
HAL Id: hal-00331722
https://hal.science/hal-00331722

Submitted on 17 Oct 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Product, Processes and Organization Architectures
Modeling : from strategic expectations to strategic

competences.
Ghassen Harmel, Eric Bonjour, Maryvonne Dulmet

To cite this version:
Ghassen Harmel, Eric Bonjour, Maryvonne Dulmet. Product, Processes and Organization Archi-
tectures Modeling : from strategic expectations to strategic competences.. 12th IFAC Symposium
on Information Control Problems in Manufacturing, INCOM’06., May 2006, Saint-Etienne, France.
pp.211-216. �hal-00331722�

https://hal.science/hal-00331722
https://hal.archives-ouvertes.fr

1

PRODUCT, PROCESSES AND ORGANIZATION ARCHITECTURES
MODELING: FROM STRATEGIC EXPECTATIONS TO STRATEGIC

COMPETENCIES

G. HARMEL, E. BONJOUR, M. DULMET
Laboratoire d'Automatique de Besançon

- UMR CNRS 65 96
ENSMM - Université de Franche-Comté - 24 rue Alain Savary - 25000 Besançon

gharmel@ens2m.fr ebonjour@ens2m.fr mdulmet@ens2m.fr

ABSTRACT: Complex systems design and especially automotive design is facing continuous
technological evolution that needs stronger integration. In this paper, a method for representing
system architecture is presented. This method is based on dependencies and constraints
propagation which allows us to focus on the co-evolution of product, organization and processes
domains.

KEY-WORDS: product architecture, organization structure, processes structure, DSM,
competencies

1. INTRODUCTION

Nowadays, firms’ survival depends on their ability to
deal with the constant evolution of customers needs.
The fast reactivity and adaptation of firms to this
changing environment is strongly related with an
advanced control of their internal mechanisms.
Concerning product development situations,
researchers (Allen, 1997) (Pimmler and Eppinger,
1994) have highlighted the interdependency between
three domains which needs to be modeled. These
relevant domains are: Product, Processes, and
Organization. Product domain covers “what” to offer
to customers and processes domain covers “how” to
do to achieve it. While Organization reflects which
actors and skills are engaged in the development
process.

Product architecture choice depends on the innovation
and standardization policy of the firm (eg. modular
products, products families, unique products…).
Process architecture depends on the design
methodology adopted (eg. project management,
system engineering) and is constrained by the
physical decomposition of the firm into departments
and teams. The choice of organization architecture is
related to the other domains and so it may depends on
their constraints.

In order to represent the above mentioned synergy,
many tools and models were developed.
Unfortunately, they capture only static and partial
views of the development situations.

That is why, we develop here a method based on
matrix tools allowing to represent each domain by a

matrix and to link them in order to propagate
constraints and dependencies.
Starting from the propagation of customers’ needs, we
obtain therefore a dynamic representation of the co-
evolution of all subsystems domains. We also aim to
show that DSM –Design Structure Matrix- is a
relevant tool for modeling the architecture of each
domain at different levels of details, it also allows to
represent and explain the propagation of constraints
and dependencies in a project.

In this paper, we explain the model by applying it to a
real Robotized Gearbox development situation
observed during our frequent collaborations with an
automotive company.

In order to simplify the representation, organization
domain includes competencies and actors. This
hypothesis is frequently implicitly taken in many
papers dealing with the restructuring of Organizations.

2. MODELING TOOLS

2.1. Design Structure Matrix: structure modeling tool

The design structure matrix (DSM) is becoming a
popular modeling and analysis tool, especially for
purposes of decomposition and integration. A DSM
displays the relationships between components of a
system in a compact, visual, and analytically
advantageous format. A DSM is a square matrix with
identical row and column labels. In the example DSM
in Fig. 1, elements along the diagonal have no sense.
An off-diagonal mark signifies the dependency of one
element on another. Reading across a row reveals
what other elements the element in that row provides
to; scanning down a column reveals what other
elements the element in that column depends on. That

2

is, reading down a column reveals input sources,
while reading across a row indicates output sinks.
Thus, in Figure 1, element D provides something to
elements C, E and G, and it depends on something
from element E.

A B C D E F G
Element A A � �
Element B � B � �
Element C � C �
Element D D �
Element E � E � �
Element F � F
Element G � � � G

Fig 1. Product DSM

DSM is a tool widely used in different research fields:
• Project Management (Browning and Eppinger,

2002),
• Organization architecture (McCord et Eppinger,

1993),
• Exchange flows (Allen 1977) (Pimmler et

Eppinger, 1994),
• Process architecture (Yassine, et al., 1999)

(Browning 2002) (David, et al., 2002).
For a more detailed overview of the DSM method and
its applications, the reader is referred to Steward
(1981) and Eppinger, et al. (1994).
There are two main categories of DSMs: static and
time-based. Static DSMs represent system elements
existing simultaneously, such as components of a
product structure or groups in an organization. Static
DSMs are usually analyzed with clustering
algorithms. In time-based DSMs, the ordering of the
rows and columns indicates a flow through time:
upstream activities in a process precede downstream
activities, and terms like “feedforward” and
“feedback” become meaningful when referring to
interfaces. Time-based DSMs are typically analyzed
using sequencing algorithms.
In this article, we straddle these various fields to deal
at the same time with product, organization and
processes architectures.

2.2. Mapping and allocation matrix

This second matrix based tool is an inter-domain
DSM as classified by Malmqvist (2002), this type of
DSM serves at mapping between heterogeneous
domains like product, organization and processes
domains. The matrix obtained is rectangular with
different elements in rows and columns, the relations
handled by this matrix are allocation type.

3. MODELING SYSTEM ARCHITECTURE WITH
DSM

The development of complex products, such as cars,
computers, or aircraft engines requires at the same
time the use of a general approach –in order to deal
with product, organization and processes domains-
and a well structured approach - enabling to capture
the interactions, the decomposition and the integration
of elements composing the system.

DSM tool is an appropriate way to capture the
structure of a heterogeneous system. The ease of use
and the simplicity of DSM tool make possible to
concentrate a huge amount of information in a single
matrix. In the following part of this paragraph, we will
see how to use DSMs to capture the structure of the
development domains.

3.1. Product architecture
Ulrich (1995) defines product architectures as “the
scheme by which the function of a product is allocated
to physical components.” A key feature of product
architecture is the degree to which it is modular or
integrative. In modular architectures, functional
models of the product map one-to-one to its physical
components. On the other hand, in integrative
architectures a large subset of the functional model
maps to a single or small number of components.

In the engineering design field a large stream of
research has focused on methods and rules to map
functional models to physical components.
Researchers have developed several architecting rules
to map functions to physical modules (Shapiro and
Voelcker, 1989; Liu, et al., 1999).

By using established concepts in the product
architecture literature we can categorize systems as
modular or integrative based on how their
corresponding components share design interfaces
within the system.
From an external perspective modular and integrative
systems concept is based on the existence of design
interfaces between components of the same product
that belong to different systems. Then, modular
systems are those whose design interfaces with other
systems are clustered among a few physically adjacent
systems, whereas integrative systems are those whose
design interfaces span all or most of the systems that
comprise the product due to their physically
distributed or functionally integrative nature
throughout the product.

Product architecture modeling. In order to study the
structure of product architecture, in terms of product
interactions, we use the Design Structure Matrix tool.
Figure 2, illustrates how a manufactured product can
be decomposed into modular and integrative sub-
systems. Thus, we identify two modules (A,B,C) and
(D,E,F) which share few external interfaces by
comparison to G –integrative subsystem- who shares
3 external interfaces within the product.

A B C D E F G
Element A A � �
Element B � B � �
Element C � C �
Element D D �
Element E � E � �
Element F � F
Element G � � � G

Fig 2. Product DSM rearranged

3

3.2. New Product Development Processes structure

Most of the researches in this area assume that the
design process has an underlying structure
(Alexander, 1964; Smith and Morrow, 1999).
At an interesting level of detail, NPD processes do not
proceed in a purely sequential way (Cooper, 1993).
The activities in a NPD process interact by
exchanging information (Clark and Fujimoto, 1991).
According to Hammer and Stanton (1999), a process
is an organized group of related tasks that work
together to create a result of value.
Process architecture—the elements of a process
(tasks) and their pattern of interaction—is an
important process variable (Von Hippel, 1990).

Process architecture modeling. Decomposition is the
standard approach to address system complexity in the
same way of what we did with the product domain. As
a kind of system, a process is defined not only by its
decomposition into tasks but also by how they work
together (Browning, 2002, 2003).
A process is often modeled as an activity network.
The visual representation is too busy, making it
difficult to discern architectural differences. And since
many process flowcharts capture only a single input
and output for any given activity, the full range of
information flow is seldom represented. Using a
flowchart for this purpose would simply be too
complicated and cumbersome.

A design structure matrix (DSM) can also be used to
represent a process (Browning, 2003; Steward 1981;
Eppinger, et al. 1994). The DSM shows activities and
interfaces in a concise format. A Process DSM is a
square matrix in which a cell on the diagonal
represents each activity. A mark in an off-diagonal
cell indicates an activity interface. For each activity,
its row shows its inputs and its column shows its
outputs. When activities are listed in temporal order,
subdiagonal marks denote a feeding of deliverables
forward in the process, from upstream activities to
downstream activities, while superdiagonal marks
indicate feedback. The DSM provides a simple way to
visualize the structure of an activity network and to
compare alternative process architectures.

3.3. Organization structure
Motivation. Organization is a very recurrent term in
many research fields. Thus, we have to clarify this
concept from our point of view.
Organization includes with no doubt the actors
participating to the attainment of the firm’ objectives,
and depending in which research field we are, it may
include the processes regulating and controlling its
behavior. In this paper, organization structure is
referred to the interactions between actors. Thus, the
organization structure determines who works with

whom and who reports to whom. Particularly, in
development organizations we are interested in
studying the interactions among the people
conducting the technical development project.
Organizations are extremely complex systems
(Donnadieu and Karsky, 2002). Better understanding
of organizations enables innovation and improvement
in organization design (Sosa, et al., 2003). Complex
system development requires the exchange of
information among various groups or teams.
Relationships among people and teams are what give
organizations their added value and build collective
competencies. Analyzing a team-based DSM
highlights interteams interfaces, which provide the
greatest leverage for improving the organization.
Better understanding of organizational interfaces
supports the application of appropriate integrative
mechanisms (Browning, 2001, 2003), and help
identifying strategic competencies.
From an organizational viewpoint, complex
development projects usually involve the efforts of
hundreds of team members. A single team does not
design the entire product at once (it is too complex).
Rather, many teams develop the components, and
work to integrate all of these components to create the
final product (Alexander, 1964; Allen, 1977;
Eppinger, 1997). We call modular design teams those
which design modular systems while integrative
design teams are those which design integrative
systems and more generally those which cannot be
mapped to a modular system.
Development organizations face an important
challenge which is product integration (Meinadier,
2002). In order to win this challenge, we need to put
the stress on coordination and collaboration
interactions.
In order to investigate actors’ interactions, we use the
DSM tool applied to organization structure.

Organization structure modeling. By filling in DSMs
with prescribed perspective (Figure 3), we obtain a
clear representation of complex organizations’
structures easy to analyze. Investigating the
differences between prescribed and realized
organization structure can help us identify
communication barriers and characterize them.

 A B C D E F

Motor Team A X X
Transmission Team B X X

Drive train Team C X X

External equipments Team D X
Internal equipments Team E X

structure and openings Team F X X X X

Fig 3. Organization structure DSM

We distinguish in organization architecture between
individual and collective actor.

Individual actor: is a person who is in charge of
performing a mission or a set of missions and who

4

acts permanently, temporarily or occasionally at the
service of a considered company. This actor is
characterized by his corpus of competencies and
belongs to a recognized skill-network (design diesel
engine, architecture of electronic systems, quality
management...).

Collective actor: This is a team who is in charge of
performing a mission or a set of missions and who
acts permanently, temporarily or occasionally at the
service of a company. A collective actor may be split
up into smaller collective actors and/or individual
actors. An individual actor may take part in different
collective actors.
Figure 3 shows that, by investigating the need for
communication interactions, we highlight the
existence of a metateam (A, B and C). This team is
considered as a collective actor and needs to be more
in deep analyzed to address the collective
competencies and mechanisms explaining its behavior
and its performance.
The model of organization structure given above put
the stress on his information processing function. In
our research, we find this model insufficient, that’s
why we complete it with a process structure model
that introduces the cognitive concept of competency.

Competency concept. Competency may be required
and then, referred to a given task (or mission) that
needs to be carried out in the future. Competency may
be acquired and recognized, embodied by an actor
(one or several persons) and then, available to perform
a given similar mission.

Our research team proposes the following definition
of competency (Bonjour and Dulmet, 03):
Competency is the "mobilization" and dynamic
organization of a set of heterogeneous cognitive
resources that leads to the production of an
acknowledged performance, in the framework of a
finalized activity and a particular class of situations. ”

However, in this paper we will only deal with
prescribed competencies which are directly derived
from tasks formulation.

In the following development of our paper, we assume
that one task implies one mission, and one mission is
derived from one task. A required competency is
defined by reference to a mission, we obtain so a
bijection between missions domain and competencies
one.

4. SOCIO-TECHNICAL SYSTEM MODELING:
ROBOTIZED GEARBOX DEVELOPMENT

SITUATION
4.1. Motivation
A socio-technical system is a special system
organized around an actor. Thus, a socio-technical

system can be a firm or any subsystem having an
objective and composed of actors.
In this paper we focus on a gearbox development
situation. A Robotized Gearbox (RG) acts as an
automatic gearbox without being too expensive. In
fact, in a RG, there is an automated controller who
shifts the speeds of a manual gearbox instead of the
customer.
Our purpose is to model the dependencies and the co-
evolution of the product, the organization and the
processes structures. Starting from the product
domain, we will propagate the voice of the consumer
until the organization and competencies domains. Our
purpose is to identify the interdependencies between
all these domains and how these interrelations are
handled in order to fulfill customer expectations.

4.2. Propagating the voice of the consumer to product
architecture

From the consumer point of view, a car as any other
product is an object providing a set of services. Each
automotive company employs a panel of experts
struggling to find out and to formulate consumer’s
expectations. These expectations concerns the entire
vehicle, thus we need to decompose them into more
precise expectations linked to car subsystems and
components.
In this paper we will treat the example of Drivability
expectation. Drivability is the general qualitative
evaluation of a powertrain's operating qualities,
including idle smoothness, cold and hot starting,
throttle response, power delivery, and tolerance for
altitude changes.
Drivability is assumed to be a strategic consumer
expectation. When applied to a gearbox, we wish to
determine which component is especially concerned.
The mapping between expectations domain and
product domain is not detailed in this paper, the only
information needed is that drivability is carried out by
the shifting system function (SF COM).

4.3. Robotized Gearbox architecture modeling
In the Product architecture modeling paragraph, we
have observed that product architecture can be
decomposed into modular and integrative subsystems.
We believe that the choice of product architecture
impact the architecture of processes and the
architecture of organization. After all, the
development organization is executing the
development process, which is implementing the
product architecture.
Even though the RG is a new product with a new
expectation -the automation of gears shifting- the
architecture of the product do not evolve by
comparison to a manual Gearbox, thus we obtain the
RG DSM in figure 4. The DSM obtained is rearranged
using clustering algorithms in order to highlight the
existence of modules.

5

 CDI SYN ACT EMB CIE DIFF MEI CART

CDI X X X
SYN X X SF COM

ACT X X X
EMB X X

SF COU CIE X X X
DIFF X X

SF TPU MEI X X X X

SF
 V

O
L

SF EFF CART X X X X X

ACT: actuators MEI: internal mechanical parts
EMB: clutch CIE: internal clutch control
SYN: Synchronizer SF VOL: functional volumes
DIFF: Differential SF COM: shifting
CART: housing SF TPU: power transmission
CDI: internal control parts SF EFF: efforts recovering
SF COU: coupling
Fig 4. RG product DSM

The RG is a complex system composed of 8
components and hundreds of parts. In order to
overcome complexity barrier, we decompose it
progressively into subsystems and so on. The first
level of decomposition applied to our product reveals
the principal system functions carried out. We obtain
5 principal functions explaining the internal function
of RG. The identification of system functions (SF)
and the mapping between functions and components
are facilitated by the typicality of the architecture of
the RG. In fact, as we can notice it in the figure 4, RG
is composed of three modules and two integrative
components. The modules are directly linked to
system functions and the integrative components are
either linked to a module or supporting directly a
system function. We observe also that a system
function can be integrative, it is the case of the
functional volumes SF which covers all the other SFs.

Drivability, which is carried out by Shifting SF, can
be linked to a modular subsystem (CDI, SYN and
ACT). What need to be noticed at this point are the
external interfaces of this module. In fact, if an
alteration is noticed in drivability expectation or if we
need to investigate the impact of changes carried out
by the system function on the product, we need to link
the module to other subsystems.
From the DSM in figure 4, we notice also that shifting
module is linked to two integrative components who
are MEI and CART and that ACT component belongs
to two modules. Thus, if drivability causes
modification in MEI or CART components, all the
subsystems of the product may be impacted. And if
ACT component is concerned, two modules are
impacted: shifting (COM) and coupling (COU).

In the following paragraph, we link product
architecture to design processes.

4.4. From Product to processes domain

In the left side of figure 6, we find a listing of
prescribed tasks describing the NPD processes of the
RG. These tasks can be detailed and decomposed in
order to become usable by designers, but the level of

detail proposed in this paper is sufficient to cover all
design process and to be in cohesion with the level of
detail adopted in the product architecture.
We notice in the mapping matrix obtained that the
system functions are conserved. In fact, the RG is a
complex system, so we need first to identify system
functions then to map these functions to components.
When system functions were designed, the
components were not identified yet.
Throw the mapping obtained, we notice that
drivability is linked principally to 4 prescribed tasks
(2BV1, 6BV1, 6BV2 and 6BV3).

4.5. RG development processes architecture modeling

The processes DSM is a time-based matrix, the scope
of this matrix is to represent the dependencies
between tasks.
The DSM obtained in figure 7 allows us to analyze
the dependencies of the tasks related to those linked to
drivability expectation. Thus 2BV1 task is constrained
by the specification of the other system functions but
constrains kinematics choice and indirectly all the
other system functions, this information is drawn by
the fact that SF VOL is on the one hand linked to
3BV1 and on the other hand is integrative among all
the other SFs.
At this point, we are able through the two matrices
already constructed to link drivability to the
concerned components and tasks.

4.6. From process domain to competencies domains

By reference to the paragraph (§3.3), we remind that
processes and competencies domains are bijective,
without reformulating tasks we can read directly the
competence required from a task. For example the
competence linked to task 0BV1 is the capability to
carry out negotiations around the specifications of a
gearbox.

4.7. From competencies domain to organization
structure domain

As pointed out in Organization structure paragraph
(§3.3), any organization can be decomposed into
individual and collective actors. At this point, we
don’t take into account resources allocation problems.

RG development is organized as a project. The project
organization structure call up actors having the
following job positions: project manager, function
system designer, component manager, calculus
manager and designer.
According to the level of detail adopted in our
example, the designers do not appear in our
organization because they are related to parts design.
The matching between job positions and product
architecture leads to the list of project roles in figure
8.

6

At this point we can match between competencies and
project roles. The matching is based on the relation
one role is the decision maker related to one
competency.
Logically, in order to avoid conflicts, there is only one
decision maker related to each task.
 By continuing the propagation of drivability
expectation impacts, we observe that the roles
concerned are those of ARSF COM, CdP SYN, CdP
CDI and CdP ACT.

4.8. RG development organization architecture
modeling

The prescribed organization structure OS-DSM in
figure 9 is obtained by reporting the prescribed
interactions between actors during the RG
development project.
We notice that the project manager (PM) will interact
during the project with all the other actors, this
information is based on the combination between the
processes DSM and the mapping matrix between
processes and organization structure. In fact, the PM
is responsible of 0BV1, 5BV1 and 8BV1 tasks, and
these tasks are related to others ones which are under
the responsibility of all the actors.
By reorganizing Organization structure DSM and by
introducing redundant SF roles, we obtain the
particular architecture in figure 9. This DSM conducts
us to make the following remarks:
• There are two integrative actors: the PM and the

PMIV. During the RG development, they will
interact with all the other actors;

• The architecture of the project is flower like (
figure 5). There is a central collective actor
regrouping the system functions managers. ARSF
VOL is the integrative actor between all the
ARSFs;

• Each system manager apart from ARSF VOL
belongs to two collective actors;

• The actors linked to drivability expectation form a
collective actor. In this collective actor like in the
others, the ARSF interacts with all the components
managers who do not interact with each others.
This leads us to conclude that the ARSF has an
integrative role inside a component team.

• The remarks made before give us an idea about the
ideal physical organization of actors. All the actors
belonging to the RG project must share the same
space with respect to the flower like organization.

Fig 5. RG organization structure representation

5. DISCUSSION
Product, Organization and Processes domains are
inter-related. This fact increases the level of
complexity of social-technical systems and forces us
to deal with the whole system in order to capture its
real behavior. We have chosen to develop our method
starting from consumer’s expectation going through
product domain, processes domain and arriving to
competencies and organization structure.
The model proposed in this paper is simplified by the
following important hypothesis:
• The level of detail adopted in product domain and

which impacts the decomposition of the other
domains is 8 components decomposition only, it
allows us to handle partially the complexity of the
global system. However, the explanation of some
interactions and dependencies used in our example
are derived from a more in deep knowledge of the
system.

• The competency domain is assumed to be bijective
with tasks domain. This is a good starting point for
our example but competency concept is more
complex and gain to be more in deep developed in
future researches.

The partial modular architecture of the product
impacts the structure of all the other domains. In our
case, this special architecture facilitated the
propagation of the voice of the consumer. In fact, we
found a product module impacted by drivability
expectation and a collective actor designing that
module.
In drivability propagation case, we are able trough the
example treated to identify in each domain the
subsystems directly impacted and even those who
may be impacted indirectly. From a manager point of
view, this tool becomes essential for developing a
global and detailed idea of the interactions of intra and
inter-domains and gives a quick representation of
changes applied on any element of the system.
More precisely, as drivability is identified as being a
strategic expectation, then we are able to affirm that
shifting module is a strategic component for the
company and that the shifting team (collective actor)
holds strategic competencies.

6. CONCLUSION
The DSM applications reviewed in this paper
demonstrate the main strength of matrix-based
approaches: concise, visual representation of complex
systems. This paper emphasizes, first how DSMs
facilitate intelligent system decomposition and
representation, and secondly how an original
representation and analysis model can be developed
using the combination of DSMs and allocations
matrices.
In industrial context, this model gives managers a
global sight about the impacts of changes
(reorganization, new element, etc.) from one domain
to the others. Specially, in this paper we highlight the

SF COU

SF
 C

O
M

SF EFF

SF PTU

SF VOL

CART

EMB
CIE

M
EI

D
IFF SY

N

A
C

T
C

D
I

7

necessary linking between the strategic drivability
expectation and the strategic component, team and
competencies which are related to that expectation.

REFERENCES

Alexander, C. (1964). Notes on the Synthesis of Form,
Harvard University Press, Cambridge.

Allen, T.J. (1977). Managing the Flow of Technology:
Technology Transfer and the Dissemination of
Technological Information within the R&D
Organization. MIT Press, Cambridge, MA.

Browning, T.R. (2001). Applying the design structure
matrix to system decomposition and integration
problems: A review and new directions, IEEE
Trans. Eng. Mgt., vol. 48, pp. 292–306.

Browning, T.R. (2002). Process integration using the
design structure matrix, Syst. Eng., vol. 5, no. 3,
pp. 180–193.

Browning, T.R. (2003). On customer value and
improvement in product development processes,
Syst. Eng., vol. 6, no. 1.

Browning T.R., and S.D. Eppinger, (2002). Modeling
the impact of process architecture on cost and
schedule risk in product development. IEEE
Transactions on Engineering Management.

Clark, K. B. and T. Fujimoto (1991). Product
Development Performance: Strategy,
Organization, and Management in the World
Auto Industry. Harvard Business School Press.

Cooper, K. G. (1993). The rework cycle: Why
projects are mismanaged, PMNETwork.

David M., Z. Idelmerfaa. and J. Richard (2002).
Organization Method for Complex Cooperative
Design Projects. IEEE 2002, Hammamet.

Donnadieu G. and M. Karsky (2002). La systémique,
penser et agir dans la complexité. Editions
liaisons.

Steward, R. P. and V. Donald (1981). The Design
Structure System: A Method for Managing the
Design of Complex Systems. IEEE Transactions
on Engineering Management 28, No.3, 71-74.

Eppinger, S. D., D. E. Whitney, R. P. Smith, and D.
A. Gebala (1994). A Model-based Method for

Organizing Tasks in Product Development.
Research in Engineering Design, 6: 1, pp. 1-13.

Eppinger, S. D. (1997). A Planning Method for
Integration of Large-Scale Engineering
Systems,’’ International Conference on
Engineering Design(ICED 97).

Hammer, M. and S. Stanton (1999). How process
enterprise really work. Harv. Bus. Rev., 108-118.

Liu, Y. C., A. Chakrabarti, and T. P. Bligh (1999).
Transforming Functional Solutions into Physical
Solutions, ASME, DETC/DTM-8768.

Malmqvist J. (2002). A classification of matrix based
methods for product modeling, Design 2002, 14-
17, Cavtat-Dubrovnik, Croatia.

McCord, K. R. and S. D. Eppinger (1993). Managing
the Integration Problem in Concurrent
Engineering, M.I.T. Working Paper no.3594.

Meinadier, J.-P (2002). LE METIER D'
INTEGRATION DE SYSTEMES, Hermes Science
Publications.

Pimmler, T. U. and S. D. Eppinger (1994). Integration
Analysis of Product Decompositions. ASME
(DTM'94), Vol 68, pp. 343-351.

Shapiro, V., and H. Voelcker (1989). On the Role of
Geometry in Mechanical Design, Res. Eng. Des.,
1, pp. 69–73.

Smith R. P. and J. A. Morrow (1999). Product
development process modeling, Design Studies,
vol. 20, no. 3, pp. 237–261.

Sosa, M. E., S. D. Eppinger, and C. M. Rowles
(2003). Identifying modular and integrative
systems and their impact on design team
interactions. ASME Vol 125.

Ulrich, K. T. (1995). The Role of Product
Architecture in the Manufacturing Firm, Res.
Policy, 24, pp. 583–607.

Von Hippel E. (1990). Task partitioning: An
innovation process variable, Res. Policy, vol. 19,
pp. 407–418,.

Yassine A., D. R. Falkenburg and K. Chelst, 1999.
Engineering Design Management: An
Information Structure Approach. International
Journal of Production Research, vol. 37, no. 13,
pp. 2957-2975.

 VOL COM COU TPU FFF ACT SYN CDI EMB CIE DIFF MEI CART
0BV1 X X X X X 0BV1 Negotiate specifications with motor DT
1BV1 X 1BV1 Specify TPU function
1BV2 X 1BV2 Specify COU function
1BV3 X 1BV3 Specify FFF function
2BV1 X 2BV1 Specify COM function
3BV1 X X X X X 3BV1 Fix kinematics
4BV1 X X 4BV1 Fix axle spread
4BV2 X X X 4BV2 Fix internal clutch control
4BV3 X 4BV3 Fix lubricant
5BV1 X X X X X 5BV1 Fix gearbox architecture
6BV1 X X 6BV1 Design ACT
6BV2 X X 6BV2 Design SYN
6BV3 X X 6BV3 Design CDI
6BV4 X X 6BV4 Design EMB
6BV5 X X 6BV5 Design CIE
6BV6 X X 6BV6 Design DIFF
6BV7 X X 6BV7 Design MEI
6BV8 X X 6BV8 Design CART
7BV1 7BV1 Fix rolling bearings and casing
8BV1 X X 8BV1 Fix components design
9BV1 X X X X X X X X X X X X X 9BV1 Edit validation and integration document

Fig 6. Product-Processes Mapping matrix

8

 0-1 1-1 1-2 1-3 2-1 3-1 4-1 4-2 4-3 5-1 6-1 6-2 6-3 6-4 6-5 6-6 6-7 6-8 7-1 8-1 9-1
0BV1 X X X
1BV1 X
1BV2 X
1BV3 X
2BV1 X
3BV1 X X X X X
4BV1 X
4BV2 X
4BV3 X
5BV1 X X X X X X X X X X
6BV1 X
6BV2 X
6BV3 X
6BV4 X
6BV5 X
6BV6 X
6BV7 X
6BV8 X
7BV1 X
8BV1 X X
9BV1 X

Fig 7. RG processes domain DSM

 0-1 1-1 1-2 1-3 2-1 3-1 4-1 4-2 4-3 5-1 6-1 6-2 6-3 6-4 6-5 6-6 6-7 6-8 7-1 8-1 9-1
PM X X X RG project manager

 ARSF TPU X X TPU SF manager

ARSF COU X X COU SF manager

ARSF EFF X X EFF SF manager

ARSF COM X COM SF manager

ARSF VOL X VOL SF manager

CdP ACT X ACT component manager

CdP SYN X SYN component manager

CdP CDI X CDI component manager

CdP EMB X EMB component manager

CdP CIE X CIE component manager

CdP DIFF X DIFF component manager

CdP MEI X X MEI component manager

CdP CART X CART component manager

PMIV X Calculus manager

Fig 8. Competencies-Roles mapping

PM PMIV ARSF
TPU

ARSF
COU

ARSF
FFF

ARSF
COM

ARSF
VOL

ARSF
COM’

CdP
ACT

CdP
SYN

CdP
CDI

ARSF
COU’

CdP
EMB

CdP
CIE

ARSF
TPU’

CdP
DIFF

CdP
MEI

ARSF
FFF’

CdP
CART

PM X X X X X X X X X X X X X X X X X X
PMIV X X X X X X X X X X X X X X X X X X

ARSF TPU X X X X X
ARSF COU X X X X X
ARSF FFF X X X X X

ARSF COM X X X
ARSF VOL X X X X X X

ARSF COM’ X X X X X

CdP ACT X X X

CdP SYN X X X

CdP CDI X X X
ARSF COU’ X X X X

CdP EMB X X X
CdP CIE X X X

ARSF TPU’ X X X X
CdP DIFF X X X
CdP MEI X X X

ARSF FFF’ X X X
CdP CART X X X

Fig 9. Organization structure DSM

