. section 1.3 of [START_REF] Goerss | The homotopy of L 2 V (1) for the prime 3, Categorical decomposition techniques in algebraic topology (Isle of Skye[END_REF]). First we recall that α is defined as δ 0 (v 1 ) where δ 0 is the Bockstein with respect to the short exact sequence of continuous

Z 3 [[G 2 ]]-modules (26) 0 → (E 2 ) * /(3) 3 → (E 2 ) * /(9) → (E 2 ) * /(3) → 0 .
Similarly, v 2 := u -8 determines an invariant in H 0 (G 2 , (E 2 ) 16 /(3, u 1 )) and α is defined as δ 1 (v 2 ) where δ 1 is the Bockstein with respect to the short exact sequence of continuous

Z 3 [[G 2 ]]-modules (27) 0 → Σ 4 (E 2 ) * /(3) v1 → (E 2 ) * /(3) → (E 2 ) * /(3, u 1 ) → 0 .
and by induction on n we have

d 1 (∆ k ) 3 ≡ (-1) m+1 mω 2 u 4.3 n -2 1 u -12k 3 ≡ (-1) m mω 2 u 4.3 n+1 -6 1 u -12•3k mod (u 4.3 n+1 +6 1
) .

Therefore v 1 -linearity of d 1 yields

d 1 (∆ 3k ) = d 1 (∆ 3 k ) -mv 3(4.3 n -2) 1 d 1 (∆ 3k-2.3 n +1 ) ≡ (-1) m+1 ω 2 mu 4.3 n+1 -2 1 u 12•3k mod (u 4.3 n+1 +2 1 )
and the induction step is established.

Corollary 5.4.

There is an isomorphism of

F 3 [v 1 ]-modules E 0,0 2 ∼ = F 3 [v 1 ].
Remark By (25) the elements ∆ k form a topological basis of the continuous graded F 3 [v 1 ]module E 0,0 1 (in fact, this has been implicitly used in the last corollary) and by (24) a topological basis of the continuous graded

F 3 [v 1 ]-module E 1,0
1 can be given by any family of elements b 2k+1 , k ∈ Z, such that b 2k+1 ≡ ω 2 u -8k-4 mod (u 4 1 ). By Proposition 5.3 we know that there are such elements b 2.(3m+1)+1 for m ∈ Z and b 2.3 n (3m-1)+1 for n ≥ 0, m ≡ 0 mod [START_REF] Devinatz | Homotopy fixed point spectra for closed subgroups of the Morava stabilizer groups[END_REF], such that the first formula of Theorem 1.2 holds. Because the E 1 -term is torsion free as a F 3 [v 1 ]-module and the

d 1 -differential is F 3 [v 1 ]-linear it is clear that those b 2k+1 's are in the kernel of the differential d 1 : E 1,0 1 → E 2,0
1 . To complete this family to a topological basis we need to choose elements b 2k+1 for k = 3 n+1 (3m + 1) with n ≥ 0, m ∈ Z, for k = 3 n (9m + 8) with n ≥ 0, m ∈ Z, and for k = 0. Thus we are lead to concentrate on the differential on ω 2 u -4(2k+1) for such k. The crucial step is given by Proposition 5.6 below whose proof is quite elaborate and will be postponed to section 5.3. The proof of Proposition 5.5 will be given in section 6.

Proposition 5.5. There exists an element b

1 ∈ E 1,0 1 such that b 1 ≡ ω 2 u -4 mod (u 4 1 ) and v 1 α = b 1 in H * (G 1 2 ; (E 2 ) * /(3)).
In particular, d 1 (b 1 ) = 0. Proposition 5.6. Let k be an integer such that 8k + 4 is not divisible by 3. Then the differential

d 1 : E 1,0 1 → E 2,0 1 satisfies d 1 (ω 2 u 8k+4 ) ≡ -(k ′ + k ′2 )ω 2 u 12 1 u 8k+4 mod (u 16 1 ) 8k + 4 = 3k ′ + 1 d 1 (ω 2 u 8k+4 ) ≡ (k ′ -k ′2 )ω 2 u 8 1 u 8k+4 mod (u 12 1 ) 8k + 4 = 3k ′ + 2 .
Proof. This will be proved in section 5.3.

Proposition 5.7. For each integer k there exists an element b 2k+1 ∈ E

1,0,8(2k+1) 1 such that a) b 2k+1 ≡ ω 2 u -4(2k+1) mod (u 4 1 ) b) d 1 (∆ k ) =    (-1) m+1 b 2(3m+1)+1 k = 2m + 1, m ∈ Z (-1) m+1 mv 4.3 n -2 1 b 2.3 n (3m-1)+1 k = 2m.3 n , m ≡ 0 mod (3) 0 k = 0 c) the differential d 1 : E 1,0 1 → E 2,0 1 satisfies d 1 (b 2k+1 ) ≡    (-1) n ω 2 u 6.3 n +2 1 u -4(2k+1) mod (u 2.3 n+1 +6 1 ) k = 3 n+1 (3m + 1), m ∈ Z (-1) n ω 2 u 10.3 n +2 1 u -4(2k+1) mod (u 10.3 n +6 1 ) k = 3 n (9m + 8), m ∈ Z 0 otherwise .
Proof. For k = 3m+1 with m ∈ Z we define b 2k+1 to be (-1) m+1 d 1 (∆ 2m+1 ). For k = 3 n (3m-1) with n ≥ 0 and m ≡ 0 mod (3) we note that Proposition 5.

3 shows that d 1 (∆ 2m.3 n ) is divisible by v 4.3 n -2 1
and we define b 2k+1 to be (-1) m+1 mv

-(4.3 n -2) 1 d 1 (∆ 2m.3 n ).
For k = 0 we take the element given in Proposition 5.5. With these definitions (b) holds as well as the last case of (c).

For k = 3 n+1 (3m + 1) resp. k = 3 n (9m + 8), with n ≥ 0 and m ∈ Z, we define elements b 2k+1 by induction on n such that (a) and (c) are satisfied. In fact, for n = 0 we define b 2k+1 : = ω 2 u -4(2k+1) and then Proposition 5.6 gives

d 1 (b 18m+7 ) ≡ ω 2 u 8 1 u -4(18m+7) mod (u 12 1 ), d 1 (b 18m+17 ) ≡ ω 2 u 12 1 u -4(18m+17) mod (u 12 1 ) . c) the differential d 1 : E 2,0 1 → E 3,0 1 satisfies d 1 (b 2k+1 ) ≡        -u 2 1 u -4(2k+1) mod (u 4 1 ) 2k + 1 = 6m + 1 ω 2 u 4.3 n 1 u -4(2k+1) mod (u 4.3 n +2 1 ) 2k + 1 = 3 n (18m + 17) -ω 2 u 4.3 n 1 u -4(2k+1)
mod (u 4. So we still need to define b 2k+1 if 2k + 1 can be written as 2k + 1 = 6m + 1 with m ∈ Z or 2k + 1 = 3 n (18m + 11 ± 6) with n ≥ 0 and m ∈ Z. In those cases we define b 2k+1 : = ω 2 u -4(2k+1) and note that -4(2k + 1) ≡ 2 mod (3) if 2k + 1 = 6m + 1 and that -4(2k + 1) ≡ 7 mod (9) if 2k + 1 = 18m + 5 resp. -4(2k + 1) ≡ 4 mod ( 9) if 2k + 1 = 18m + 17. Then (c) holds by Lemma 5.9 and Proposition 3.7.c, at least if we pretend that the differential is induced by the map ∂ * 1 : C * 0 → C * 1 after identification of C 3 with C * 0 and of C 2 with C * 1 via the isomorphisms given by ( 14). In reality the differential is induced by ∂ * 1 only up to the automorphisms of E i,0

1 , i = 2, 3, induced by the isomorphisms f i of Proposition 3.7 and the isomorphisms of ( 14). However, by Proposition 3.7 these automorphisms induce the identity on Tor Z3[[S 1 2 ]] 0 (F 3 , C i ) for i = 2, 3. Then Corollary 4.5 shows that they induce automorphisms of E i,0

1 as continuous graded F 3 [v 1 ]-modules which map ω 2 u -4(2k+1) to itself modulo (u 4 
1 ) respectively ω 2k u -12k to itself modulo (u 2 1 ) and part (c) follows.

Corollary 5.11. There is an isomorphism of

F 3 [v 1 ]-modules E 2,0 2 ∼ = n≥0 m∈Z F 3 [v 1 ]/(v 2.3 n+1 +2 1 ){b 3 n+1 (6m+1) } × n≥0 m∈Z F 3 [v 1 ]/(v 10.3 n +2 1 ){b 3 n (18m+11) } .
Remark By inspection one sees again that the infinite product is finite in each bidegree and therefore it can also be identified with the direct sum.

Proposition 5.12. For each integer k there exists an element

∆ k ∈ E 3,0 1 such that a) ∆ k ≡ ∆ k mod (u 2 1 ) b) The differential d 1 : E 2,0 1 → E 3,0 1 is given by d 1 (b 2k+1 ) ≡        (-1) m+1 v 2 1 ∆ 2m 2k + 1 = 6m + 1 (-1) m+n v 4•3 n 1 ∆ 3 n (6m+5) 2k + 1 = 3 n (18m + 17) (-1) m+n+1 v 4•3 n 1 ∆ 3 n (6m+1) 2k + 1 = 3 n (18m + 5) 0 otherwise .
Proof. Proposition 5.10 shows that d 1 (b 2k+1 ) is divisible by the appropriate power of v 1 . The sign is then determined by comparing the coefficients of the "leading term" u 2 1 u -4(2k+1) resp. 6m+3±2) on the other hand.

ω 2 u 4.3 n 1 u -42k+1 in d 1 (b 2k+1 ) on one hand and in v 2 1 ∆ 2m resp. v 4.3 n 1 ∆ 3 n (

Corollary 5.13. There is an isomorphism of

F 3 [v 1 ]-modules E 3,0 2 ∼ = m∈Z F 3 [v 1 ]/(v 2 1 ){∆ 2m } × n≥0,m∈Z F 3 [v 1 ]/(v 4•3 n 1 ){∆ 3 n (6m+1) , ∆ 3 n (6m+5) } .
Remark By inspection one sees once again that the infinite product is finite in each bidegree and it can therefore also be identified with the direct sum. -c). The next result gives approximations for x and y which are sufficient for our homological calculations.

Lemma 5.14. Let

x = b -1 d -1 (e -d) -b -1 d -1 (e -b)b -1 c -1 (e -c) y = b -1 d -1 (e -b)b -1 c -1 (e -b) .
Then there exists z ∈ IF 5 2 S 1 2 + IK.IF 2 S 1 2 such that the following identity holds in IK e -c 3 = x(e -b) + y(e -c) + z .

Proof. From Lemma 2.1 and Lemma 2.2 we deduce

c 3 ≡ [b -1 , d -1 ] mod F 5 2 S 1 2 .
Thus by using the elementary formulae

(31) 1 -[X, Y ] = XY (1 -Y -1 )(1 -X -1 ) -(1 -X -1 )(1 -Y -1 ) (32) 1 -XY = X(1 -Y ) + (1 -X)
which hold in any associative algebra we obtain 2 . Substituting this into (33) gives the result.

We will thus be interested in analyzing the action of

(34) 3c(a -c)(a -b) + (e -c) 2 (a -c)(a -b) -x(a -b) -y(a -c)(a -b)
as well as in the influence of the "error term" z on the elements ω 2 u -4k+2 . This analysis will be simplified by the following result in which I denotes the ideal IS 1 2 . Lemma 5.15. Let r ≥ 1 be an integer. Then we have the following inclusions of left ideals

a) IF r S 1 2 ⊂ I 3 r -1 (e -b) + I 2.(3 r-1 -1) (e -c) + 3I ⊂ I 2.3 r-1 + 3I b) IF r 2 S 1 2 ⊂ I 3 r -1 (e -b) + I 3 r -2 (e -c) + 3I ⊂ I 3 r + 3I.
Proof. We note that for every integer r ≥ 0 we have an isomorphism

IF r 2 S 1 2 ∼ = lim q>r I(F r 2 S 1 2 /F q 2 S 1 
2 ) and it will therefore be enough to show the corresponding statements for the corresponding ideals in the finite quotient groups F r S 1 2 /F q S 1 2 . Next we remark that for every finite p-group G the ideal IG is a free Z p -module with basis e -g, g ∈ G -{e}. Therefore it is enough to show that e -g ∈ I 3 r -1 (e -b)

+ I 2.(3 r-1 -1) (e -c) + 3I for every g ∈ F r S 1 2 /F q S 1 2 resp. e -g ∈ I 3 r -1 (e -b) + I 3 r -2 (e -c) + 3I for every g ∈ F r+ 1 2 S 1 2 /F q S 1 2 . b) ϑ * (u 3k ′ +2 ) ≡ (γu 8 1 + δu 10 1 )u 3k ′ +2 mod (3, u 11 1 ) for a suitable γ, δ ∈ F 9 .
The next lemma gives a simplified approximation to θ and hence to d 1 .

Proposition 5.19. Let

x ′ = (e -d) -(e -b)(e -c) and y ′ = (e -b)(e -b)
and define

θ ′ := 1 16 g∈SD16 χ(g -1 )g 3c(a -c)(a -b) + (e -c) 2 (a -c)(a -b) -x ′ (a -b) -y ′ (a -c)(a -b) .
Then the differential

d 1 : E 1,0 1 → E 2,0 1 satisfies d 1 (ω 2 u -4(2k+1) ) ≡ ( θ ′ ) * (ω 2 u -4(2k+1) ) mod (u 16 1 ) -4(2k + 1) = 3k ′ + 1 d 1 (ω 2 u -4(2k+1) ) ≡ ( θ ′ ) * (ω 2 u -4(2k+1) ) mod (u 12 1 ) -4(2k + 1) = 3k ′ + 2 .
Proof. First we note that Lemma 5.15 shows that the element z of Lemma -c)) and therefore does not contribute to the calculation of d 1 modulo the specified precision. Furthermore θ ′ belongs to (3, I 4 ). Now the last corollary shows that we have equality modulo (u 13 1 ) resp. (u 11 1 ) if we replace x and y from Lemma 5.14 by x ′ and y ′ , and then the following lemma implies equality even modulo (u 16 1 ) resp. (u 12 1 ).

Lemma 5.20. Let k and l ≥ 0 be integers and λ ∈ F 9 . Then

1 16 g∈SD16 χ(g -1 )g(λu l 1 u k ) = 1 2 (λ -λ 3 )u l 1 u k k + 2l ≡ 4 mod (8) 0 else .
Proof. By ( 22) and (23) we have

g∈SD16 χ(g -1 )g(λu l 1 u k ) = 7 j=0 (-1) j (ω j ) * (λu l 1 u k ) + 7 j=0 (-1) j+1 (ω j φ) * (λu l 1 u k ) = 7 j=0 (-1) j ω j(k+2l) λu l 1 u k - 7 j=0 (-1) j ω j(k+2l) λ 3 u l 1 u k .
Furthermore 7 j=0 (-1) j ω j(k+2l) = 0 unless k + 2l ≡ 4 mod [START_REF] Karamanov | A propos de la cohomologie du deuxième groupe stabilisateur de Morava[END_REF] in which case it is equal to 8. The result follows.

The previous result tells us how to get the "leading term" in the differential once we know the coefficients α, β, γ and δ of Corollary 5.18 in the case of ϑ = θ :=

4 i=1 θ i with θ 1 := 3c(a -c)(a -b) + (e -c) 2 (a -c)(a -b) θ 2 := -(e -d)(a -b) θ 3 := (e -b)(e -c)(a -b) θ 4 := -(e -b)(e -b)(a -c)(a -b) ,
and in fact α and δ will not even matter. The coefficients β and γ of Corollary 5.18 for the action of each θ i are given in the following result. Lemma 5.21. Let k be an integer not divisible by 3. For k = 3k ′ + 1 there are elements α i,k , β i,k ∈ F 9 , i = 1, 2, 3, 4, and for k = 3k ′ + 2 there are elements γ i,k , δ i,k ∈ F 9 , i = 1, 2, 3, 4, such that we have the following congruences

( θ i ) * u k ≡ (α i,k u 10 1 + β i,k u 12 1 )u k mod (3, u 13 1 ) k = 3k ′ + 1 (γ i,k u 8 1 + δ i,k u 10 1 )u k mod (3, u 11 1 ) k = 3k ′ + 2 . Furthermore we have β 1,k = 0 γ 1,k = 0 β 2,k = -(1 + ω 2 ) γ 2,k = -(1 + ω 2 ) β 3,k = (k ′ -1)ω 2 γ 3,k = (k ′ + 1)ω 2 β 4,k = -k ′2 + k ′ -1 + (k ′ + 1)ω 2 γ 4,k = 1 + k ′ -k ′2 -k ′ ω 2 .
Proof. The first part of the lemma is clear by Corollary 5.18. Furthermore, the case of β i,k and γ i,k follows immediately from Lemma 5.17 because by Lemma 5.15 we have θ 1 ∈ I 6 + 3I. The actual evaluation of the other β i,k and γ i,k uses Lemma 4.6 and is a lengthy but straightforward calculation whose verification we leave to the reader. Here we just note that Lemma 5.16 guarantees that for this calculation it is enough to know the action of I on u l 1 u k modulo (u l+6 1 ).

Proof of Proposition 5.6. This is an immediate consequence of the previous lemma, of Proposition 5.19 and Lemma 5.20.

Higher differentials and extensions in the algebraic spectral sequence

In this section we will give a proof of Proposition 5.5 and we will determine the extensions and higher differentials in the algebraic spectral sequence (2) in the case of M * = (E 2 ) * /(3). This spectral sequence allows for non-trivial d 2 -and d 3 -differentials. Their evaluation will be reduced to studying the long exact sequence in Ext Z3[[G 1 2 ]] (-, M * ) associated to the short exact sequence [START_REF] Douglas | Complex cobordism and stable homotopy groups of spheres[END_REF]. In fact, we have the following more general lemma. Lemma 6.1. Let R be a ring and n > 0 be an integer and let M be a left R-module. Suppose that

0 -→ C n+1 ∂n+1 -→ C n ∂n -→ . . . ∂1 -→ C 0 ∂0 -→ L -→ 0 is an exact complex of left R-modules such that C i is projective for each 0 < i < n + 1. a) Then there is a first quadrant cohomological spectral sequence E * , * r , r ≥ 1, converging to Ext * R (L, M ) with E s,t 1 = Ext t R (C s , M ) ⇒ Ext s+t R (L, M ) in which E s,t
1 = 0 for 0 < s < n + 1 and t > 0, and E s,t 1 = 0 for t ≥ 0 and s > n + 1. b) The higher differentials in this spectral sequence can be described as follows. Let N 0 be the kernel of ∂ 0 and let j : N 0 → C 0 denote the resulting inclusion. Then there are isomorphisms which are natural in M

Ext t R (N 0 , M ) ∼ =      Ker : E 1,0 1 d 1,0 1 -→ E 2,0 1 t = 0 E t+1,0 2 = E t+1,0 t+1 1 ≤ t ≤ n E n+1,t-n n+1 t > n such that the homomorphism Ext t R (C 0 , M ) → Ext t R (N 0 , M ) induced by j identifies with d 0,t t+1 : E 0,t t → E t+1,0 t if 1 ≤ t ≤ n and with d 0,t n+1 : E 0,t n+1 → E n+1,t-n n+1 if t > n.
(Note that by (a) these are the only potentially non-trivial differentials in this spectral sequence.) Proof. a) The spectral sequence can be obtained as the spectral sequence of an exact couple. In fact, if N i is the kernel of ∂ i then we have short exact sequences 0 → N i → C i → N i-1 → 0 for 0 ≤ i ≤ n (with N -1 : = L) and the long exact sequences in Ext * R (-, M ) combine to give an exact couple from which the spectral sequence is derived. Projectivity of the modules C i for 1 ≤ i ≤ n gives the vanishing results. b) For the first statement we note that N 0 admits a projective resolution Q • which is obtained from splicing the exact complex

0 -→ C n+1 ∂n+1 -→ C n ∂n -→ . . . ∂2 -→ C 1 ∂1 -→ N 0 -→ 0
with a projective resolution of C n+1 . The second statement is easily seen by inspection of the higher differentials in an exact couple. We leave the details to the reader.

δ P (∆ k h 1 ) = ∆ k v 2
1 c 1 and in order to apply Lemma 6.5 in the case of ∆ k β we need to understand φ * 1 (∆ k h 1 ). For this we recall that

Q 1 = C 2 is a free Z 3 [[S 1 2 ]
]-module generated by e 2 . Hence we can write φ 1 ( e 1 ) = xe 2 for (a unique) x ∈ Z 3 [[S 1 2 ]] and thus φ * 1 (∆ k h 1 ) = x * (∆ k h 1 ). Furthermore, because ∆ ≡ ω 2 u -12 mod (u 2 1 ) we have for any

g ∈ S 1 2 g * (∆ k h 1 ) = g * (∆ k )g * (h 1 ) ≡ t 0 (g) 12k ∆ k g * (h 1 ) ≡ ∆ k g * (h 1 ) mod (u 2 1 ) , thus φ * 1 (∆ k h 1 ) = x * (∆ k h 1 ) ≡ ∆ k x * (h 1 ) = ∆ k φ * 1 (h 1 ) ≡ 0 mod (u 2 1
) and then Lemma 6.5 shows that ∆ k β is a permanent cycle and in H 2 (G 1 2 ; M ) we have v 2 1 ∆ k β = 0.

In the case of ∆ k βα we choose a representing cocycle

c 2 ∈ Hom Z3[[G 1 2 ]] (P 3 , M 16 ) for βα. Because v 1 βα = 0 in H 1 (G 24 , M 20 ) there exists h 2 ∈ Hom Z3[[G 1 2 ]] (P 2 , M 20 ) such that v 1 c 2 = δ P (h 2 ). Then φ * 2 (h 2 ) ∈ Hom Z3[[G 1 2 ]] (Q 2 , M 20 ) = Hom Z3[[G 1 2 ]] (P 0 , M 20 ) ∼ = (M 20 )
Q8 is divisible by v 1 by degree reasons (cf. ( 22) or Remark 3.12.3 of [START_REF] Goerss | A resolution of the K(2)-local sphere[END_REF]) and then Lemma 6.5 shows that ∆ k βα is a permanent cycle and in H 2 (G 1 2 , M * ) we have v 1 ∆ k βα = 0. The case of v 1 β α is completely analogous. Proposition 6.7.

If x ∈ H 1 (G 1 2 , M * ) is represented in E 1,0, * ∞ then βx = 0 in H 3 (G 1 2 , M * ).
Proof. It is enough to show βb 1 = 0 and βb 2. Theorem 1.7 is a simple instance of a Künneth isomorphism: in fact, if we have an isomorphism of profinite 3-groups G = F × Z 3 , and if Z 3 acts trivially on a 3-profinite module M , then the exterior product in cohomology induces an isomorphism

(35) H * (F, M ) ⊗ Z3 Λ Z3 (ζ) ∼ = H * (F, M ) ⊗ Z3 H * (Z 3 ; Z 3 ) → H * (G 2 , M ) .
In particular this holds if G = G 2 , F = G 1 2 and M = (E 2 ) * /(3) or M = (E 2 ) * /(3, u 1 ). We will need to know how the Bockstein homomorphisms δ 1 and δ 0 associated to the exact sequences (26) and (27) behave with respect to these isomorphisms.

The proof of the following lemma is a straightforward exercise with the double complex obtained from tensoring a projective resolution of the trivial Z 

* (G, M i ) with H * (F, M i )⊕H * -1 (F, M i )ζ for i = 1, 3 via (35), M 3 with H 0 (Z 3 , M 3 ) and M 1 with H 1 (Z 3 , M 1 ), then δ G (x) = δ F (x) + (-1) n H n (F, δ Z3 )(x)ζ x ∈ H n (F, M 3 ) δ G (yζ) = δ F (y)ζ y ∈ H n-1 (F, M 3 ) . Corollary 7.2. Let M = (E 2 ) 4k /(3) resp. M = (E 2 ) 4k /(3, u 1 ) and identify H * (G 2 , M ) with H * (G 1 2 , M ) ⊕ H * -1 (G 1 2 , M )ζ via (35). a) For x ∈ H n (G 1 2 , (E 2 ) 4k /(3, u 1 )) we have δ 1 G2 (x) = δ 1 G 1 2 (x). b) For x ∈ H n (G 1 2 , (E 2 ) 4k /(3)) we have δ 0 G2 (x) = δ 0 G 1 2 (x) + (-1) n kxζ.
In particular, if we define

α(G 2 ) := δ 0 G2 (v 1 ) α(G 2 ) := δ 0 G2 (v 2 ) β(G 2 ) := δ 0 G2 δ 1 G2 (v 2 ) α(G 1 2 ) := δ 0 G 1 2 (v 1 ) α(G 1 2 ) := δ 0 G 1 2 (v 2 ) β(G 1 2 ) := δ 0 G 1 2 δ 1 G 1 2 (v 2 ) then α(G 2 ) = α(G 1 2 ) -v 1 ζ, α(G 2 ) = α(G 1 2 ), β(G 2 ) = β(G 1 2 ) .
Proof. The central factor Z 3 of G 2 is generated by the element t := 1 + 3 ∈ Z × 3 . In this case t acts trivially on (E 2 ) 0 and on u via t * (u) = 4u. Therefore t acts trivially on M and via multiplication by (1 + 3) -2k = 1 -6k on (E 2 ) 4k /(9). Hence δ Z3 is given by multiplication by -2k ≡ k mod (3) and the result follows.

8. The Adams-Novikov spectral sequence for L K(2) V (0)

As before we use the E 1 -term of the algebraic spectral sequence (2) for M = (E 2 ) * V (0) to represent elements in the E 2 -term of the Adams-Novikov spectral sequence for π * (L K(2) V (0)). However, unlike in the introduction, we do not always insist on writing elements in terms of the The E 2 -term satisfies E s,t 2 = 0 unless t ≡ 0 mod (4), hence its differentials d r are trivial if r ≡ 1 mod (4). Furthermore, the differentials are linear with respect to F 3 [β, v 1 ] ⊗ Λ(ζ), and the existence of the resolution (4) of [START_REF] Goerss | A resolution of the K(2)-local sphere[END_REF] gives further restrictions on the behaviour of the Adams-Novikov differentials. In fact, they have to preserve the filtration on its E 2 -term given by the algebraic resolution for G 2 , and modulo this filtration the differentials are easily determined by the differentials in the Adams-Novikov spectral sequence for E hG24 2 ∧ V (0) (cf. Theorem A.1). However, to settle the ambiguities coming from potential contributions of smaller filtration terms we need to fall back on knowledge of the differentials in π * (L K(2) V (1)) (cf. Theorem A.4).

The following Lemma records some immediate consequences of the knowledge of the d 5differential in the Adams-Novikov spectral sequence for π * (L K(2) V (1)). 

d 5 (∆ k αβ) = ǫ k ∆ k-1 β 4 v 1 d 5 (∆ k β 2 ) = ǫ k ∆ k-1 α(G 2 )β 4 d 5 (Σ 48 ∆ k α) = ǫ k Σ 48 ∆ k-1 β 3 v 1 d 5 (Σ 48 ∆ k β) = ǫ k Σ 48 ∆ k-1 α(G 2 )β 3 . b) Let k ≡ 0 mod (3). Then d 5 (∆ k αβ) = 0 d 5 (∆ k β 2 ) = 0 d 5 (Σ 48 ∆ k α) = 0 d 5 (Σ 48 ∆ k β 2 ) = 0 .
Remark By identifying vector space generators in the appropriate bidegrees it is easy to see that there are unique elements λ i , µ i , ν i ∈ F 3 such that

d 5 (∆ k αβ) = λ 1 ∆ k-1 β 4 v 1 + µ 1 Σ 48 ∆ k-2 α(G 1 2 )β 2 + ν 1 Σ 48 ∆ k-2 β 2 v 1 ζ d 5 (∆ k β 2 ) = λ 2 ∆ k-1 α(G 1 2 )β 4 + µ 2 ∆ k-1 β 4 v 1 ζ + ν 2 Σ 48 ∆ k-2 α(G 1 2 )β 2 ζ d 5 (Σ 48 ∆ k α) = λ 3 Σ 48 ∆ k-1 β 3 v 1 d 5 (Σ 48 ∆ k β) = λ 4 Σ 48 ∆ k-1 α(G 1 2 )β 3 + µ 4 Σ 48 ∆ k-1 β 3 v 1 ζ .
Naturality and the geometric boundary theorem (cf. Theorem 2.3.4 of [START_REF] Douglas | Complex cobordism and stable homotopy groups of spheres[END_REF]) applied to the resolution (4) allow to determine the values of the λ i , i.e. to show the lemma modulo elements of lower filtration. The Lemma confirms these values and also determines µ i and ν i ; formally µ i and ν i can be deduced by simply replacing in the differentials for E hG24 2 ∧ V (0) the elements α by α(G 2 ).

Proof. We start with ∆ k αβ. This is in the kernel of v 1 -multiplication and must therefore (after 4-fold suspension) be in the image of the Bockstein homomorphism

δ 1 G2 in H * (G 2 , -) and δ 1 G 1 2 in H * (G 1 2
, -) associated to the short exact sequence (27). Similarly with ∆ k βv 1 . By Theorem A.3 and by degree reasons we must therefore have

δ 1 G 1 2 ((ω 2 u -4 ) 3k+2 β) = ±Σ 4 ∆ k αβ, δ 1 G 1 2 ((ω 2 u -4 ) 3k+2 α(G 1 2 )) = ±Σ 4 ∆ k βv 1
and, by Corollary 7.2, we even get

(36) δ 1 G2 ((ω 2 u -4 ) 3k+2 β) = ±Σ 4 ∆ k αβ, δ 1 G2 ((ω 2 u -4 ) 3k+2 α(G 1 2 )) = ±Σ 4 ∆ k βv 1 .
and by β-linearity δ 1 ((ω 2 u -4 ) 3k+2 αβ 3 ) = ±Σ 4 ∆ k β 4 v 1 . Then the geometric boundary theorem and Theorem A.4.b show that ∆ 6k αβ and ∆ 6k+3 αβ are permanent cycles and the value of the differential in the other cases is as stated (with a suitable constant ǫ k ).

The case of Σ 48 ∆ k αβ can be treated similarly but in this case it would also suffice to use the strategy described in the remark above. The sign is clearly the same as in the previous case.

The remaining two cases are deduced from what has already been established by using the Bockstein δ 0 G2 in H * (G 2 , -) associated to the short exact sequence (26) and the geometric boundary theorem. By Corollary 7.2 we have

δ 0 G2 (∆ k αβ) = ∆ k β 2 , δ 0 G2 (Σ 48 ∆ k α) = Σ 48 ∆ k β δ 0 G2 (∆ k β 4 v 1 ) = ∆ k α(G 2 )β 4 , δ 0 G2 (Σ 48 ∆ k β 3 v 1 ) = Σ 48 ∆ k α(G 2 )β 3 .
In fact, by the Corollary we only need to determine δ 0 G 1 2 and this is straightforward in the case of Σ 48 ∆ k β 3 v 1 and Σ 48 ∆ k αβ 3 . In the other two cases it is straightforward modulo terms of lower filtration and by degree reasons there are no error terms of lower filtration.

Corollary 8.2. The d 5 -differential in the Adams-Novikov spectral sequence for L

K(2) V (0) is linear with respect to F 3 [β, v 1 ] ⊗ Λ(ζ) and is trivial on all F 3 [β, v 1 ] ⊗ Λ(ζ)-module generators of H * (G 1 2 , (E 2 ) * /( 3 
)) of Theorem 1.6 except the following:

d 5 (∆ m β) = ±∆ m-1 α(G 2 )β 3 m ≡ 0 mod (3) d 5 (∆ 2m α) = ±∆ 2m-1 β 3 v 1 m ≡ 0 mod (3) d 5 (∆ 6m+1 α) = ±∆ 6m β 3 v 1 d 5 (∆ 6m+5 αβ) = ±∆ 6m+4 β 4 v 1 d 5 (b 3 n+1 (6m+1) ) = ±Σ 48 ∆ 3 n (6m+1)-3 β 2 v 1 n ≥ 0 d 5 (b 3 n (6m+5) ) = ±Σ 48 ∆ 3 n-1 (6m+5)-3 β 2 v 1 m ≡ 1 mod (3), n ≥ 2 d 5 (Σ 48 ∆ 2m ) = ±Σ 48 ∆ 2m-1 α(G 2 )β 2 m ≡ 0 mod (3) d 5 (Σ 48 ∆ 3 n (6m+1)-2 ) = ±Σ 48 ∆ 3 n (6m+1)-3 α(G 2 )β 2 n ≥ 0 d 5 (Σ 48 ∆ 3 n (6m+5)-2 ) = ±Σ 48 ∆ 3 n (6m+5)-3 α(G 2 )β 2 n ≥ 1 d 5 (Σ 48 ∆ 2m α) = ±Σ 48 ∆ 2m-1 β 3 v 1 m ≡ 0 mod (3) d 5 (Σ 48 ∆ 3 n (6m+5)-2 α) = ±Σ 48 ∆ 3 n (6m+5)-3 β 3 v 1 , m ≡ 1 mod (3), n ≥ 1 .
Proof. Linearity with respect to

F 3 [β, v 1 ] ⊗ Λ(ζ) is clear.
The rest is an immediate consequence of the previous lemma together with sparseness, Proposition 1.5, Theorem 1.6, and the fact that β-multiplication is injective above cohomological degree 3.

Corollary 8.3. E 6 is the quotient of the direct sum of cyclic F 3 [β, v 1 ] ⊗ Λ(ζ)-modules with the following generators and annihilating ideals

1 = ∆ 0 (βv 2 1 , β 3 v 1 ) ∆ m β 0 = m ≡ 0 mod (3) (v 2 1 , β 2 v 1 ) ∆ 6m+1 βv 1 (v 1 , β 2 ) ∆ 6m+4 βv 1 (v 1 , β 3 ) ∆ m βv 1 m ≡ 2 mod (3) (v 1 ) α(G 1 2 ) (βv 1 , β 3 ) ∆ 2m+1 α(G 1 2 ) m ≡ 2 mod (3) (v 1 , β 3 ) ∆ 2m+1 α(G 1 2 ) m ≡ 2 mod (3) (v 1 ) ∆ 2.3 n (3m-1) α(G 1 2 ) m ≡ 0 mod (3), n ≥ 1 (v 4.3 n+1 -1 1 , βv 1 , β 3 ) ∆ 2(3m-1) α(G 1 2 ) m ≡ 0 mod (3) (v 11 1 , βv 1 , β 4 ) ∆ 6m α (v 1 ) b 2(9m+2)+1 (v 2 1 , β) ∆ 6m+3 α (v 3 1 , βv 1 ) ∆ 2.3 n (3m+1) α(G 1 2 )β n ≥ 1 (v 1 , β 2 ) ∆ 2(3m+1) α(G 1 2 )β m ≡ 0 mod (3) (v 1 ) ∆ 2.3 n (3m-1) α(G 1 2 )β n ≥ 1 (v 1 , β 2 ) ∆ 2(3m-1) α(G 1 2 )β m ≡ 0 mod (3) (v 1 , β 3 ) b 3 n+1 (6m+1) v 1 n ≥ 0 (v 6.3 n 1 , β) b 3 n (6m+5) v 1 m ≡ 1 mod (3), n ≥ 2 (v 10.3 n 1 , β) b 3 n (6m+5) m ≡ 1 mod (3), n = 0, 1 (v 10.3 n +1 1 , βv 1 ) Σ 48 ∆ 3 n (6m+1)-3 n ≥ 1 (v 2 1 , β 2 v 1 ) Σ 48 ∆ 3 n (6m+5)-3 m ≡ 1 mod (3), n ≥ 1 (v 2 1 , β 3 v 1 ) Σ 48 ∆ 3 n (6m+5)-3 m ≡ 1 mod (3), n ≥ 1 (v 2 1 , β 2 v 1 ) Σ 48 ∆ (6m+1)-3 v 1 (v 1 , β 2 ) Σ 48 ∆ (6m+5)-3 v 1 (v 1 ) Σ 48 ∆ 3 n (6m±1)-2 v 1 n ≥ 1 (v 4.3 n -1 1 , βv 1 , β 3 ) Σ 48 ∆ (6m+1)-2 v 1 (v 3 1 , βv 1 ) Σ 48 ∆ (6m+5)-2 (v 4 1 , βv 2 1 , β 3 v 1 ) Σ 48 ∆ 2m-1 α(G 1 2 ) m ≡ 0 mod (3) (v 1 , β 3 ) Σ 48 ∆ 6m+5 α(G 1 2 ) (v 1 ) Σ 48 ∆ 3 n (6m+1)-3 α(G 1 2 ) n ≥ 0 (v 1 , β 2 ) Σ 48 ∆ 3 n (6m+5)-3 α(G 1 2 ) m ≡ 1 mod (3), n ≥ 1 (v 1 , β 3 ) Σ 48 ∆ 3 n (6m+5)-3 α(G 1 2 ) m ≡ 1 mod (3), n ≥ 1 (v 1 , β 2 ) Σ 48 ∆ 6m α (v 1 ) Σ 48 ∆ (6m+5)-2 α m ≡ 1 mod (3) (v 1
) modulo the following relations in which module generators are put into paranthesis (in order to distinguish between module multiplications and generators)

β 3 (∆ k α(G 1 2 )) = β 2 ζ(∆ k βv 1 ), k = 2(3m -1) m ≡ 0 mod (3) β 2 (∆ k α(G 1 2 )β) = β 2 ζ(∆ k βv 1 ), k = 2(3m -1) m ≡ 0 mod (3) β 2 (Σ 48 ∆ k α(G 1 2 )) = β 2 v 1 ζ(Σ 48 ∆ k ), k = 2m -1 m ≡ 0 mod (3) β 2 (Σ 48 ∆ k α(G 1 2 ) = β 2 v 1 ζ(Σ 48 ∆ k ) k = 3 n (6m + 5) -3 m ≡ 1 mod (3), n ≥ 1 .
Proof. In principle this is a straightforward consequence of the previous corollary and Theorem 1.6. Complications arise because some of the time integers are distinguished by their residue class modulo (2), some of the time by their residue class modulo (3) and some of the time the distinction is more involved.

The most complicated case is perhaps that of the classes Σ 48 ∆ m for m even. There one uses that an even integer can be uniquely written in the form k -3 with k odd and an odd integer k can be uniquely written either as 3 n (6m ± 1) with n ≥ 1. This together with the previous corollary and Theorem 1.6 leads to the result for the first block of generators involving Σ 48 ∆ m . The other blocks can be treated similarly.

The following Lemma records immediate consequences of the knowledge of the d 9 -differential in the Adams-Novikov spectral sequence for π * (L K(2) V (1)). 

′ k ∈ {±1} such that d 9 (∆ k α(G 2 )β 2 ) = ǫ ′ k ∆ k-2 β 7 d 9 (∆ k β 2 v 1 ) = ǫ ′ k ∆ k-2 αβ 6 d 9 (Σ 48 ∆ k α(G 2 )β) = ǫ ′ k Σ 48 ∆ k-2 β 6 d 9 (Σ 48 ∆ k βv 1 ) = ǫ ′ k Σ 48 ∆ k-2 αβ 5 . b) Let k ≡ 0, 1 mod (3). Then d 9 (∆ k α(G 2 )β 2 ) = 0 d 9 (∆ k β 2 v 1 ) = 0 d 9 (Σ 48 ∆ k α(G 2 )β) = 0 d 9 (Σ 48 ∆ k βv 1 ) = 0 .
Remark By identifying vector space generators in the appropriate bidegrees it is easy to see that there are unique elements λ i , µ i , ν i ∈ F 3 such that

d 9 (∆ k α(G 1 2 )β 2 ) = λ 5 ∆ k-2 β 7 + µ 5 ∆ k-2 αβ 6 ζ + ν 5 Σ 48 ∆ k-3 β 5 ζ d 9 (∆ k β 2 v 1 ) = λ 6 ∆ k-2 αβ 6 + µ 6 Σ 48 ∆ k-3 β 5 + ν 6 Σ 48 ∆ k-3 αβ 4 ζ d 9 (Σ 48 ∆ k α(G 1 2 )β) = λ 7 Σ 48 ∆ k-2 β 6 + µ 7 Σ 48 ∆ k-2 αβ 5 ζ d 9 (Σ 48 ∆ k βv 1 ) = λ 8 Σ 48 ∆ k-2 αβ 5 .
As before naturality and the geometric boundary theorem applied to the resolution (4) allow to show the lemma modulo elements of lower filtration, i.e. to determine the values of the λ i . Again the Lemma confirms these values and also determines µ i and ν i , and formally µ i and ν i can be deduced by simply replacing in the differentials for E hG24 2 ∧ V (0) the elements α by α(G 2 ).

Proof. The proof resembles that of Lemma 8.1. We start with the class ∆ k β 2 v 1 . From (36) and β-linearity of δ 1 G2 we get δ

1 G2 ((ω 2 u -4 ) 3k+2 α(G 2 )β) = ±Σ 4 ∆ k β 2 v 1 , δ 1 G2 ((ω 2 u -4 ) 3k-4 β 6 ) = ±Σ 4 ∆ k-2 αβ 6
and as before the geometric boundary theorem and Theorem A.4.c yield the value of the differential (with a suitable constant ǫ ′ k ).

The case of Σ 48 ∆ k βv 1 can be treated similarly but we can also use the strategy described in the remark above. Again the sign is clearly the same as in the previous case.

The remaining two cases can once again be deduced by using the Bockstein δ 0 G2 in H * (G 2 , -) associated to the short exact sequence (26). As in the proof of Lemma 8.1 we obtain This finally allows us to calculate the homotopy of π * (L K(2) V (0)).

δ 0 G2 (∆ m β 2 v 1 ) = ∆ m α(G 2 )β 2 , δ 0 G2 (Σ 48 ∆ m βv 1 ) = Σ 48 ∆ m α(G 2 )β δ 0 G2 (∆ m αβ 6 ) = ∆ m β 7 , δ 0 
Proof of Theorem 1.8. By using the last corollary it is straightforward to verify that the E 10term has the structure described in Theorem 1.8. Then we see that E s, * 10 = 0 for s > 11 and hence there is no room for higher differentials and we get E 10 = E ∞ . The behaviour of the spectral sequence for π * (E hG24 2 ∧ V (0)) can be deduced from that for π * (E hG24 ). We record this in the following result. 

b)

We have an inclusion of subalgebras

E 0, * ∞ ∼ = F 3 [[v 6 1 ∆ -1 ]][v 1 , v 1 ∆, ∆ ±3 ] .
In positive filtration E s,t ∞ has an F 3 -vector space basis given by the 16 elements which are represented on E 2 by α, βα, ∆α, β∆α, αα = βv 1 , β αα = β 2 v 1 , ∆ αα = β∆v 1 , β∆ αα = β 2 ∆v 1 , β j , j = 1, 2, 3, 4, β k α, k = 0, 1, 2, 3 and their multiples by powers of ∆ ±3 .

Proof. This is a consequence of the behaviour of the spectral sequence converging to π * (E hG24 2 ) (cf. [START_REF] Goerss | The homotopy of L 2 V (1) for the prime 3, Categorical decomposition techniques in algebraic topology (Isle of Skye[END_REF], [START_REF] Goerss | A resolution of the K(2)-local sphere[END_REF]). First one observes that every element in the transfer from π * (E 2 ) is a permanent cycle. Together with the fact that v 1 is a permant cycle as well, this shows that the only classes on the 0-line which can carry non-trivial differentials are the classes ∆ k v ǫ 1 with k ∈ Z and ǫ = 0 or k = 0 and ǫ = 1. Furthermore we recall that the elements α and β are permanent cycles in the Adams-Novikov spectral sequence converging to π * (E hG24 

∼ = F 3 [[v 6 1 ∆ -1 ]][∆ ±3 , v 1 , ∆v 1 , ∆ 2 v 1 ] ,
and in positive filtration E s,t 6 has an F 3 -vector space basis given by the elements β k , k > 0, ) gives d 9 (β l+1 ∆ 3k+2 v 1 ) = d 9 (β l ∆ 3k+2 αα) = ±β l+5 ∆ 3k α and thus d 9 (β l ∆ 3k+2 v 1 ) = ±β l+4 ∆ 3k α. Furthermore sparseness shows that d 9 is trivial on all other classes of positive cohomological degree. In the resulting E 10 -term we have E s, * 2 = 0 for s > 8 and thus there is no more room for higher differentials. Hence we get E 10 = E ∞ and the structure of E ∞ agrees with the stated result.

β k v 1 , k = 1, 2, β k α, k = 0, 1, β k α, k ≥ 0, β k ∆v 1 , k = 1, 2, β k ∆α, k = 0, 1, β k ∆ 2 v 1 , k >
The following result has already been proved in [START_REF] Goerss | The homotopy of L 2 V (1) for the prime 3, Categorical decomposition techniques in algebraic topology (Isle of Skye[END_REF] for the subgroup G 12 instead of G 24 . In fact, part (a) is an immediate consequence of the formulae ( 22) and ( 23) and the fact that the action of G 24 on (E 2 ) * /(3, u 1 ) factors through an action of the quotient G 24 /Z/3 = Q 8 ⊂ SD 16 . The proof of part (b) and (c) is analogous to the case of G 12 . We leave the details to the reader. Next we note that as before the existence of the resolution (4) of [START_REF] Goerss | A resolution of the K(2)-local sphere[END_REF] puts additional restrictions on the Adams-Novikov differentials for L K(2) V (1). In fact, again by naturality and the geometric boundary theorem, these differentials can be easily read off from those for E hG24 2 ∧ V (1), at least modulo the filtration on H * (G 2 , (E 2 ) * /(3, u 1 )) determined by the algebraic resolution [START_REF] Deligne | Courbes elliptiques: Formulaire (d'après J. Tate)[END_REF]. It turns out that the potential terms of lower filtration are always trivial although showing this requires a non-trivial effort which has essentially been carried out in [START_REF] Goerss | The homotopy of L 2 V (1) for the prime 3, Categorical decomposition techniques in algebraic topology (Isle of Skye[END_REF]. 

Proposition 1. 3 . 2 → E 2

 322 a) The differential d 2 : E 0,1, *

  generated by the elements f 1 := (e -ω)e 0 , f 2 := (e -b)e 0 and f 3 := (e -c)e 0 . If we denote the class of

  follows from Proposition 2.3 and the identification of H 1 (K, Z 3 ) with IK/(IK) 2 which sends x ∈ K to the class of x -e in IK/(IK) 2 . b) By definition we have ae 0 = e 0 and thus aωe 0 = aωa -1 ω -1 ωae 0 = [a, ω]ωe 0 = bωe 0 . Consequently (11) a(e -ω)e 0 = (e -aω)e 0 = (e -bω)e 0 = b(e -ω)e 0 + (e -b)e 0 and we obtain the first formula by passing to K-coinvariants. Similarly, ab = cba and ae 0 = e 0 imply (12) a(e -b)e 0 = (e -ab)e 0 = (e -cba)e 0 = (e -cb)e 0 = c(e -b)e 0 + (e -c)e 0

  Lemma 3.6. a) Let l 1 = (a -b)e 1 , l 2 = (a -c)l 1 and l 3 = 3cl 2 + (e -c) 2 l 2 . Then ∂ 1 (l 1 ) = (e -b)e 0 , ∂ 1 (l 2 ) = (e -c)e 0 , ∂ 1 (l 3 ) = (e -c 3 )e 0 . b) There exist elements x, y ∈ IK such that e -c 3 = x(e -b) + y(e -c). c) If x, y ∈ IK satisfy e -c 3 = x(e -b) + y(e -c) then n 1 := l 3 -xl 1 -yl 2 belongs to N 1 and projects non-trivially to H 0 (S 1 2 , N 1 ).

e 1 )

 1 ≡ (e -c)e 0 mod (IK)N 0 . • In Z 3 [[K]] we have the relation 3c(e -c) + (e -c) 3 = e -c 3 . a) By equations (11) and (12) of the proof of Proposition 3.2 we see that ∂ 1 (l 1 ) = (e -b)e 0 and ∂ 1 (l 2 ) = (e -c)e 0 . The result for ∂ 1 (l 3 ) is now obvious. b) By Proposition 2.3.c we know that IK is generated by e -b and e -c. Furthermore c 3 belongs to F 2 K, hence it is trivial in H 1 (K, Z 3 ) by Proposition 2.3.c . Therefore e -c 3 belongs to IK 2 and we get the existence of x, y ∈ IK as required in (b).

Lemma 4 . 1 . 1 1

 411 The logarithm and exponential of the formal group law G 2 satisfy log G2 (x) = x -u1 24 x 3 +

Corollary 4 . 7 .

 47 The action of the elements a, b, c and d on (E 2 ) * /(3) satisfy the formulae

  u 1 and ω * u = ωu and the Frobenius φ acts Z 3 -linearly by extending the action of Frobenius on W via (23) φ * u 1 = u 1 and φ * u = u .

3 n +2 1 ) 1 resp. v 10 .3 n +2 1 and 1 b 3 1 b 3 n

 111011313 2k + 1 = 3 n (18m + 5) 0 otherwise .Proof. For 2k +1 = 3 n+1 (3m+1) resp. 2k +1 = 3 n (9m+8) Proposition 5.7 shows that d 1 (b 2k+1 ) is divisible by v 6.3 n +2 can thus be written as (-1) n v 6.3 n +2 n+1 (6m+1) resp. (-1) n v 10.3 n +2 (18m+11) for unique elements b 3 n+1 (6m+1) resp. b 3 n (18m+11) which satisfy (a) and (b).

5. 3 .

 3 The proof of Proposition 5.6. By Corollary 3.5 the differentialE 1,0 1 → E 2,0 1 is induced by the homomorphism C 2 → C 1 , e 2 → n ′ -1 )g(n1 ) , and by Lemma 3.6 we can take for n 1 any element of the form n 1 = θe 1 with (30) θ := 3c(a -c)(a -b) + (e -c) 2 (a -c)(a -b) -x(a -b) -y(a -c)(a -b) and x, y ∈ IK satisfying e -c 3 = x(e -b) + y(e

S 1 2 . 1 2

 21 (33) e -c 3 ≡ b -1 d -1 (e -d)(e -b) -(e -b)(e -d) mod IF 5 2 Using Lemma 2.1 and Lemma 2.2 again we get d = [b, c] ≡ [b -1 , c -1 ] mod F 2 S and hence we obtain from (31) e -d ≡ b -1 c -1 (e -c)(e -b) -(e -b)(e -c) mod IF 2 S 1

  5.14 belongs to (I 8 (e -b) + I 7 (e -c)) + I.(I 8 (e -b) + I 4 .(e

5 . 6 . 8 . 2 u 7 .

 56827 3 n (3m-1)+1 = 0 whenever m ≡ 0 mod[START_REF] Devinatz | Homotopy fixed point spectra for closed subgroups of the Morava stabilizer groups[END_REF]. By Proposition 5.5 we have b 1 = v 1 α and thus βb 1 = v 1 βα = 0 by the previous proposition. Similarly, by Proposition 6.4 we have b 2.3 n+1 (3m-1)+1 = ±v 1 ∆ 2.3 n (3m-1) α and b 2(3m-1)+1 = ±v 1 ∆ 2m-1 α and using the previous proposition once more shows βb 2.3 n (3m-1)+1 = 0.The following result finishes off the proof of Proposition 1.Proposition The following relations hold in H* (G 1 2 ; M * ) βb 3 n+1 (6m+1) = ±∆ 3 n (6m+1) α βb 3 n+1 (18m+11) = ±∆ 3 n (18m+11) α βb 18m+11 = ±∆ 6m+4 α .Proof. First we observe that α ∈ H * (G 24 , (E 2 ) * /(3)) is non-divisible by v 1 and this implies that the mod-u 1 reduction homomorphism H * (G 24 , (E 2 ) * /(3)) → H * (G 24 , (E 2 ) * /(3, u 1 )) must send α to ±ω 2 u -4 α (cf. Theorem A.3). Likewise, this map must send ∆ 2k+1 to ±ω 2 v 3k+1 -4 , and it clearly sends α to α. Thus the proposition follows from Theorem A.3.c and naturality. Passing from G 1 2 to G 2

  3 [[F ]]-module Z 3 with the projective resolution of the trivial Z 3 [[Z 3 ]]-module Z 3 given by 0 → Z 3 [[T ]] T -→ Z 3 [[T ]] → Z 3 → 0 and is left to the reader. (Here we have identified Z 3 [[T ]] with Z 3 [[Z 3 ]] via the continuous isomorphism which sends T to t -e if t is a topological generator of Z 3 .) Lemma 7.1. Let G = F × Z 3 and H be a closed subgroup of G, 0 → M 1 → M 2 → M 3 → 0 be a short exact sequence of continuous G-modules and δ H be the associated Bockstein in H * (H, -). If Z 3 acts trivially on M 1 and M 3 , and if we identify H

  F 3 [β, v 1 ] ⊗ Λ(ζ)-module generators of Theorem 1.4. This allows for simplified statements of Lemma 8.1, Corollary 8.2, Lemma 8.4 and Corollary 8.5 below.

Lemma 8 . 1 . 2 ∼

 812 The following identities hold inH * (G 2 , (E 2 ) * /(3)) ∼ = E * , * = E * , *5 of the Adams-Novikov spectral sequence for π * (L K(2) V (0)). a) Let k ≡ 0 mod (3). Then there are constants ǫ k ∈ {±1} such that

Lemma 8 . 4 .

 84 The following identities hold in the E 9 -term of the Adams-Novikov spectral sequence for π * (L K(2) V (0)). a) Let k ≡ 2 mod (3). Then there are constants ǫ

  G2 (Σ 48 ∆ m αβ 5 ) = Σ 48 ∆ m β 6 and the geometric boundary theorem gives the result. Corollary 8.5. The d 9 -differential in the Adams-Novikov spectral sequence for LK(2) V (0) is linear with respect to F 3 [β, v 1 ] ⊗ Λ(ζ) and is trivial on all F 3 [β, v 1 ] ⊗ Λ(ζ)-module generators of E * , * 6given in Corollary 8.3 except the following:d 9 (∆ m βv 1 ) = ±∆ m-2 αβ 5 m ≡ 2 mod (3) d 9 (∆ 6m+5 α(G 1 2 )) = ±(∆ 6m+3 β 5 + ∆ 6m+3 αβ 4 ζ) d 9 (∆ 2(3m+1) α(G 1 2 )β) = ±(∆ 6m β 6 + ∆ 6m αβ 5 ζ) d 9 (b 18m+11 ) = ±(Σ 48 ∆ 6m β 4 + Σ 48 ∆ 6m αβ 3 ζ) d 9 (Σ 48 ∆ 6m+2 v 1 ) = ±Σ 48 ∆ 6m αβ 4 d 9 (Σ 48 ∆ 6m+5 v 1 ) = ±Σ 48 ∆ 6m+3 αβ 4 m ≡ 1 mod (3) d 9 (Σ 48 ∆ 6m+5 v 1 ) = ±b 3(6m+5) β 5 m ≡ 1 mod (3) d 9 (Σ 48 ∆ 6m+5 α(G 1 2 )) = ±(Σ 48 ∆ 6m+3 β 5 + Σ 48 ∆ 6m+3 αβ 4 ζ) .Proof. Linearity with respect to F 3 [β, v 1 ]⊗Λ(ζ) is clear. Then we note that the β-torsion classes in the E 6 -term are in too low a cohomological degree to interact via d 9 and hence d 9 is trivial on them. The rest is an immediate consequence of Proposition 1.5, Corollary 8.3 and the previous Lemma, and the fact that β-multipication is injective in the relevant bidegrees.

Appendix A . 2 ∧ 2 ∧

 .22 The Adams-Novikov spectral sequences converging towards π * (E hG24 V (0)), π * (E hG24 V (1)) and π * (L K(2) V (1))

2

 2 

Theorem A. 1 .a) 2 ∼ = F 3 [[v 6 1 ∆ 2 ∧

 12312 The differentials in the Adams-Novikov spectral sequenceE s,t -1 ]][v 1 , ∆ ±1 , β, α, α]/(α 2 , α 2 , v 1 α, v 1 α, α α + v 1 β) =⇒ π t-s (E hG24 V (0))are linear with respect to F 3 [∆ ±3 , v 1 , β, α, α]. The only nontrivial differentials are d 5 and d 9 . They are (redundantly) determined by d 5 (∆) = ±αβ 2 , d 5 (∆ α) = ± ααβ 2 = ∓v 1 β 3 and d 9 (∆ 2 α) = ±β 5 , d 9 (∆ 2 v 1 ) = ∓ αβ 4 .

2 ) 2 ) 2 ∧

 222 and α in that for V (0) detecting homotopy classes fow which we use the same names. Now the spectral sequence for π * (E hG24 shows d 5 (∆) = ±αβ 2 and from the fact that the spectral sequence for π * (E hG24 V (0)) is a module over that for π * (E hG24 2 ) we deduced 5 (∆ α) = ±α αβ 2 = ∓v 1 β 3 , d 5 (∆ k v 1 ) = 0, k ≡ 1, 2 mod (3) ,and d 5 happens to be a derivation. In particular we obtain an isomorphism of algebras E 0, * 6

2 ) 2 ∧

 22 0 and β k ∆ 2 α, k ≥ 0 and their multiples by ∆ ±3 .Next the Adams-Novikov spectral sequence for π * (E hG24 implies d 9 (β l ∆ 3k+2 α) = ±β l+5 ∆ 3k , hence the module structure of the spectral sequence for π * (E hG24 V (0)) with respect to that of π * (E hG24 2

Theorem A. 2 . 2 ∧ 2 ∼

 222 (cf. Theorem 9 of [4]) a) The E 2 -term of the Adams-Novikov spectral sequence converging to π *(E hG24 = H * (G 24 , (E 2 ) * /(3, u 1 )) ∼ = F 3 [ω 2 u ±4 , β, α]/(α 2 ) .b) The only non-trivial differentials in this Adams-Novikov spectral sequence are d 5 and d 9 .They are determined by linearity with respect to F 3 [ω 2 u ±4 , β, α] and the formulaed 5 ((ω 2 u ±4 ) k ) = 0 k ≡ 0, 1, 2 mod (9) ±(ω 2 u ±4 ) k-3 αβ 2 k ≡ 3, 4, 5, 6, 7, 8 mod(9)andd 9 ((ω 2 u ±4 ) k α) = 0 k ≡ 0, 1, 2, 3, 4, 5 mod(9) ±(ω 2 u ±4 ) k-3 β 5 k ≡ 6, 7, 8 mod (9) .

Theorem A. 4 . 2 e 3 5 2 ω 2 u 9 ) d 5 (Σ 48 v k 2 ω 2 u -4 e 3 d 9 (Σ 48 v k 2 ω 2 u -4 βe 3 2 β 4 2 β 5

 4235229523932425 (cf. section 3 of [4]) a) The only non-trivial differentials in the Adams-Novikov spectral sequence converging to π * (L K(2) V (1)) are d 5 and d 9 . They are both determined by the fact that they are linear with respect to F 3 [v ±9 2 , β] ⊗ Λ(ζ) and by the following formulae in which we identify v k+3 with Σ 48 v k 2 e 3 etc. . b) The differential d 5 is given byd 5 (v k 2 αe 0 ) = 0 d 5 (v k 2 ω 2 u -4 αe 0 ) = 0 d 5 (v k 2 ω 2 u -4 e 2 ) = 0 d 5 (Σ 48 v k 2 ω 2 u -4 αe 3 ) =0 for all k, and d -4 αβ 2 e 3 k ≡ 2, 3, 4, 6, 7, 8 mod (±Σ 48 v k-5 e 3 k ≡ 3, 4, 8 mod (9) d 9 (Σ 48 v k 2 ω 2 u -4 αe 3 ) = 0 k ≡ 0, 1, 2, 4, 5, 6 mod (9) ±Σ 48 v k-3 ω 2 u -4 e 3 k ≡ 3, 7, 8 mod (9) .

Corollary 4.5. The following equations hold in (E 2 ) 0 /(3). a) Let g = 1 + g 1 S + g 2 S 2 mod (S 3 ). Then we have t 1 ≡ g 1 + g 3 2 u 1 -g 3 1 u 2 1 -g 6 1 u 3 1 mod (u 4 1 ) t 0 ≡ 1 + g 3 1 u 1 -g 1 u 3 1 + (g 2 -g 3 2 )u 4 1 + g 3 1 u 5 1 + (g 2 1 + g 6 1 )u 6 1 mod (u 7 1 ) . b) Let g = 1 + g 2 S 2 + g 3 S 3 mod (S 4 ). Then we have t 2 ≡ g 2 + g 3 3 u 1 mod (u 2 1 ) t 1 ≡ g 3 2 u 1 + g 3 u 4 1 + (g 3 2 -g 2 )u 5 1 mod (u 7 1 ) t 0 ≡ 1 + (g 2 -g 3

2 )u 4 1 -g 3 u 7 1 + (g 2 -g 3 2 )u 8 1 mod (u 10 1 ) .

Proof. a) From Proposition 4.3.c we obtain t 1 ≡ t 9 1 + t 3 2 u 1 -t 18 0 t 3 1 u 2 1 -t 9 0 t 6 1 u 3 1 mod (u 4 1 ) and by using (18) we immediately get the formula for t 1 modulo (u 4 1 ). Then Proposition 4.3.b and (18) yield t 0 + t 6 0 (g 1 + g 3 2 u 1 -g 3 1 u 2 1 -g 6 1 u 3 1 )u 3 1 ≡ 1 + (g 3 1 + g 2 u 3 1 )u 1 mod (u 7 1 ) from which we easily get the formula for t 0 modulo (u 7 1 ). The formula for g * (u 1 ) follows now from Proposition 4.3.a . b) From Proposition 4.3.d and (18) we immediately obtain the formula for t 2 . Substituting the value for t 2 into the formula of Proposition 4.3.c and using (18) yields t 1 -t 8 0 t 1 u 4 1 ≡ (g 3 2 + g 3 u 3 1 )u 1 -t 18 0 t 3 1 u 2 1 mod (u 7 1 ) . Substituting the values of t 0 modulo (u 7 1 ) and t 1 modulo (u 4 1 ) from (a) into this yields t 1 -g 3 2 u 5 1 ≡ (g 3 2 + g 3 u 3 1 )u 1 -g 2 u 5 1 mod (u 7 1 ) from which we get the value of t 1 modulo (u 7 1 ). Next we substitute this value of t 1 together with the value of t 0 modulo (u 7 1 ) of (a) into the formula of Proposition 4.3.b and obtain t 0 + 1 + (g 2 -g 4 2 )u 4 1 6 g 3 2 u 1 + g 3 u 4 1 + (g 3 2 -g 2 )u 5 1 u 3 1 ≡ 1 + g 2 u 4 1 mod (u 10 1 ) from which we easily get the formula for t 0 modulo (u 10 1 ).

The following calculation will be used repeatedly in later sections. The result is only given to the precision needed later. Lemma 4.6. Let g = 1 + g 1 S + g 2 S 2 mod (S 3 ) and let k be an integer. Then we have

Hans-Werner Henn, Nasko Karamanov and Mark Mahowald

Next β is defined to be the mod 3-reduction of δ 0 δ 1 (v 2 ). These elements are thus defined as elements in H * (G 2 , (E 2 ) * /(3)). We denote their restriction to H * (G 24 , (E 2 ) * /(3)) by the same name.

The relation between ∆ (which lifts to an invariant of the same name in H 0 (G 24 , (E 2 ) 24 )) and the classes u and u 1 is more subtle. Here we record the following result.

.

Proof. By (3.11) of [START_REF] Goerss | A resolution of the K(2)-local sphere[END_REF] the integral lift of ∆ is defined as

and by the proof of Lemma 3.1 of [START_REF] Goerss | A resolution of the K(2)-local sphere[END_REF] we know x ≡ u mod (3, u 1 ), hence ∆ ≡ ω 2 u -12 mod (3, u 1 ).

Because ∆ is invariant with respect to G 24 , in particular with respect to Q 8 , we get from ( 22) and ( 23) that ∆ is of the form

Because ∆ is also invariant with respect to the action of a we get from (19)

1 ) . The right hand side of this equation can be evaluated modulo (u 6 1 ) by using Corollary 4.5.a and Corollary 4.7. By looking at the coefficients of u 3 1 and u 5 1 in the right hand side we obtain λ 2 = -1 and λ 4 = 1.

5.2.

The d 1 -differential. First of all we note that all differentials are v 1 -linear.

Proof. By Corollary 3.3 the differential is induced by the homomorphism C 1 → C 0 which sends e 1 to (e -ω)e 0 . Furthermore Proposition 5.1 and (22) give

1 ) and the result follows easily. (Note that by (24) the congruence for d 1 (∆ 2m+1 ) improves to a congruence modulo (u 8 1 ) rather than only modulo (u 6 1 ).)

Proposition 5.3. For each integer k = 0 there exists an element

Proof. For k = 0, k odd or k = 2m with m ≡ 0 mod (3) we define ∆ k to be equal to ∆ k . The formula for d 1 is then satisfied by the previous result.

If k = 2.3 n m with n ≥ 0 and m ≡ 0 mod (3) we recursively define

The previous proposition gives

Now suppose that b 2k+1 has already been defined for k = 3 n+1 (3m+1) resp. k = 3 n (9m+8) with with n ≤ N and m ∈ Z so that (a) and (c) are satisfied. Then we observe that by Proposition 5.2 the elements

) u -4(6k+3) mod (u 8 1 ) are divisible by v 4 1 and thus we can define (29)

Then it is clear that b 6k+1 ≡ ω 2 u -4(6k+1) mod (u 4 1 ). Furthermore, d 1 d 1 (∆ 2k+1 ) = 0 and because d 1 commutes with taking third powers and is F 3 [v 1 ]-linear we see that both (a) and (c) are satisfied for k = 3 n+1 (3m + 1) resp. k = 3 n (9m + 8) with n ≤ N + 1 and m ∈ Z and thus the induction step is complete.

Corollary 5.8. There is an isomorphism of

Proof. Because the elements ∆ k and b k form a topological basis of the graded continuous F 3 [v 1 ]modules E 0,0 1 and E 1,0 1 this follows immediately from Proposition 5.7.

Remark By inspection one sees that the infinite product is finite in each bidegree and therefore it can also be identified with the direct sum.

To evaluate the homomorphism

we need the following result.

Lemma 5.9. Let k be any integer. Then

.

1 ) and by Corollary 4.7 we get

) . 

Finally an easy calculation (which only uses that

(By abuse of notation we do not distinguish between g ∈ S 1 2 and its image in the quotients S 1 2 /F q S 1 2 .) Furthermore by (32) it is enough to show this for a system of multiplicative generators of F r S 1 2 /F q S 1 2 resp. F r+ 1 2 S 1 2 /F q S 1 2 . By Lemma 2.1 the element c 3 q-1 forms a basis of the one dimensional F 3 -vector space F q S 1 2 /F q+ 1 2 S 1 2 , and d 3 q-1 and b 3 q form a basis of the two dimensional F 3 -vector space F q+ 1 2 S 1 2 /F q+1 S 1 2 and therefore it is enough to consider those elements.

We . Furthermore e -g 3 ≡ (e -g) 3 mod (3) and hence, modulo (3), we obtain for any integer r ≥ 1

and (a) and (b) follow.

Remark The previous lemma can in principle also be used to get better explicit approximations of the elements x and y of Lemma 5.14, at least modulo [START_REF] Devinatz | Homotopy fixed point spectra for closed subgroups of the Morava stabilizer groups[END_REF]. For this one has to express the element

2 S 1 2 /F q S 1 2 as explicit product of the elements b 3 r-1 , d 3 r-2 and c 3 r-1 for q ≥ r ≥ 3 and then use (32) and the formulae in the proof of the previous lemma.

We will now give a qualitative description of the action of powers of I on (E 2 ) * /(3). The following lemma is an immediate consequence of Lemma 4.6 and of the formula g * (u l 19) and Lemma 4.3.a). Lemma 5.16.

1 u k and the ideal generated by u l+3 3 1 ]]-submodule generated by u l+3 1 u k . Lemma 5.17. a) Let k + 2l = 3m + 1 and r ≥ 1 be an integer. Then (IS 2 ) r sends u l 1 u k to an element of the form (αu

Proof. a) This follows by an easy induction on r by using the previous lemma. b) If k + 2l = 3m + 2, the previous lemmma shows that (IS 2 ) 2 sends u l 1 u k to (λu l+2

1 ) for suitable λ, µ ∈ F 9 . Now the result follows again by an easy induction on r ≥ 2 by using once more the previous lemma.

The following immediate corollary tells us that for the evaluation of the differential we should concentrate on the coefficients of u 8 1 and u 10 1 in the case of u 3k ′ +2 resp. of u 10 1 and u 12 1 in the case of u 3k ′ +1 . It also gives us more flexibility for approximating θ.

Corollary 5.18. Let k ′ be an integer and ϑ ∈ (3, I 4 ). Then there exist α, β, γ, δ ∈ F 9 which only depend on ϑ modulo (3, I 5 ) such that we have the following congruences. a) ϑ * (u 3k ′ +1 ) ≡ (αu 10 1 + βu 12 1 )u 3k ′ +1 mod (3, u 13 1 ) for suitable α, β ∈ F 9 .

Remark The higher differentials can therefore be evaluated if we know projective resolutions Q • of N 0 and P • of C 0 as well as a chain map φ : Q • → P • covering j. These data can also be assembled in a double complex T •• with T •0 = P • , T •1 = Q • , vertical differentials δ P and δ Q and "horizontal differentials" (-1) n φ n : Q n → P n . The lemma implies that the filtration of the spectral sequence of this double complex agrees (up to reindexing) with that of the spectral sequence of the lemma. Hence extension problems in the spectral sequence of the lemma can also be studied by using the double complex.

We apply this lemma and the remark to the algebraic spectral sequence associated to the case of the exact complex (1). We will make use of explicit projective resolutions Q • of N 0 and P • of C 0 and a suitable chain map φ : Q • → P • covering j. The essential step is given in the following elementary result whose proof is left to the reader. Lemma 6.2. Let χ be the Z 3 [Q 8 ]-module whose underlying Z 3 -module is Z 3 and on which t acts by multiplication by -1 and ψ by the identity. Then the trivial Z 3 [G 24 ]-module Z 3 admits a projective resolution P ′

• of period 4 of the following form

In the sequel we work with the induced projective resolution

e. by splicing it with P • . The next result records all we need to know about the chain map φ. Lemma 6.3. There is a chain map φ : Q • → P • covering the homomorphism j such that

Q8 = P 0 sends e 1 to (e -ω) e 0 . (Here the generator e 0 ∈ P 0 is given by e ⊗ 1 ∈ P 0 and we continue to denote the generator of C 1 introduced in section 3.2, and also given by e ⊗ 1, by e 1 .) Proof. In fact, as in the proof of Corollary 3.3 we see that SD 16 acts on (e -ω) e 0 via the character χ. Hence φ 0 is well defined and it is clear that φ 0 covers j.

Proof of Proposition 5.5. From its definition it is clear that α ∈ H 1 (G 24 , M 4 ) is a permanent cycle in the algebraic spectral sequence for M * = (E 2 ) * /(3) (the restriction of the class with the same name in H 1 (G 1 2 , M 4 )), i.e. there are cochains c ∈ Hom Z3[[G 1 2 ]] (P 1 , M 4 ) and d ∈ Hom Z3[[G 1 2 ]] (Q 0 , M 4 ) such that c + d is a cocycle in the total complex of the double complex Hom Z3[[G 1 2 ]] (T •• , M 4 ) and such that c

). Furthermore, the cocycle c can be obtained as the mod-3 reduction of a cocycle representing δ 0 (v 1 ) (cf. the discussion in section 5.1), i.e. we can take c = 1 3 (a * 2 -a * )v 1 and this is known to be of the form ωu -2 mod (u 1 ) (cf. the proof of Lemma 1 in [START_REF] Goerss | The homotopy of L 2 V (1) for the prime 3, Categorical decomposition techniques in algebraic topology (Isle of Skye[END_REF]). Then

1, and hence there exists

), h must have the form ǫu -4 mod (u 1 ) for some unit ǫ ∈ F 9 . Corollary 4.7 shows that

and hence ǫ = ω 2 by (6). In the double complex Hom

≡ ω 2 u -4 mod (u 1 ) and hence v 1 (c+d) is cohomologous to ω 2 u -4 +v 1 d mod (u 1 ) and this implies the proposition. Now we turn towards the calculation of higher differentials and extensions. 

Remark We repeat that after the fact one can check that the d 2 -differential is, up to sign, determined by v 1 -linearity and the principle that it is non-trivial whenever it has a chance to be so.

In the proof of the proposition we make repeated use of the following lemma. 

as u t f for some t ∈ Z and f a power series in u 1 . Then we write f = f 0 + u k 1 f 1 with f 0 a polynomial in u 1 of degree less than k and f 1 a power series in u 1 . If we put d ′ = u t f 0 and d = u 2k+t f 1 then the first part of (a) holds.

Next we use that the double complex Hom

. and thus the second part of (a) and (b) follow.

If d ′′ = 0 then the equations

) and (-1) s d ′ are cohomologous in the double complex. Furthermore, d ′ is a cycle by assumption and hence v k 1 (c + (-1) s-1 d) is a cycle. Because the double complex is v 1 -torsion free, c + (-1) s-1 d is a cycle as well and (c) follows.

Proof of Proposition 6.4. We begin with the case of ∆ k α. As in the proof of Proposition 5.5 let c ∈ Hom Z3[[G 1 2 ]] (P 0 , M 4 ) be a cocycle representing

where h is as in the proof of Proposition 5.5 above. In particular h ≡ ω 2 u -4 and hence

)ω 2k+2 u -12k-4 mod (u 4 1 ) . (We note that the congruence is modulo (u 4 1 ) by (24)!) In particular, if k is odd we see that

2 ]] (Q 0 , M * ). Then Lemma 6.5 and Theorem 1.2 give easily the differentials and extensions on all elements ∆ k α for k = 0.

In the case of ∆ k α the definition of α (cf. section 5.1) shows that α can be represented by a

1 ) and thus

) . (Again we note that the congruence is modulo (u 4 1 ) by ( 24)!) In particular, if k is even we deduce that

2 ]] (Q 0 , M * ) and for k = 6m + j with j ∈ {1, 3, 5} we have φ * 0 (∆ k v 2 ) = (-1) m+1 ω 2j-2 b 18m+3j+2 + v 4 1 z for some z ∈ Hom Z3[[G 1 2 ]] (Q 0 , M * ) and as before Lemma 6.5 and Theorem 1.2 give easily the differentials and extensions on all elements ∆ k α.

The following result together with Proposition 5.5 and Proposition 6.4 finishes off the proof of Proposition 1.3 and Proposition 1.5. Proposition 6.6. a) For i ≥ 3 the differentials d i in the algebraic spectral sequence (2) for the mod-3 Moore spectrum are all trivial. b) For each integer k ∈ Z and l > 0 we have

Proof. The differential is linear with respect to the natural Ext

)module structure on its target and source. Hence it is enough show that the classes ∆ k βα, ∆ k β α and ∆ k β are d 3 -cycles and to prove (b) in the case l = 1. In both cases we use Lemma 6.5 once again.

We begin with the case of ∆ k β. Let c 1 be a cocycle in Hom Z3[[G 1 2 ]] (P 2 , M 12 ) representing β.

] and by degree reasons we need to have φ * 1 (h 1 ) = v 3 1 z for some z ∈ Hom Z3[[G 1 2 ]] (Q 1 , M 8 ), and then Lemma 6.5 shows that β is not only the restriction of a permanent cycle (which we knew anyway), but also that v 2 1 β = 0 in H 2 (G 1 2 , M 20 ). Furthermore, as ∆ k is G 24 -invariant we have c) There are elements in π 8k (E hG24 2 ∧ V (1)) represented by (ω 2 u -4 ) k , k = 0, 1, 2, and in π 8k+3 (E hG24 2 ∧ V (1)) represented by (ω 2 u -4 ) k α, k = 0, 1, 2, 3, 4, 5, such that there is an isomorphism of modules over

Next we turn towards the algebraic spectral sequence (2) in the case of M = (E 2 ) * /(3, u 1 ) and the Adams-Novikov spectral sequence converging towards π * (L K(2) V (1)). This has already been discussed in [START_REF] Goerss | The homotopy of L 2 V (1) for the prime 3, Categorical decomposition techniques in algebraic topology (Isle of Skye[END_REF] and [START_REF] Shimomura | The homotopy groups of the L 2 -localized Toda-Smith spectrum V (1) at the prime 3[END_REF]. Here we merely translate those results into a form suitable for our discussion. As before v 2 is defined to be u -8 .

2 , β, α]/(α) 2 the E 1 -term of the algebraic spectral sequence (2) for (E 2 ) * /(3, u 1 ) is given as follows (with β and α acting trivially on E s, * , * 1 if s = 1, 2, and the elements e s , s = 0, 1, 2, 3, serving as module generators in tridegree (s, 0, 0). )

b) The differentials in this spectral sequence are F 3 [v ±1 2 , β, α]-linear. The only non-trivial differential in this spectral sequence is d 1 and is determined by

on generators e 0 , αe 0 , ω 2 u -4 αe 0 , ω 2 u -4 βe 0 , ω 2 u -4 e 2 , e 3 , ω 2 u -4 e 3 , ω 2 u -4 αe 3 .

e) There is an isomorphism of

Proof. a) The action of G 1 2 on (E 2 ) * /(3, u 1 ) is trivial on its Sylow-subgroup S 1 2 , and on the quotient group G 1 2 /S 2 ∼ = SD 16 the action is given by the formulae in ( 22) and ( 23). With this information the calculation of the E 1 -term is straightforward and is left to the reader. b) As module over F 3 [v ±1 2 , β, α] the E 1 -term is generated by e s and ω 2 u -12 e s for s = 0, 3 and ω 2 u -4 e s for s = 1, 2. The map of algebraic spectral sequences (2) induced by the canonical homomorphism

2 and ∆ 2k to v 3k 2 e 3 . This and Theorem 1.2 determine the d 1differential and the E 2 -page. The abutment of the spectral sequence is known by Corollary 19 of [START_REF] Goerss | The homotopy of L 2 V (1) for the prime 3, Categorical decomposition techniques in algebraic topology (Isle of Skye[END_REF] and comparing the E 2 -term with the abutment shows that the spectral sequence collapses at its E 2 -term. c) From the same corollary we know that H * (S 2 , (E 2 ) * /(3, u 1 )) is free as module over Proof. This is an immediate reformulation of the main theorem of [START_REF] Goerss | The homotopy of L 2 V (1) for the prime 3, Categorical decomposition techniques in algebraic topology (Isle of Skye[END_REF]. We just have to use the following dictionary which translates between the F 9 [v ±1 2 , β]-module generators used in Corollary 19 of [START_REF] Goerss | The homotopy of L 2 V (1) for the prime 3, Categorical decomposition techniques in algebraic topology (Isle of Skye[END_REF] and those of H * (S 1 2 , (E 2 ) * /(3, u 1 )) of Theorem A.3 1 .

By degree reasons the generators 1, α, v 2 βαa 35 of [START_REF] Goerss | A resolution of the K(2)-local sphere[END_REF] must correspond, up to a unit in F 9 , to e 0 , αe 0 , ω 2 u -4 αe 0 , ω 2 u -4 βe 0 , ω 2 u -4 v 2 2 e 2 and Σ 48 ω 2 u -4 αe 3 of Theorem A.3. The generators βa 35 and v 1 2 2 βa 35 are not determined (not even up to a unit) by their bidegree, but if one takes into account that they are in the kernel of the restriction map to H * (G 12 ; (E 2 ) * /(3, u 1 )) then they are also determined up to a unit and they must therefore agree, up to a unit, with the elements Σ 48 e 3 and Σ 48 ω 2 u -4 e 3 .