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Invertibility, flatness and identifiability of switched linear dynamical
systems: an application to secure communications

Phuoc Vo Tan, Gilles Millérioux and Jamal Daafouz

Abstract— This paper deals with invertibility, flatness and
identifiability of switched linear dynamical systems. Based on
these concepts, a framework which enables to test whether,
from a structural point of view, a switched linear dynamical
system can act as a cryptosystem for secure communications is
proposed.

Hybrid systems have inspired a great deal of research from
both control theory and theoretical computer science. They
provide a strong theoretical foundation which combines
discrete-event and continuous-time systems in a manner
that can capture software logic and physical dynamics in
a unified modeling framework. The most well-known area
of applicability of hybrid systems are naturally modeling,
analysis and control design of embedded systems. Switched
systems are an important class of hybrid systems widely
studied in the literature and stability, identifiability, controller
or observer design are challenging problems related to.
They are usually addressed for engineering applications.

The contribution of this paper is to provide results for
an application related to secure communications. Let us
briefly describe this context. Chaotic behavior is one of the
most complex dynamics a nonlinear system can exhibit.
Because the signals resulting from chaotic systems are
broadband, noiselike, difficult to predict, the idea of using
chaotic systems for information masking has received much
attention since the pioneering work of [1]. Several ciphering
methods for masking the information into a chaotic signal
produced by a dynamical system have been proposed in
the literature. An overview can be found according to the
chronology in [2][3][4][5].
In this paper, we propose a framework, based on the
concepts of control theory, which enables to test whether,
from a structural point of view, a switched linear dynamical
system can act as a cryptosystem. Such a class is interesting
because it combines two advantages: capability of exhibiting
complex dynamics and ease of implementation.

The paper is organized as follows. Section I aims at
deriving algebraic conditions under which a switched linear
discrete-time system is respectively invertible and flat. It is
shown how these concepts are useful in the perspective of
designing ciphers for secure communications, more precisely
self-synchronizing stream ciphers. In Section II the security
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aspect is addressed and a connection between identification
and algebraic attacks is brought out. An illustrative example
is finally given.

I. INVERTIBILITY, FLATNESS AND IDENTIFIABILITY

Consider the switched linear dynamical system:
{

xk+1 = Aσ(k)xk +Bσ(k)uk

yk = Cσ(k)xk +Dσ(k)uk
(1)

where xk ∈ R
n, uk ∈ R and yk ∈ R. All the matrices, namely

Aσ(k) ∈ R
n×n, Bσ(k) ∈ R

n×1, Cσ(k) ∈ R
1×n and Dσ(k) ∈ R

belong to the respective finite sets (A j)1≤ j≤J, (B j)1≤ j≤J,
(C j)1≤ j≤J and (D j)1≤ j≤J . At a given time k, the index j
corresponds to the mode of the system and results from a
switching function σ : k ∈ N 7→ j = σ(k) ∈ {1, . . . ,J}. {σ}k2

k1
refers to the mode sequence {σ(k1), . . . ,σ(k2)}.
Let U be the space of input sequences over [0,∞) and
Y the corresponding output space. At time k, for each
initial state xk ∈ R

n, when the system (1) is driven by the
input sequence {u}k+T

k = {uk, . . . ,uk+T} ∈ U , for a mode
sequence {σ}k+T

k , {x(xk,σ ,u)}k+T
k refers to the solution of

(1) starting from xk in the interval of time [k,k + T ] and
{y(xk,σ ,u)}k+T

k ∈ Y refers to the corresponding output
sequence in the same interval of time [k,k +T ].

Two structural properties of (1) are now addressed :
invertibility and flatness.

A. Invertibility

Before addressing the invertibility property, the relative
degree of a switched linear system must be defined. We first
recall a general definition.

Definition 1: The relative degree of a dynamical system
with respect to its input uk is the required number r of
iterations of its output yk so as yk+r depends explicitly on uk.

Remark 1: Hereafter, we only consider the case when
the relative degree r is constant.

We are checking for an algebraic interpretation of the relative
degree for the SISO switched linear system (1) in terms of its
state space description matrices. To this end, we must write
down the expression of yk+i by iterating (1)

yk+i = Cσ(k+i)A
σ(k+i−1)
σ(k) xk +

j=i

∑
j=0

T
i, j

σ(k)uk+ j (2)



with

T
i, j

σ(k) =Cσ(k+i)A
σ(k+i−1)
σ(k+ j+1)

Bσ(k+ j) if j ≤ i−1, T
i,i

σ(k) = Dσ(k+i)

(3)
and with the transition matrix defined as:

Aσ(k1)
σ(k0) = Aσ(k1)Aσ(k1−1) . . .Aσ(k0) if k1 ≥ k0

= 1n if k1 < k0

1n being the identity matrix of dimension n.
As a result, the relative degree r of (1) is

• r = 0 if T
0,0

σ(k) 6= 0 for all k
• the least integer r < ∞ such that for all k

T
i, j

σ(k) = 0 for i = 0, . . . ,r−1 and j = 0, . . . , i

T
r,0

σ(k) 6= 0
(4)

When (1) has relative degree r, its output reads at time k+r:

yk+r = Cσ(k+r)A
σ(k+r−1)
σ(k) xk +T

r,0
σ(k)uk (5)

Definition 2: The system (1) is left invertible if there ex-
ists a nonnegative integer R < ∞ such that, for two any inputs
sequences {u}k+R

k ,{u′}k+R
k ∈ U , the following implication

applies:

∀σ ,∀xk {y(xk,σ ,u)}k+R
k = {y(xk,σ ,u′)}k+R

k ⇒ uk = u′k
(6)

In other words, (1) is left invertible if the input uk can be
uniquely determined from an output sequence of finite length
for any known initial condition and switching rule. It turns
out that if (1) has a finite relative degree r, it is also left
invertible with R = r. Indeed, if (1) has a finite relative degree
r, (5) holds and the input uk can be deduced in a unique way.
It reads:

uk = (T r,0
σ(k))

−1(yk+r −Cσ(k+r)A
σ(k+r−1)
σ(k) xk) (7)

The existence of the inverse of T
r,0

σ(k) is guaranteed since it
is, by definition, always different from zero.

B. Inversion

We are now concerned with a recursive inversion of
(1) achieving the recovering of uk from yk without any
knowledge of xk. Let us define the inverse transition matrix as

Pσ(k1)
σ(k0)

= Pr
σ(k1)

Pr
σ(k1−1) . . .P

r
σ(k0) if k1 ≥ k0

= 1n if k1 < k0

with

Pr
σ(k) = Aσ(k)−Bσ(k)(T

r,0
σ(k))

−1Cσ(k+r)A
σ(k+r−1)
σ(k) (8)

Proposition 1: The following dynamical system is a stable
inverter whenever the system νk+1 = Pr

σ(k)νk is uniformly
asymptotically stable















x̂k+r+1 = Pr
σ(k)x̂k+r +Bσ(k)(T

r,0
σ(k))

−1yk+r

ûk+r = −(T r,0
σ(k))

−1Cσ(k+r)A
σ(k+r−1)
σ(k) x̂k+r

+(T r,0
σ(k))

−1yk+r

(9)

Proof: On one hand, substituting (5) into (9) yields:

x̂k+r+1 = Pr
σ(k)x̂k+r +Bσ(k)(T

r,0
σ(k))

−1Cσ(k+r)A
σ(k+r−1)
σ(k) xk

+Bσ(k)(T
r,0

σ(k))
−1T

r,0
σ(k)uk

(10)
Taking into account (8) and noticing that

(T r,0
σ(k))

−1T
r,0

σ(k) = 1, εk = xk − x̂k+r fulfills the recursion:

εk+1 = (Aσ(k)−Bσ(k)(T
r,0

σ(k))
−1Cσ(k+r)A

σ(k+r−1)
σ(k) )εk

= Pr
σ(k)εk

(11)
On the other hand, from the expression (7) of uk and the
expression of ûk+r in (9), we get that:

uk − ûk+r = −(T r,0
σ(k))

−1Cσ(k+r)A
σ(k+r−1)
σ(k) (xk − x̂k+r) (12)

From (12) we can infer that ûk+r converges toward uk as
long as x̂k+r converges toward xk, that is provided that the
system νk+1 = Pr

σ(k)νk with νk = εk is uniformly asymptoti-
cally stable.

C. Flatness

We first recall a general definition of flat output (for
details about flatness, the reader can refer to [6] or the book
[7]).

Definition 3: A flat output of a dynamical system is an
output variable yk such that all system variables can be
expressed as a function of yk and a finite number of its
forward/backward iterates. In particular, there exists two
functions F , G and integers t1 < t2, t ′1 < t ′2 such that

xk = F (yk+t1 , · · · ,yk+t2)
uk = G (yk+t′1

, · · · ,yk+t′2
)

(13)

We derive an algebraic interpretation of flat outputs for (1).

Proposition 2: The output yk of (1), assumed to be left
invertible, is a flat output if there exists a positive integer
0 < K < ∞ such that for all k ≥ 0

Pσ(k+K−1)
σ(k) = 0 (14)

where 0 stands for the null matrix.
Proof: The proof is based on the inverse system. Iterating
(9) l −1 times yields:

x̂k+r+l = Pσ(k+l−1)
σ(k) x̂k+r

+∑l−1
i=0 Pσ(k+l−1)

σ(k+i+1)
Bσ(k+i)T

r,0
σ(k+i)yk+i+r

(15)

If (14) is fulfilled, (15) turns into

x̂k+r+K = ∑K−1
i=0 Pσ(k+K−1)

σ(k+i+1)
Bσ(k+i)T

r,0
σ(k+i)yk+i+r (16)

revealing that x̂k+r+K is independent of x̂k+r. In particular,
(16) holds for x̂k0+r = xk0 for all k0 ≥ 0, that is for εk0 = 0
with k0 ≥ 0. By virtue of (11), we infer that εk = 0 for all
k ≥ k0 and thus x̂k+r+K = xk+K for all k ≥ 0. Therefore, after



performing the change of variable k → k−K, we obtain an
explicit form for F involved in (13).

xk = ∑K−1
i=0 Pσ(k−1)

σ(k+i+1−K)
Bσ(k+i−K)T

r,0
σ(k+i−K)

yk+i+r−K

(17)
On the other hand, substituting (17) into (7) yields an explicit
form for G involved in (13) and then, we infer that yk is a
flat output according to the Definition 3.

D. Connection with usual stream ciphers in secure commu-
nication

Secure communications requires cryptographic algorithms
called ciphers (see the book of Menezes [8] for details).
Among a variety of ciphers, symmetric-key ciphers are very
efficient for secure transmission requiring high throughput.
We focus here on self-synchronous stream ciphers which
is an interesting class of symmetric ciphers owing to their
inherent ability to self-synchronizing without requiring any
synchronization flags or interactive protocols for recovering
lost synchronization induced for instance by bit slips. At the
transmitter side, the self-synchronous stream cipher admits
the following recursion, written with the usual notation
encountered in the literature:

{

Kk = σ ss
θ (ck−l , . . . ,ck−l′)

ck+bs = e(Kk,mk)
(18)

mk is the information to be encrypted and is called the
plaintext. ck is the encrypted information and is called the
ciphertext which is conveyed through a public channel to
the receiver. The ciphertext is delivered by the encryption
function e depending on the so-called time-varying key Kk

also named keystream. σ ss
θ is a function, parameterized by

a parameter vector θ that is the secret key, that generates
the keystream. σ ss

θ depends on ck−i (i = l, . . . , l′) that is a
fixed number of past values of ck. bs is a positive integer.
When strictly greater than zero, bs corresponds to a delay
between the plaintext mk and the corresponding ciphertext
ck+bs . This delay is due to a sequential computation of
the ciphertext through an architecture which involves a
pipeline with bs stages (see for example the algorithm called
Mosquito [9]). Actually, (18) is a conceptual model, called
canonical representation, that may correspond to numerous
different architectures.

From the results of Subsect. I-A and Subsect. I-C
concerning invertibility and flatness, we are in position of
providing some conditions under which (1) may act as a
self-synchronizing stream cipher.

Proposition 3: If (1) has a finite relative degree r and yk

is a flat output, then (1) is a self-synchronizing stream cipher.

Proof: By virtue of (5) and (17), the system (1) can be

rewritten in the following equivalent form:
{

xk = ∑K−1
i=0 Pσ(k−1)

σ(k+i+1−K)Bσ(k+i−K)T
r,0

σ(k+i−K)yk+i+r−K

yk+r = Cσ(k+r)A
σ(k+r−1)
σ(k) xk +T

r,0
σ(k)uk

(19)
and the result follows from the identification of (19) with
(18), the correspondences being:

• uk ↔ mk (plaintext)
• yk ↔ ck (ciphertext)
• xk ↔ Kk (keystream)
• F ↔ σ ss

θ (keystream generator)

• (xk,uk) 7→ Cσ(k+r)A
σ(k+r−1)
σ(k) xk + T

r,0
σ(k)uk ↔ e (encryp-

tion function)
• r ↔ bs (number of stages of the pipeline)

II. IDENTIFICATION, ALGEBRAIC ATTACKS AND

SECURITY

An essential issue for the validation of cryptosystems
is the cryptanalysis, that is the study of attacks against
cryptographic schemes in order to reveal their possible
weakness. A fundamental assumption in cryptanalysis, first
stated by A. Kerkhoff in [10], is that the eavesdropper knows
all the details of the cryptosystem, including the algorithm
and its implementation, except the secret key, on which the
security of the cryptosystem must be entirely based. As a
result, the security is directly related to the complexity of
the parameters recovering task and so, on the complexity of
the underlying identification procedure. The identification is
nothing but what is called in the cryptographic context an
algebraic attack. The consideration of the possible attacks
and their complexity will dictate the way how the secret key
of (1) must be defined as detailed below.

A. Connection between identification and algebraic attacks

One of the most powerful attack is the chosen plaintext
attack. For such an attack, the eavesdropper is assumed to
control the input of the cipher, namely the plaintext, and to
analyze the corresponding ciphertext. In our context, since
the cipher is the dynamical system (1), it means that the
eavesdropper is supposed to control both the input uk and
the output yk. As a result, the pair (uk,yk) is supposed to be
known by the eavesdropper and the cryptanalytic reasoning
must be based on the input/output model of (1).

When the switched system (1) is flat, its input/output
model can be obtained in a systematic way. Indeed, if (1)
is flat with flat output yk, the state vector xk obeys (17).
Substituting the expression (17) of xk into (5) yields

yk+r = Cσ(k+r)A
σ(k+r−1)
σ(k) ·

(∑K−1
i=0 Pσ(k−1)

σ(k+i+1−K)
Bσ(k+i−K)T

r,0
σ(k+i−K)

yk+i+r−K)+T
r,0

σ(k)uk

(20)
Let {σ1}

k+r−1
k+r−K , . . . ,{σN}

k+r−1
k+r−K the N possible mode se-

quences {σ(k + r −K), . . . ,σ(k + r − 1)} over the interval
of time [k + r−K,k + r−1]. The number N of all possible
mode sequences is finite since the number J of modes of



(1) is. These mode sequences will be respectively denoted
for short σ1, . . . ,σN in the sequel. Thus, for t = 1, . . . ,N, the
input/output relation (20) can be rewritten as

yk+r =
K−1

∑
j=0

a j(σt)yk+ j+r−K + c(σt)uk (21)

where c(σt) and the a j(σt)’s ( j = 0, . . . ,K − 1) are
coefficients depending in different ways according to the
sequence σt on the entries of the matrices (A j)1≤ j≤J,
(B j)1≤ j≤J, (C j)1≤ j≤J and (D j)1≤ j≤J of (1)

Let us first assume that σt is accessible. Since for each
σt , the parameters c(σt) and the a j(σt)’s appear in a
linear fashion in the input/output relation (21), they are
obviously identifiable. Indeed, for a given mode sequence
σt , under the usual Persistently Exciting (PE) conditions,
the identification can always be performed by iterating the
relation (21) until a set of linear independent equations is
obtained. The solution is unique for each σt and gives c(σt)
and the a j(σt)’s.

Conversely, let us assume that σt is not accessible. The
previous procedure does no longer hold. An alternative iden-
tification procedure (and so algebraic attack) for recovering
c(σt) and the a j(σt )’s attack can follow the method proposed
in [11] for switched ARX systems. This method is summed
up and adapted to our context.
Each input/output relation (21) can be rewritten for t =
1, . . . ,N

zT
k bt = 0 (22)

• zk = [yk+r,yk+r−1, · · · ,yk+r−K ,uk]
T ∈ R

K+2

• bt = [1,−a0(σt), . . . ,−aK−1(σt ),−c(σt)]
T ∈ R

K+2

zk is the regressor vector while bt is the parameter vector
corresponding to the mode sequence σt .
We can thereby define N hyperplanes St , t = 1 . . . ,N

St = {zk : zT
k bt = 0}

The key idea rests on the fact that the so-called Hybrid
Decoupling Constraint equation is fulfilled regardless the
switching sequences:

pN(zk) =
N

∏
t=1

(zT
k bt) = νN(zk)

T hN = 0 (23)

hN ∈ R
MN is the coefficient of the Hybrid Decoupling Poly-

nomial and νN : zk ∈ R
K+2 7→ ξk ∈ R

Mn is a Veronese map of
degree N, the components of ξk corresponding to all the MN

monomials (product of the components of zk) sorted in the
degree-lexicographic order. The quantity MN is given by

MN =

(

N +K−1
N

)

=
(N +K −1)!
N!(K −1)!

(24)

For the identification of the bt’s in (22), it is needed to com-
pute the coefficients hN of (23). To this end, let LN denote an

embedded data matrix involving N mapped regressor vectors
zk through νN

LN =









νN(zk1)
νN(zk2)
...
νN(zkN )









T

∈ R
N×MN

The following relation applies:

LNhN = 0 (25)

If the mapped regressor vectors νN(zki)’s are sufficiently
exciting, the existence of an integer N ′ such that the νN′(zki)’s
(i = 1, . . . ,N ′) can span a MN −1 dimensional vector space,
i.e

rank(LN′) = (MN −1) (26)

is guaranteed. The lower bound of N ′ is MN − 1. If (26) is
fulfilled, the coefficient hN can be retrieved by

hN = Ker(LN′) (27)

Finally, to recover the parameter vectors bt from the knowl-
edge of hN , let’s consider the derivative DpN(zk) of pN(zk):

DpN(zk) =
∂ pN(zk)

∂ zk
=

∂
∂ zk

N

∏
t=1

(zT
k bt) =

N

∑
t=1

bt ∏
l 6=t

(zT
k bl) (28)

If wt is a point lying on the tth hyperplane St , we can obtain,
for t = 1, . . . ,N, the bt ’s by performing:

bt =
DpN(wt)

eDpN(wt )
(29)

e stands for the vector [1 0 · · ·0] ∈ R
K+2.

Remark 2: An algebraic solution to determine the N dis-
tinct points wt that lie on the N hyperplanes St can be found
in [11].

B. Complexity and security

We recall that the parameters c(σt) and a j(σt)’s of the
input/output model of (1) depend on the entries of the
matrices (A j)1≤ j≤J, (B j)1≤ j≤J, (C j)1≤ j≤J and (D j)1≤ j≤J

and on the switching rule σ . The objective of this section is
to determine the relevant entries of the matrices which can
be involved in the secret key denoted hereafter θ .

To this end, it worth emphasizing that a cryptosystem
must face at least the most basic attack, i.e. the brute
force attack. This attack consists in trying exhaustively
every possible parameter value in the parameter space of
the secret key (which is in practice a finite space). The
quicker the brute force attack, the weaker the cryptosystem.
Consequently, the worst situation for the eavesdropper and
the best for the security arises when, for known plaintexts
(because accessible to eavesdropper in the chosen plaintext
attack) and corresponding ciphertext sequences, only one
solution in the parameters of the cipher exists.

And yet, we recall that a component θ (i) of a parameter
vector θ of a discrete-time dynamical system is identifiable



if θ (i) can be rewritten as a unique function ϕ of the input,
the output and their iterates

θ (i) = ϕ(yk, . . . ,yk+M ,uk, . . . ,uk+M′ ) (30)

with M < ∞ and M
′
< ∞ some positive integers.

As a result, we conclude that the most relevant parameters
of a system to act as the secret key are the ones which are
identifiable (a result which could seem paradoxical at first
glance without the previous reasoning).

From the identification procedures described
above, it turns out that c(σt) and the a j(σt)’s
( j = 0, . . . ,K −1, t = 1, . . . ,N) can always be expressed in a
unique way as a function of the input, the output and their
iterates. Thus we have the following result:

Proposition 4: The secret key θ must be the set of
entries of (A j)1≤ j≤J, (B j)1≤ j≤J, (C j)1≤ j≤J and (D j)1≤ j≤J

of (1) which can be deduced from c(σt) and the a j(σt )’s in
a unique way.

Besides, it has been seen that if σt is accessible, recovering
the parameters c(σt) and a j(σt)’s of the input/output model
is quite simple by solving a set of linear equations. Thus
to force the eavesdropper resorting to the second approach
and so to complexify the identification, one must imagine a
configuration for which σt is not directly accessible. One
solution is to render the switching rule σ dependent on θ
as well.

We are now in position of assessing the security in terms
of the complexity of the required algebraic computations
to identify θ . The most important task in the algebraic
procedure related to the case σt not accessible and described
above is the computation of the coefficients hN through (27).
In practice, the kernel (null space) is obtained through a
Singular Values Decomposition (SVD) of which complexity
is O(min(N ′M2

N ,N′2MN)). The lower bound of N ′ being
MN − 1, when MN is large enough, the complexity can
be approximated by O(MN)3. The increasing rate of MN

is depicted on Figure 1. Similarly to all existing ciphers,

1 2 3 4 5 6 7 8 9 10
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Fig. 1. MN versus N for different values of K.

the complexity obviously increases with the number of
parameters in the key space. What is important is the way
how the complexity increases with respect to the number
of parameters. A bad algorithm is a one for which the
complexity increases linearly with respect to the number
of parameters. The above study shows that it is not
the case for piecewise linear systems and highlights the
potential relevance of resorting to such class of systems
for cryptographic purposes. As an example, take N = 32
and K = 6, then MN = 435897. The minimum number of
iterations for checking the rank condition (26) is 4358973.
Let us assume that each iteration takes 10−9s, we will spend
nearly 2,62 years to retrieve the parameters!

C. Illustrative example

We consider a switched linear system in the form (1) with

Aσ(k) =

(

q1
σ(k) 1
0.5 0

)

, Bσ(k) =

(

0
q2

σ(k)

)

and with Cσ(k) = (1 0) and Dσ(k) = 0 for any k.

The number of modes of the switching rule σ is J = 4. The
time-varying entries fulfill q1

1 = q1
2 = 1.7, q1

3 = q1
4 = −1.7,

q2
1 = q2

3 = −0.01, q2
2 = q2

4 = 0.01.

Structural consideration
i) The relative degree is r = 2 according to (4) since
T

i, j
σ(k) = 0 for i = 0,1 and j = 0, . . . , i. Besides

T
2,0

σ(k) = Cσ(k+2)Aσ(k+1)Bσ(k) 6= 0 for all k.
ii) The computation of (14) gives 0 with K = 2 and reveals
that yk is a flat output.
From i) and ii), we can infer that the system is a self-
synchronizing stream cipher according to the Proposition 3.

Determination of the secret key
iii) For the secret key, we choose θ =
(θ (1) θ (2) θ (3) θ (4) θ (5)) = (q1

1 q1
3 q3 q2

1 q2
2) =

(1.7 − 1.7 0.5 − 0.01 0.01) of dimension L = 5. Let
us check whether it is an admissible choice in terms of
identifiability.

The computation of (20) allows us to obtain an in-
put/output relation in the form of (21)

yk+2 = 0.5yk +q1
σ(k+1)yk+1 +q2

σ(k)uk

= a0(σt)yk +a1(σt)yk+1 + c(σt)uk
(31)

In the time interval [k,k + 1], to the N = 4 possible modes
sequences σ1 = {1,1}, σ2 = {1,2}, σ3 = {2,1}, σ4 = {2,2},
correspond four respective input/output equations

t = 1, yk+2 = θ (3)yk +θ (1)yk+1 +θ (4)uk

t = 2, yk+2 = θ (3)yk +θ (2)yk+1 +θ (4)uk

t = 3, yk+2 = θ (3)yk +θ (1)yk+1 +θ (5)uk

t = 4, yk+2 = θ (3)yk +θ (2)yk+1 +θ (5)uk



with the following relations

θ (1) = a1(σ1) or θ (1) = a1(σ3)

θ (2) = a1(σ2) or θ (2) = a1(σ4)

θ (3) = a0(σt) for any t = 1, . . . ,4
θ (4) = c(σ1) or θ (4) = c(σ2)

θ (5) = c(σ3) or θ (5) = c(σ4)

(32)

From (32), we infer that θ can be recovered in a unique way
from the knowledge of (a0(σt),a1(σt),c(σt)) (t = 1, . . . ,4)
and then Proposition 4 is fulfilled. Consequently θ can act
as the secret key.

Attack and related complexity
iv) Let us perform the algebraic attack described in Sub-
sect. II-B and assess its complexity. To this end, we inject
known plaintexts uk into (1) and collect the corresponding
ciphertexts yk. We then iterate (1) until a sufficient number
of regressor vectors zki are obtained for the matrix LN′ to
fulfill the rank condition (26). After computing hN from (27),
we derive b1, . . . ,b4 by (29)

b1 = [1 -0.5 −1.7 0.01]T

b2 = [1 -0.5 1.7 0.01]T

b3 = [1 -0.5 −1.7 −0.01]T

b4 = [1 -0.5 1.7 −0.01]T

and then recover the c(σt)’s and the a j(σt)’s ( j = 0, . . . ,K−
1, t = 1, . . . ,N) and finally the θ (i)’s by (32). According
to the discussion of Subsect. II-B, it is worth emphasizing
that since M4 = 35, the minimal complexity of the attack
is 353 = 42875, a complexity which would have required a
dimension 35 if we would have resorted to a linear system.

III. CONCLUSION

In this paper, it is presented a framework which enables
to test whether a switched linear system may act as a
self-synchronizing cryptosystem from a structural point of
view. Invertibility and flatness are the two properties which
allow the dynamical system to be structurally equivalent
to a self-synchronizing stream cipher. Identifiability is the
necessary required property such that the parameters may
be involved in the secret key. Identification consists of an
algebraic attack in the context of secure communication.
For switched linear systems, the complexity to identify
the parameters increases significantly with the number of
modes and let us expect that switched linear systems could
be good candidates for ciphering. Further consideration are
needed for validation in particular the vulnerability against
statistical attacks.
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